Earth System Models: Challenges in a changing HPC environment

Patrick Jöckel

Institute of Atmospheric Physics, Oberpfaffenhofen

Outline

- Introduction
- "Coupling": An attempt to classify different methods
- Examples, challenges (and solutions)
 - 1. Atmospheric Chemistry in the Earth System
 - 2. Atmosphere Ocean System
 - 3. On-line nesting: an alternative way to higher resolution
- Summary and Outlook

Computational Earth System Science

(numerical weather prediction and climate simulations) was from the beginning on exploiting HPC up to the limits ...

1950 (Charney, Fjørtoft, von Neumann): first numerical weather forecast on ENIAC (Electronic Numerical Integrator and Computer)

forecast time: 24 hours computation: 24 hours

1950 (Charney, Fjørtoft, von Neumann): first numerical weather forecast on ENIAC (Electronic Numerical Integrator and Computer)

forecast time: 24 hours computation: 24 hours

2008 (Lynch & Lynch): reconstruction on mobile-phone (JAVA-application):

forecast time: 24 hours computation: < 1 second (!!!)

Lynch & Lynch, Weather 63, 324-326, 2008. http://mathsci.ucd.ie/~plynch/eniac/phoniac.html

Deutsches Klimarechenzentrum (DKRZ)

8448 Cores 158 TFlops/s

Top 500

June 2009: no. 27

Nov 2011: no. 98

http://www.dkrz.de

Computational Earth System Science

(numerical weather prediction and climate simulations) was from the beginning on exploiting HPC up to the limits ...

... mainly for two reasons:

increasing resolution of numerical discretisation(s) (i.e., finer "grids")

increasing complexity by incorporating more and more processes

Computational Earth System Science

(numerical weather prediction and climate simulations) was from the beginning on exploiting HPC up to the limits ...

... mainly for two reasons:

increasing resolution of numerical discretisation(s) (i.e., finer "grids")

increasing complexity by incorporating more and more processes

"coupling"

The development of climate models, past, present and future

WG1 - TS BOX 3 FIGURE 1

IPCC

INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE

change of state variables by physical, chemical, biological, socio-economic processes

... the prerequisite is the *operator splitting* concept

... the prerequisite is the *operator splitting* concept

Example: X = airtemperature radiation diffusion convection OP 1 OP 2 OP nðX/ðt X(t-1)time integration (Jöckel et al., ACP, 2005)

... the prerequisite is the *operator splitting* concept

different numerical algorithms (discretisation, parallel decomposition, cache/vector blocking, ...)

DLR

(Jöckel et al., ACP, 2005)

Example:

basic (dynamical) equations → coupled PDE system

Coupling ... a classification (of the "way" how

(of the "way" how operators "communicate")

 involves an add. external program ("coupler")

Coupling ... a classification (of the "way" how

(of the "way" how operators "communicate")

internal coupling

- Os are part of the same program unit ("task")
- data exchange via working memory

on-line direct

external coupling

• Os are split into different program units ("tasks")

off-line

data exchange
 via external
 storage (files)

on-line

data exchange via working memory

indirect

direct

choice depends on:

- application
- implementation effort (legacy code!)
- desired sustainability, flexibility, re-usability
- → compromise in minimizing computational and communication overheads

 involves an add. external program ("coupler")

Example 1: internal coupling

more formal: standard model infrastructure + coding standard

- Earth System Modeling Framework (ESMF)
 (http://www.earthsystemmodeling.org)
- Modular Earth Submodel System (MESSy) (http://www.messy-interface.org, Jöckel et al., ACP, 2005)
- ... (many others)

key: strict separation of model infrastructure (4 layer!)
(memory management, I/O, parallel decomp., time control, etc.)
from "process" (and "diagnostic") formulations

coupling via model infrastructure (nearly object oriented)

- TIMER
- CHANNEL (pointer based memory management and I/O)
- TRACER (special for chemical constituents)

• ...

"operators" = "processes" = "submodels"

Number* of sub-time steps of the ODE solver for the kinetic system

Number* of sub-time steps of the ODE solver for the kinetic system

Number* of sub-time steps of the ODE solver for the kinetic system

Example 2: internal coupling versus indirect external coupling

of an Atmosphere – Ocean System (domain coupling)

MPIOM as MESSy submodel "coupled to" ECHAM5

MPIOM - OASIS3 - ECHAM5

Example 2: internal coupling versus indirect external coupling

of an Atmosphere – Ocean System (domain coupling)

Example 2:

internal coupling

versus

indirect external coupling

of an Atmosphere – Ocean System (domain coupling)

"scatter"

"gather"

grid-trafo

(serial)

Example 2: Performance (seconds per simulated month)

Example 3: On-line nesting: an alternative way to higher resolution

 1-way on-line nested global-regional atmospheric model system (zoom)

 multiple instances possible due to client – server architecture of MMD ...

MECO(2) simulation of Eyjafjallajokull eruption plume 2010

Example 3: On-line nesting: an alternative way to higher resolution

MPI based, single sided "point-to-point" communication between c&s tasks with overlapping grids

Example 3: On-line nesting: an alternative way to higher resolution

(Kerkweg & Jöckel, GMD, 2012b)

Example 3: On-line nesting: an alternative way to higher resolution

Summary

- ESMs are computationally demanding due to *continuously* increasing complexity
- Operator splitting is basis for coupling of model components
- Different coupling methods exist; challenge: efficiency – computation versus communication
- Exemplary challenges:
 - Atmospheric Chemistry: internal coupling
 - → Load Imbalance (parallel decomp.)
 - Atmosphere Ocean System: *internal* vs. *indirect external* coupling
 - → both feasible, best choice depends on model (legacy code!), model setup, HPC-system
 - Global Regional Nesting: direct on-line coupling (client – server approach)
 - → complex timing, add. effort to achieve efficiency
- (exascale parallelisation, parallel I/O, memory/core reduction)

