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Computational Earth System Science
(numerical weather prediction and climate simulations)
was from the beginning on exploiting HPC up to the limits …
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first numerical weather 
forecast on ENIAC
(Electronic Numerical 
Integrator
and Computer)

forecast time: 24 hours
computation:  24 hours



1950 (Charney, Fjørtoft,
von Neumann):
first numerical weather 
forecast on ENIAC
(Electronic Numerical 
Integrator
and Computer)

forecast time: 24 hours
computation:  24 hours

Lynch & Lynch, Weather   63, 324-326, 2008.     
http://mathsci.ucd.ie/~plynch/eniac/phoniac.html

2008 (Lynch & Lynch):
reconstruction on mobile-phone
(JAVA-application):

forecast time: 24 hours
computation: < 1 second (!!!)



http://www.dkrz.de

Deutsches Klimarechenzentrum (DKRZ)

Top 500
June 2009: no. 27 
Nov  2011: no. 98

8448 Cores
158 TFlops/s



Computational Earth System Science
(numerical weather prediction and climate simulations)
was from the beginning on exploiting HPC up to the limits …

… mainly for two reasons:

 increasing resolution of numerical discretisation(s)
 (i.e., finer “grids”)

 increasing complexity by incorporating more and more
processes
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Coupling ...
… the prerequisite is the operator splitting concept

(Jöckel et al., ACP, 2005)
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radiation

Example:
X = air
temperature

convection diffusion...



Coupling ...
… the prerequisite is the operator splitting concept

(Jöckel et al., ACP, 2005)

different numerical algorithms (discretisation, parallel decomposition,
cache/vector blocking, ...) 



Coupling ...

(Jöckel et al., ACP, 2005)

Example:
basic (dynamical) equations → coupled PDE system

reaction kinetics (chemistry) → coupled ODE system

spectral
transform

Rosenbrock-3 (auto)



Coupling … a classification

internal coupling external coupling

● Os are part of the same
 program unit (“task”)

● data exchange via
   working memory off-line on-line

● data exchange
   via external 
   storage (files)

 (of the “way” how 
operators “communicate”)

indirect direct

● involves an
 add. external

   program
   (“coupler”)

● Os are split into different
 program units (“tasks”)

● data exchange
   via working
   memory

on-line

direct
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internal coupling external coupling

● Os are part of the same
 program unit (“task”)

● data exchange via
   working memory off-line on-line

● data exchange
   via external 
   storage (files)

 (of the “way” how 
operators “communicate”)

indirect direct

● involves an
 add. external

   program
   (“coupler”)

● Os are split into different
 program units (“tasks”)

● data exchange
   via working
   memory

on-line

direct

choice depends on:
- application
- implementation effort (legacy code!)
- desired sustainability, flexibility, re-usability
→ compromise in minimizing computational
    and communication overheads



Example 1: internal coupling

Language level: CALL subroutine_1( ..., A, …) [INTENT(OUT)]

CALL subroutine_2( ..., A, …) [INTENT(IN)]

more formal: standard model infrastructure + coding standard
- Earth System Modeling Framework (ESMF)
   (http://www.earthsystemmodeling.org)
- Modular Earth Submodel System (MESSy)
   (http://www.messy-interface.org, Jöckel et al., ACP, 2005)
- … (many others)

key:  strict separation of model infrastructure (4 layer!)
(memory management, I/O, parallel decomp., time control, etc.)
from “process” (and “diagnostic”) formulations



Example 1a: internal coupling of Atmospheric Chemistry in MESSy

coupling via model infrastructure (nearly object oriented)
● TIMER
● CHANNEL (pointer based memory management and I/O)
● TRACER (special for chemical constituents)
● …

“operators” = “processes” = “submodels” 
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photo-chemistry:
...
A + B → C + D  :: J(light, ...)
B + E → F + G  :: k(p,T, ...)
…

==> ODE system



T106L90MA → ~ 1.125° x 1.125° x 90 (~80 km) ; Δt = 6 min

Number* of sub-time steps of the ODE solver for the kinetic system

16-FEB-2005 01:00 UTC

*vertical
average
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T106L90MA → ~ 1.125° x 1.125° x 90 (~80 km) ; Δt = 6 min

Number* of sub-time steps of the ODE solver for the kinetic system

16-FEB-2005 01:00 UTC

*vertical
average

Load imbalance due to
time dependent stiffness
of kinetic (ODE) system
→ possible solution:
dynamic parallel decomposition



Example 2:                                    versus internal coupling

of an Atmosphere – Ocean System  (domain coupling)

indirect external coupling
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Example 2:                                    versus internal coupling

of an Atmosphere – Ocean System  (domain coupling)

indirect external coupling

Processor ID # for 4 x 4 decomposition

Atmosphere Ocean (rotated grid)



Example 2:                                    versus internal coupling

of an Atmosphere – Ocean System  (domain coupling)

indirect external coupling

...

...

...

...

“gather”

“scatter”

“all-gather”

incl. 
grid-trafo
(serial)grid-trafo

(semi-parallel)



Example 2: Performance (seconds per simulated month) 
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indirect external coupling

number of
tasks (=cores)

depends on:
- HPC system
- model setup (Pozzer et al., GMD, 2011)



Example 3: On-line nesting: an alternative way to higher resolution

- 1-way on-line nested global-regional
   atmospheric model system
  (zoom)

ECHAM5

COSMO 1 COSMO 2

COSMO 2-1

COSMO 2-1-2

COSMO 2-1-1

COSMO 3

COSMO 3-1

- multiple instances possible
   due to client – server
   architecture of MMD ...

(Kerkweg & Jöckel, GMD, 2012a,b;

Hofmann et al., GMD, 2012)

MECO(n): 
MESSy-fied ECHAM  and 

COSMO models n-times nested





Example 3: On-line nesting: an alternative way to higher resolution

MMD-Server
(ECHAM5 or COSMO)

MMD-Client
(COSMO)

memory
buffers

MPI based, single sided “point-to-point” communication
between c&s tasks with overlapping grids

server
tasks

client
tasks



Example 3: On-line nesting: an alternative way to higher resolution

(Kerkweg & Jöckel, GMD, 2012b)



Example 3: On-line nesting: an alternative way to higher resolution

simulation time (hour)
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is most
efficient !

additional 
effort to 
optimize
efficiency !



Summary

- ESMs are computationally demanding due to continuously
increasing complexity

- Operator splitting is basis for coupling of model components
- Different coupling methods exist;

challenge: efficiency – computation versus communication
- Exemplary challenges:

- Atmospheric Chemistry: internal coupling
→ Load Imbalance (parallel decomp.)

- Atmosphere – Ocean System: internal vs. indirect 
external coupling
→both feasible, best choice depends on model
    (legacy code!), model setup, HPC-system

- Global – Regional Nesting: direct on-line coupling
    (client – server approach)
→ complex timing, add. effort to achieve efficiency

- (exascale parallelisation, parallel I/O, memory/core reduction)
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