INESS Test & Commissioning
WS-F

WS A – Management Activities
WS H – Dissemination, Exploitation & Training

WS B Business Model
WS D – Generic Requirements
WS E – Functional Architecture
WS F Testing & Commissioning
WS C – System Design
WS G Safety Case Process
Part 1:

Possible Approaches for optimised testing
Possible Approaches for optimised testing
Using laboratories for time efficient testing

KEY INFLUENCES

The selection of testing techniques is influenced by the way in which application requirements are defined.

A railway defines the requirements in the form of a set of business requirements to move passengers/freight from one point to another. The requirements mainly have to follow the operational needs.

These then are decomposed eventually into a set of requirements for a signaling system to provide the operational movements required.

It can be assumed that the technical requirements are derived from the operational requirements. Therefore the operational requirements can be used as a basis of testing.

An optimisation of the operational requirements will have a direct influence on the complexity of the technical requirements and by this on the testing efforts.
Possible Approaches for optimised testing
Using laboratories for time efficient testing
Possible Approaches for optimised testing
Using laboratories for time efficient testing

- Operational Requirements
- Test cases
- Test trips for real tracks

- Technical Requirements
- Test cases
- Virtual test trips for laboratories
Possible Approaches for optimised testing

Using laboratories for time efficient testing

• To increase efficiency a testing method should be set up that avoids repetition of tasks and reuses things that have been produced before.

• To that end the creation of templated test cases is seen as key.

• These can then be reused time and time again by inserting the appropriate test parameters.

• Another key item in the schemata is a traceability matrix that provides verification against the requirements that tests actually verify a requirement.

• By adopting this process tests can be quickly constructed to carry out scenarios as part of the testing and commissioning process.

• Utilizing the method will reduce the number of overall tests required to test the application.
Possible Approaches for optimised testing
Using laboratories for time efficient testing

Functional Requirements → parametrable test cases → Concrete test scenarios

Traceability Matrix
Possible Approaches for optimised testing
Using laboratories for time efficient testing
Possible Approaches for optimised testing

Modularisation for reducing interlocking interfaces

• The design of the interlocking has a bearing on the testing requirements for an interlocking.

• Traditional interlocking developments have tended to define separate interfaces for the field equipment rather than standard interfaces.

• As a result it has been necessary to test each interface in turn leading to an inefficient test regime.

• By taking account of the needs of testing during the design the effort required to test an application can be significantly reduced.

Note: This feeds back into the design process of the product. The design not only affects the product performance but also the application configuration performance.
Possible Approaches for optimised testing

Modularisation for reducing interlocking interfaces
Possible Approaches for optimised testing

Modularisation for reducing interlocking interfaces
Possible Approaches for optimised testing

Modularisation for reducing interlocking interfaces
Possible Approaches for optimised testing

Modularisation for reducing interlocking interfaces

- Modularisation will lead to a minimised set of interfaces and consequently to less testing effort.
- In the example this will bring a saving potential of
 - about 20% for the standardisation of interfaces and
 - about 40% for the combination of elements in addition to the standardisation of interfaces

<table>
<thead>
<tr>
<th>Interface number</th>
<th>Generic</th>
<th>CCE</th>
<th>IECH</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>2</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>3</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>4</td>
<td>x</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>x</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>11</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td>x</td>
</tr>
</tbody>
</table>

Number of interfaces to be tested

- Generic: 11
- CCE: 9
- IECH: 6
Possible Approaches for optimised testing
Industrial Engineering for optimising number of elements

- The effort reduction for testing of interlocking modules can be achieved by identifying frequently recurring combinations of components of control centre and subject them to a development pre-test as combinations to create large modules to avoid further repetitive testing for the particular application.

- After having tested the combinations of modules successfully with the positive and the negative tests, they can be used for the design and development of the interlocking application on project level.

- Furthermore, those pre-tested module combinations can be integrated in any other project, in which these functionalities are needed. This can decrease the effort for future interlocking applications.

- In the field only the correct connection of the wiring has to be tested (correspondence testing) to be sure that the interlocking will work correctly. Further functional field tests are not needed.
Possible Approaches for optimised testing
Industrial Engineering for optimising number of elements

I. Positive testing:
 - Signal A only shall show a proceed aspect, when the signals N and M showing a stopping aspect, the point is locked in the end position and the point is not blocked (valid for the blue and the green travelling connection).
 - The signals N and M have to show a stopping aspect as long as signal A shows the green aspect.
 - The point must not be turned as long as signal A shows the proceed aspect.
 - The point must not be unlocked as long as signal A shows the proceed aspect.

I. Negative testing:
 - Signal A must immediately switch to a stopping aspect, when one of the following events occur:
 i. Signal N and/or M does not show the stop aspect any longer
 ii. Signal N and/or M reports a degraded mode to the interlocking
 iii. The point is no longer locked
 iv. The point reports a degraded mode to the interlocking
 v. The TVP section of the point is no longer reported as free.
 vi. The TVP section or one of the axle counters reports a degraded mode to the interlocking
Possible Approaches for optimised testing
Safe by design approach to eliminate hazards

This method goes in line with the philosophy

„What is not there, can not fail“

Therefore the main idea is to reduce the functionality and/or the complexity of the system in a way that errors or failures do not occur. This removes latent hazards from the application.

The approach starts during the transformation of the requirements into the application's design with an objective of simplification of the design.
Possible Approaches for optimised testing

Safe by design approach to eliminate hazards

Example: Diamond crossing can be replaced by two single points, which are much easier to test

Example: Replace a three-aspect signal by a two-aspect signal when the „slow approach“ aspect (yellow) is not essential.
Possible Approaches for optimised testing

Conclusion

The methodical evaluation of the different methods paints the picture that

– the modularisation and standardisation can produce a significant saving by eliminating different interfaces, which need to be tested each one by one

– the safe by design approach can in parallel lead so some effort saving due to the simplification of elements and in the process making testing easier. Also can this approach decrease the testing effort by minimising the catalogue of functions of the elements to an operational needed level, which will end directly in a decrease of testing.

– the implementation of Industrial Engineering and especially the definition of standard element units will bring the highest effort saving potential due to scaling effects – an element unit needs to be tested once but can be installed several times without being tested again.
Part 2:

Optimised Testing by using laboratories
Optimised Testing by using laboratories

Example for a Tool-Chain

INTEGRATED EUROPEAN SIGNALLING SYSTEM
EU 7th FRAMEWORK PROGRAMME - THEME 7 – TRANSPORT
Optimised Testing by using laboratories

Test case format for the example OBU

- Great number of tools available
- Easy-to-understand structure, human readable
- Easy to handle (PDF, DOC, etc.)

Various test cases can be produced coming from the model.
Optimised Testing by using laboratories

Test management: Administration of tests

- Generic tool for versioning to administrate the test cases:
 - Subversion (SVN)
 - Parallel changes from different user can be traced and administrated
 - Usage of any number of versioning branches and updates
 - Ideal for the administration of XML- and MySQL-data
 - Available and OS independent
Optimised Testing by using laboratories
Test management: Administration of tests

- Generic tool for the administration of change requests
 -> BugTracking
 - Mantis
 - Errors can be reported by any kind of user to a defined position
 - Correlation of errors and changes of versions
 - Generation of documentation
Optimised Testing by using laboratories

Test execution: Test format

Requirements for the test format:

• Additionally to the test case format:

 – Combination of test cases to test sequences
 • Usage of existing parameters and starting requirements
 • Sorting requirements orientated, to make checking of requirements groups possible

 – High timing requirements for the availability of the data

 – Data volume will be higher than for single test cases
Optimised Testing by using laboratories

Test execution: Test format

- Many implementations are available
- Independent from the operation system
- Developed for huge amounts of data
- In an adopted structure the saving of test descriptions and logging data in the same format and/or data base is possible
- Can be implemented in also in other data bases
Optimised Testing by using laboratories

Test execution: Logging format
Optimised Testing by using laboratories

Test evaluation: Format of results

• Results of the tests need to be documented

• Format of the test reports is selectable, since no further handling necessary

• But a kind of Meta format is recommended to make the usage easier (Ideally MS Excel after version 2008: XML format)

• Using MS Excel up to 70% of a report can be generated automated, the other 30% have to be done manually
Optimised Testing by using laboratories

Test evaluation: Format of results
Optimised Testing by using laboratories

Conclusion

Test case deduction: XML

From test case to test: MySQL

Test management

Evaluation: Excel/PDF

Test results: MySQL

MySQL

Test execution
Part 3:

Savings through the design approach
Savings through the design approach
Modularisation methods

- Basic design: Sample track layout of a single track line with two double track stations controlled by one interlocking
 - 4 points
 - 8 three aspect signals
 - 12 Element controller (4 controller for points, 8 controller for signals)
 - 24 interfaces
 - 12 interfaces between interlocking and element controller
 - 12 interfaces between element controller and field element hardware
 - 32 functions (8 points functions, 24 signal functions)
 - 48 functional tests (positive & negative tests), 24 interface tests
Savings through the design approach
Modularisation methods

• Step 1: standardising and combining interfaces between interlocking and signal control element
 • 4 points
 • 8 three aspect signals
 • 12 Element controller (4 controller for points, 8 controller for signals)
 • 18 interfaces
 • 6 interfaces between interlocking and element controller
 • 12 interfaces between element controller and field element hardware
 • 32 functions (8 points functions, 24 signal functions)
 • 48 functional tests (positive & negative tests), 18 interface tests
Savings through the design approach
Modularisation methods

- Step 2: standardising and combining interfaces between interlocking and point control element
 - 4 points
 - 8 three aspect signals
 - 12 Element controller (4 controller for points, 8 controller for signals)
 - 16 interfaces
 - 4 interfaces between interlocking and element controller
 - 12 interfaces between element controller and field element hardware
 - 32 functions (8 points functions, 24 signal functions)
 - 48 functional tests (positive & negative tests), 16 interface tests
Savings through the design approach
Modularisation methods

• Step 3: standardising and combining interfaces between interlocking and control elements
 • 4 points
 • 8 three aspect signals
 • 12 Element controller (4 controller for points, 8 controller for signals)
 • 14 interfaces
 • 2 interfaces between interlocking and element controller
 • 12 interfaces between element controller and field element hardware
 • 32 functions (8 points functions, 24 signal functions)
 • 48 functional tests (positive & negative tests), 14 interface tests
Savings through the design approach
Modularisation methods

• Step 4: standardising and combining control elements
 • 4 points
 • 8 three aspect signals
 • 8 Element controller (4 combined controller for point and signal, 4 controller for signals)
 • 10 interfaces
 • 2 interfaces between interlocking and element controller
 • 8 interfaces between element controller and field element hardware
 • 32 functions (8 points functions, 24 signal functions)
 • 48 functional tests (positive & negative tests), 10 interface tests
Savings through the design approach
Safe by design methods

- Step 5: reducing functions
 - 4 points
 - 8 **two** aspect signals
 - 8 Element controller (4 combined controller for point and signal, 4 controller for signals)
 - **10** interfaces
 - 2 interfaces between interlocking and element controller
 - 8 interfaces between element controller and field element hardware
 - 24 functions (8 points functions, 16 signal functions)
 - 32 functional tests (positive & negative tests), 10 interface tests
Savings through the design approach
Industrial Engineering methods

- Step 6: generating pre-testable unit (which can be used four times in this layout)
 - 1 point
 - 2 two aspect signals
 - 2 Element controller (4 combined controller for point and signal, 4 controller for signals)
 - 3 interfaces
 - 1 interface between interlocking and element controller
 - 2 interfaces between element controller and field element hardware
 - 6 functions (2 points functions, 4 signal functions)
 - 8 functional tests (positive & negative tests), 3 interface tests
Savings through the design approach
Overview of possible saving potentials
Savings through the design approach
Overview of possible saving potentials

• The implementation of modularisation approaches can save about 20% of tests which need to be performed for the shown sample layout (steps 2 to 4).

• Further savings of about 20% can be reached by reducing the functionality by using safe by design methods (step 5).

• Additional saving of about 40% of the testing effort for the sample layout can be reached by using pre-testable element units (step 6).

• Combining all three methods as shown previously can produce a total saving potential of about 80%, especially driven by the definition of pre-testable element units.
Savings through the design approach
Overview of possible saving potentials

• But

 – the effects may be smaller due to higher complexities of the new combined interfaces and field elements.

 – the effects also vary with respect to the state of the art each player in the railway market is currently working with. The potentials will be less for a railway or a supplier who is developing its systems already in a more or less modularised and/or standardised way.
Savings through the design approach
Summary and recommendations

• The evaluation of the savings by design approaches shows that

 – a standardisation of interfaces and elements is the basis for further effort saving steps

 – even with only a few standardised interfaces large savings are achievable by creating a catalogue of several standard element units, which will be applicable to as many operational and infrastructural situations as possible. Only special cases shall be designed separately

 – by using such an element unit catalogue in combination with standardised interfaces saving potentials of 50% - 60% are possible.