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Abstract— In this paper the generation of walking
gaits for biped robots is addressed as a nonlinear
optimization problem. The latter presents an efficient
formulation, which only requires parameterizing the
joint states and does not require to integrate the
equations of motion. The results of the optimization
are applied to a real robot, with the aid of a suitable
stabilizing controller. The final gain in optimized cost
is assessed, for the real system. The experimental
results confirm the effectiveness of the method.

I. INTRODUCTION

The task of generating walking gaits for bipedal robots
was addressed extensively in the literature in recent
years. The problem may be formulated as a control prob-
lem [1]-[4] or alternatively as a nonlinear optimization
problem [5]-[8]. We address this latter formulation here
in detail. The aim of this paper is to assess the overall
gain in the cost function, when an optimal solution is
commanded on a real system, which introduces model-
ing uncertainties and closed-loop controller corrections.
We find that such analyses are hardly found in other
optimization-related works.

Different approaches may be found in the formulation
of the related optimization problem, from collocation [§]
to multiple-shooting [5]. We present here an alternative
approach, already applied in [9] to a fixed base robot,
based on the sole parameterization of the robot joint
states, which does not require integration of the equa-
tions of motion.

We also solve the global optimization problem, which is
hardly addressed in the literature. As is well known, local
minima are abundant in highly constrained nonlinear
optimization problems [10], as is shown here to be the
case for the walking task. We chose here to minimize
the mechanical energy, to arrive at a statistically con-
solidated global optimum, for any given desired walking
gait. Initial guesses are provided by means of an RRT-
algorithm.

To finally determine how useful the optimization is,
when applied on a real system, we perform closed-loop
trajectory tracking experiments with the DLR Biped (see
Fig. . The trajectory parameterization is adapted to
the controller structure. At this stage, we can assess the
loss in the cost function, which arises from modeling
errors in the model used in the off-line optimization
procedure (e.g. joint compliance is not included), and
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Fig. 1. Simulation environment for the DLR Biped robot: two
samples of an optimized trajectory with different step length. Top
row: result with constraint knee joint angle. Bottom row without
constraint.

also from the inevitable implementation of a closed-loop
controller.

In [7] Djoudi et al. describe a way to find torque-
optimal robotic gaits for a planar system. Based on forth-
order polynomial functions five joint angles are defined.
The dynamic model describing the single support phase
is augmented by impact equations emulating an instanta-
neous support change. Due to the simple model structure
the system has no actuation at the feet, resulting in an
underactuated system.

Denk and Schmidt proposed a solution for three-
dimensional robotic gaits with a rigid body model in [§]
[11]. The concept includes the modeling of single support,
double support, heel- and toe-motions. It is solved via
a direct collocation approach discretizing both torque
input and joint trajectories. Feasibility is expressed via
constraints on the zero-moment point (ZMP). The con-
cept is designed to run on the humanoid robot Johnnie.
The parameterization is done via cubic splines for the
joint angle trajectories and piecewise linear functions for
the joint torques.

Buschmann et al. describe in [6] a method to generate
full-body walking motions, parameterized with reduced
degrees of freedom. The motion is described in the
coordinates of the center of mass (COM) and joint angles
determining the configuration of the active upper body
parts. The trajectory of the swing leg is not part of
the optimization problem. Cubic splines are used to
parameterize this coordinate set. The dynamics are cal-
culated with a free-floating three-dimensional rigid body
model. The optimization process makes use of algebraic



derivatives which yield a six-times lower execution time
compared to numerical derivatives.

In [5] Schultz et al. address the problem of optimizing
the running gait of a multibody model of the human
body. An optimal control problem is formulated that
minimizes a weighted sum of joint torques and of torque
variations. It is solved using an efficient direct multiple-
shooting algorithm, which however involves integration
of the equations of motion and provides generally dis-
continuous torque profiles. Results are provided in simu-
lation.

In [12] pre-calculated humanoid paths, provided by
kinematic planning methods, are optimized with respect
to joint torques, to achieve smooth and stable human-like
motions. Function gradients are derived analytically for
greater numerical efficiency. However, the optimization
problem only addresses the torque time profiles, leaving
the planned trajectory unaltered.

The main contribution of this paper is to provide
a detailed analysis of the issues involved in nonlinear
optimization for generating walking gaits and an experi-
mental evaluation of the final optimal gait. The paper is
then structured as follows: the rest of Section I presents
a literature survey, while Section II presents the problem
statement and the modeling of the robot. Section III de-
scribes the formulation of the optimization problem and
Section IV the method of solution. Section V analyzes
the results and includes a discussion, while Section VI
presents the conclusions. The adopted notation is such
that all vectors are expressed in the inertial frame of
reference unless otherwise noted.

II. PROBLEM STATEMENT

The problem of walking is split into periods of single
support phases, defined as the trajectory between the lift-
off and touch-down of the swing foot. A double support
phase is not included. This way, it is possible to reduce
the problem to the smallest possible unit which is to be
optimized.

The configuration of the robot is described in joint
angles ¢ € RN with N as the number of joints and
t = [0,¢s] as time. The coordinate systems £ and R are
attached at the sole of each foot. Let Hpr € SE(3)
define the relative frame between right and left foot.
A minimal representation of position and orientation is
given by xrr € R? and ¢, p € R3.

To simplify the description, we assume the left foot
as the stance foot and the right foot as the swing foot.
Reaction forces and torques created at the contact point
are denoted by W for the wrenches acting at the £
coordinate system. For periodic walking and a symmet-
ric robot, it is easily possible to calculate a trajectory
pattern where stance and swing leg have changed their
roles.

In order to describe the step pattern on the ground,
the stride length [ and width w are introduced. The step
starts at ¢ = 0 and ends at ¢ = t¢. The robot is oriented
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Fig. 2. Step geometry with measures w and [, coordinate systems
L and R. Foot geometry with measures s.,sy and ly.

in the x-direction and the footsteps are located on the
ground, as shown in Fig. 2] Without loss of generality
the feet are set to be aligned at both the start and end
of the step.

The kinematics of the robot during the single support
phase is a pure serial chain of links. As the left foot
resides at a fixed point during the whole trajectory it
is convenient to treat the robot as a fixed base system.
This way the joint angles g are a valid set of minimal
coordinates. In order to also derive the expression for
the constraint force at the foot, we first refer to a free
floating robot dynamic model, as follows:
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(1)
where v, and wy, refer to the velocity of the free floating
base, the first term on the right hand side refers to the
actuation forces 7 (0 for the base) and the second to the
constraint forces. W, expresses the constraint force on
the base for a fixed base system. To derive its expression
we apply the algebraic constraint written as:

ST

which by differentiation and substitution in provides
the following expressions:

M(9)q + Cr(a,@)q + gm(@) =7

Mo(@)i + Co(a.0)a + gylq) =Wy )

III. OPTIMIZATION PROBLEM

The cost function and constraints described in the
following sections define the optimization problem:

r;l(itl)l I'(q(t))

gla(t) = (4)

where g(q(t)) represents the equality and h(q(t)) the
inequality constraints.



A. Cost Function

The chosen cost function is based on the mechanical
energy the robot consumes. It is designed to prevent
putting energy into the mechanical system and removing
it later, as the drawing of energy does not result in a
lower cost. This choice is closely related to the fact that
the harmonic drive gears used are hardly backdrivable.
The expression for the cost function is defined as follows:

N ty () - T
ran =3 [{ E070
- (5)

Differently to the classical squared version [ (¢i7;)?, the
chosen function is the correct expression of the consumed
energy.

B. Equality Constraints

Step geometry is defined by an equality constraint that
sets the position of the swing foot at ¢ = 0 using [, which
is equivalent to the stride length, and w to the lateral
distance between the feet:
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The same set of constraints is required for the final
position of the swing foot:

l

zr(ty) = [—w] Zr(ty)= O
0

bp(ts)= 0 br(ts)= 0

These constraints restrain the space for optimization, in
that there is no impulse transfer possible at the touch-
down of the swing-foot.

Continuity of the trajectories is ensured by the follow-
ing equality constraints. The values g; s¢art and g; ena are
given by the boundary conditions from Section [V-B| The
following equality constraint also addresses the second
derivative to prevent discontinuous torques in the joints:

(7)

QZ(tf) = {i,end
@i(ty) = di,end (8)
Q1(tj) = éji,end

qi (0) = {i,start
q.i (O) = qi,start
Qz (0) = (ji,start
Care must be taken that @, and are compatible.

C. Inequality Constraints

Joint limits for position, speed and torque constraints

are implemented with the following box constraints:
Imini < ¢i(t) < Gmaz,i
Gmini < ¢i(t) < Gmaw,i 9)
Tminyi < Ti(t) < Tmaa,i

Self collisions are avoided by restraining the distance

between the knees, dj, and that between the ankle joints,
dg, so that a collision is not possible in the proximity

of the optimal trajectories. This is implemented in the
following equations:

0 S da - da,min

10
0 < dp — di,min (10)

Collisions with the environment are expressed with
the help of the distance between the foot edges and
the floor. Given the pose of the foot link this can be
calculated easily.

The optimizer is likely to find a solution where the foot
slides along and very close to the floor, since this requires
the least amount of energy. To prevent this situation, the
real floor shape is modified such that the floor collision
constraint imposes the foot to have a variable distance to
the ground. The following equation transforms a vector
Tedge, defining a point on the foot outline described in
the local coordinate system, into the inertial coordinate
system, where it is denoted x.(¢):

e.0) = Hunlt) 4" ()

The inequality constraint then follows as:

0< $e,z(t) - f(xew(t)a xe,y(t))

The function f(x,y) defines the obstacle height at the
coordinates (z,y). This function is used to describe the
clearance for the whole floor surface with the exception
of the start and end footprint.

Contact stability is assured by constraining the reac-
tion wrench W . This results from the equations model-
ing friction, balance and unilaterality at the stance foot.
The friction element can be ensured by using a friction
cone as a model for the maximum forces permissible [8]:

TL,z
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where p is the friction coefficient between the materi-
als in contact, x the effective radius and F; and T,
correspond to the force and torque components of the
contact wrench, respectively. The unilaterality constraint
0 < Fp,, is included in the friction cone constraint.

The zero-moment point [13] is used to calculate if the
reaction force applied to the contact would induce rolling
around any of the edges of the foot. With the definition
of the outline in Fig.[2] the following inequalities must be
fulfilled:

(12)
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where s,,s¢ and [, are defined in Fig.

IV. SoLuTiION METHOD

In our direct optimization method, the infinitely di-
mensional functions q(t) are reduced by an end-to-end
parameterization g(¢,b), that depends on a finite dimen-
sional vector b € R™M (see Section . Differently
from the classical single shooting formulation, we do not



require integration of the equations of motion, since these
are solved exactly for any choice of b. As a result of
this, the input torque 7 is a continuous function and
we eliminate the problem, generally found in shooting
methods, in obtaining sufficiently accurate derivatives for
the optimization routine. This method is inspired by a
solution to optimal robotic ball catching [9].

In order to incorporate the path inequality constraints
h(b) into the non-linear programming problem, a set of
via points

’U:{to<t1 <...<tN:tf} (15)

is defined. The infinite dimensional path inequality con-
straints — are reformulated into a vector of in-
equality constraints:

h(q(to))
h (g (t1))

<0

(16)

h (G (ty))

This method enforces the path inequality constraints at
points in v only. The constraint values are processed by
a sequential quadratic programming based optimization
algorithm with numerical derivatives [14].

A. Parameterization

The necessary discretization of the configuration space
is done with quartic basic splines [15] transforming the
optimal control problem to a non-linear programming
problem. From the parameter set b € RVe, N; elements
are taken to form the joint parameterization vector B
which is an input for the following function:

-1 3 -3 -17T B
P 2 a| 3 =6 3 0| |Bn
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1 4 1 o] B,
(17)

used to parameterize one coordinate in q(t). B; ... Bji3
is a vector of parameterization values extracted from the
whole set Bj ... By as follows:
j = ﬂoor(% - (N; —3))
u =+ (Nj=3)—j
The basic spline provide a local support and through the
inverse dynamics, guarantees a continuous function 7 ().

(18)

B. Boundary Conditions

In order to reduce the number of necessary equality
constraints used to ensure continuous joint angles, ve-
locities and accelerations at the boundaries, boundary
conditions are used to calculate as many parameters as
possible without limiting the search space to optimize
the cost-function. This results in combing (8) and (I7).

In the case of a step from a pre-defined start to a pre-
defined end configuration (joint angles), the equality con-
straints @,@ and are not required. For each joint,

three parameters of B per boundary are determined by
these pre-defined conditions.

For generation of a periodic gait instead, it is the
boundary conditions that determine part of b, such that
the following equation holds:

@,i(0) = m(i)grq(ts)
@,i(0)  =m(i)gri(ty)
G,i(0)  =m(i)Gri(ty) N
for i = 1..5
qr,i(0)  =m(i)q(ty) (19)
¢ri(0)  =m(i)qri(ty)
Gri(0) = m(i)Gii(ty)

mii) = 1 joint axis direction lateral
~ | —1 all other joints

where ¢, ; and ¢;; designate the joints of the legs in the
order they appear in the kinematic chain seen from the
hip.

C. Global search

The experience shows that local minima are ubiquitous
in this description of the problem [10]. It is also worth
mentioning that these global minima are not only related
to the cost function but also to convergence into feasible
areas. It is therefore necessary to carry out a global
search to arrive at a global optimum, as shown by the
results in Section [VI-A]

It is also essential, for convergence efficiency, to pro-
vide the optimizer with initial guesses which are in the
proximity of a valid trajectory, or which fulfill as many
of the constraints as possible. Our first approach is to
generate start and end configurations which comply with
the equality constraint @ These are generated by means
of the inverse kinematics, as follows. Given the relative
position of the feet, six degrees of freedom remain unde-
termined. These are computed by feeding a uniformly-
distributed random position and orientation of the hip
(in a valid interval) to the inverse kinematics. From these
conditions, part of the initial guess for parameter vector
b follows after algebraic manipulation. The remaining
parameters in b, relative to the optimization of the
trajectory, were defined by a straight line connecting the
initial and final configurations.

Due to the foot constraint , the above approach
was found to have a very low convergence rate. Therefore,
a valid initial guess for the complete trajectory is first
computed with an RRT-based kinematic path planning
method [16] (as done in [12]). The resulting sequence of
configurations is then fitted to the parameterization func-
tions. This way the self- and floor collision constraints are
also satisfied by the initial guess.

V. STABLE TRAJECTORY EXECUTION

Due to disturbances and modeling uncertainties it is
not possible to execute the optimal walking trajectories
by only feed forward torque control or high gain position
control. An inner control loop is needed to ensure that



the actual ZMP does not reach the borders of the support
polygon. In this work we use the ZMP based balance
controller from [3] which modifies the COM trajectory
to maintain a balanced gait. Fig. [3| shows an overview
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Fig. 3. Closed loop system for online generation of the optimized
joint level trajectories via an underlying balancing controller.

of the control loop. Given the optimized basic spline
parameters, we use to compute the joint angle
trajectory q, and its derivatives ¢ and q. From we
obtain the corresponding joint torques 7, which are used
directly as a feed-forward component in the low level
position controller from [17].

In order to use the joint level trajectories in combina-
tion with the underlying COM based balance controller,
we compute the corresponding trajectories of the COM
xy € R3, the swing leg pose Hpry and its body twist
Vi € se(3), and the hip orientation Ry, € SO(3) and
its angular velocity w € so(3) via forward kinematics.
Moreover, the desired ZMP trajectory p, is computed
from the contact wrench W, obtained from

The balancing controller from [3] considers the errors
between the actual ZMP p and COM « from the planned
trajectories p; and x4 in order to compute a modified
COM trajectory

Lo =1xq— kp(py—p) + k(g — ) (20)

with positive scalar gains k, and k. [3].

From x. and the desired trajectories for the swing foot
and the hip orientation, the desired joint angle trajectory
g, is computed by a closed loop inverse kinematics
algorithm [18]. The resulting joint angle trajectory is
finally commanded to an underlying position controller,
which uses the planned joint torques 7T as a feed-forward
component.

It should be noted that the described solution of stabi-
lizing an optimized joint level trajectory with an inverse
kinematics based balancing algorithm has the conceptual
disadvantage that it is limited to trajectories which
a priori avoid the singularities of the leg kinematics.
As a consequence, conservative constraints of the joint
angles had been used in the optimization in choosing
artificially restrictive knee joint angles limits, see Fig. [4
The extension to a joint level balancing algorithm that
is able to handle singular configurations, however, would
require a completely different control approach and is out
of the scope of this paper.

The trajectories generated by the algorithm described
in Sections [[I-[[V] consider the planning of consecutive
single support phases with instantaneous support change
(i.e. without double support phase). In practice a double

Fig. 4. Profile of the knee joint speed for the swingfoot and a
340mm stride length and a 0.8s step time. The joint speed limits
are shown as red dashed lines.

support phase still exists due to modeling uncertain-
ties and non-ideal position tracking. This double sup-
port phase is handled by the underlying balance con-
troller . However, due to the lack of a planned double
support phase, the desired ZMP p, is discontinuous at
the instant of the support change. While this is not a
fundamental problem for the balancing algorithm, it still
leads to a discontinuity in the commanded COM velocity,
which may be undesired in practice. In the experiments
reported in Section [VI-=C] we avoided this discontinuity
by utilizing a fast interpolation rather than an ideal jump
of the desired ZMP at the support change.

VI. RESULTS

The proposed optimization approach is evaluated for
the DLR-Biped [19], a bipedal robot with N = 12 joints.
The robot is equipped with rather compact feet 95mm
wide and 190mm long. In each foot a force/torque sensor
is measuring the ground reaction force for computation of
the ZMP. The joints have integrated joint torque sensors
and harmonic drive gears, which make the drive units
hardly backdrivable if used without torque feedback. The
system was designed for evaluating compliant impedance
control laws for bipedal balancing and walking. As a con-
sequence of the hardware design, the robot has relatively
low maximum joint velocities of about 2 rad/s (except for
one joint allowing for 3.14 rad/s), which poses a challenge
for the trajectory optimization.

Figures [4] and [5] show some aspects of a typical result
of an optimized trajectory, for which the inequality
constraints are clearly satisfied. A typically resulting
trajectory is illustrated in Fig.[l} To compare the results
of the optimization with other approaches it is useful to
analyze the COM and ZMP trajectories for the optimal
trajectory defined in joint space. These are shown in
Fig. [l where it is evident that the optimizer satisfies the
ZMP constraint while making full use of its limits (e.g.
Point C).

A. Results for global search

For the optimization of the periodic gait we set NV, =
144, resulting in 12 — 3 parameters per joint (3 for the
boundary conditions ) For the global search 500 ran-
dom trails were performed as described in Section [[V-C|
The number was chosen according to the dependency of
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the cost function in relation to the number of parameters.
This relation is shown in Fig. [8]

Typical run times for a successful optimization is in the
order of 1800s, related to an average of 800 iterations on
an Intel Xeon W3530 2.80GHz processor.

Fig.[7]shows a typical result for the converged solutions
(top diagram), giving an indication of the convergence
rate. From it, it is evident that local minima exist. Notice
the cost range between 12 J (approx. 15W) and 42 J
(approx. 56W). In the same figure the value for a motion
generated with a control method [4] is shown.

B. Simulation Results

To verify the trajectories found by the optimizer, the
simulation tool OpenHRP [20] was used. It features
a free-floating rigid body and contact simulation. The
control structure used is the same as the one for the
experimental system consisting of a combination of a
joint position controller and the ZMP based stabilizer.

Without the stabilizer it is only possible to walk some
steps before numerical disturbances and the non-ideal

Found solutions

O = N Wk O

(=]

15 20 25 30

Number of experiments

0
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Cost function I'in J

Fig. 7. Histograms of the cost function for 0.3m stride length and
0.8 s step time. Top: results of the global search. Comparison result
generated with standard control method - shown in dashed green.
Bottom: experimental results for commanded trajectory; the cost of
the optimal planned trajectory (which was commanded) is shown
in dashed red (approx. 12J). This illustrates the loss in the cost
function.

joint controller make the robot fall. Despite this, we tried
to take full advantage of the optimizer capabilities and
generated a trajectory where the knee joints have no
artificial limits. As a result the optimizer could stretch
the knee to the maximum, which would result in a
kinematic singularity. The solution is shown in Fig.
(bottom row). This results in a lower cost function value.
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C. FEzperimental Results

The experimental results can be used to show how
the on-line control modifies the trajectories and thus
modifies the cost of the optimized trajectory. As stated
above, the controller modifies the joint level trajectories
to guarantee the stability of the robot in case of model
uncertainties and disturbances.

To calculate the cost value of the measured trajectory,
the joint angles where recorded. Multiple recordings of
the trajectory for the most optimal solution shown in
Fig. |f| (top) where examined with respect to their cost
function value. The results are shown in Fig. m(bottom),
from which it, it is evident that the loss in optimality is
small. The end result is an 55% gain in the cost function,
with respect to the reference feed-back control solution.

VII. CONCLUSIONS AND FUTURE WORK

A method for generating energy optimal walking gaits
for a biped robot is presented as a nonlinear optimization
problem. Results are given for the implementation of the
resulting optimal trajectories on a real robot.

The method fully exploits the robot dynamics. The
formulation of the optimization problem is based on the
parameterization of the states and not of the inputs. This
eliminates the need to integrate the equations of motion,
resulting in an efficient method of solution. The method
also provides smooth trajectories in torque, which is
important for systems with passive compliance at the
joints.

A detailed account of the optimization problem at
hand is presented, with respect to local minima, conver-
gence rate and cost minimization for the real system. A
comparison is given to a solution obtained with optimal
control.

It was found that, for the example given, the overall
cost improvement was of factor of 3 with relation to
the non-optimized solution. This implies that the control
effort does not have a noticeable impact on the cost
function. A future statistical analysis will consolidate this
fact.

Future work will address generalizing global optimal
solutions generated off-line. The dynamic model will
be enhanced to include a double-support phase, joint
compliance and impacts.
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