

1 - C - 06

Axel WOLFERMANN, Masao KUWAHARA

A methodology for the simulation based **Assessment of Coordination Strategies** using Particle Swarm Optimization

The Problem

- Signal coordination
 - can aim at very different objectives.
 - can be realised in different ways.
- How can we compare strategies and determine the best solution for a given set of objectives and traffic conditions?

The Objective

Provide a platform for a flexible and general assessment of signal coordination strategies. with reference to a benchmark solution.

Research questions

- How is "best" (in best coordination strategy) defined?
- How sensitive are strategies to changed demand?

- What if the data supply is unreliable or insufficient?
- What happens, if priorities change?

Example evaluation

Strategy	Cycle time	Offset 1	Offset 2	Offset 3	Offset 4	Delay
Manual \rightarrow	110 s	28 s	55 s	0 s	55 s	25.5 s
Manual \leftarrow		82 s	55 s	0 s	55 s	26.1 s
Optimum		56 s	56 s	109 s	51 s	25.5 s

Conclusion and Outlook

- PSO is a suitable tool for optimisation problems in the context of signal control.
- The developed framework promises valuable insight into the performance of signal coordination strategies.
- The modular structure of the software (C++) facilitates adaption to different simulation tools.
- The assessment platform still has to be applied to different scenarios (network layout, traffic demand, strategies, ...).

Particle Swarm Optimisation

Convergence PSO $v_i(t+1) = \chi \left[\vec{v}_i(t) + \phi_1(\vec{y}_i(t) - \vec{x}_i) + \phi_1(\hat{\vec{y}}(t) - \vec{x}_i(t)) \right]$

Cognitive and social factors $\phi_i = c_i r_i$ c₁: cognitive factor (particle best) c₂: social factor (swarm best)

r_i: random influence

