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Abstract—Ultrasound imaging is a widespread technique to
gather live images of the interiors of the human body. It is
safe and provides high spatial and temporal resolution. In this
paper we show that features extracted from the ultrasound
section of the human wrist can be used to fully reconstruct
the hand movements, including flexion of all fingers and the
rotation of the thumb. Surprisingly, it turns out that there is
a clear linear relationship between image features and finger
positions. The related matrix can be estimated on a rather
small subset of samples, and the reconstruction is quite robust
across single- and multi-finger movements. This technique can
be used to control advanced mechatronic hands, and it finds its
paradigmatic application in the case of hand amputees.

I. INTRODUCTION

Developed soon after the Second World War as a diag-
nostic device, ultrasound imaging (also known as medical
ultrasonography, US from now on) is a totally non-invasive
technique to visualise structures inside the human body. The
general principle is that of wave reflection/refraction: in the
modern ultrasound medical devices, an array of piezoelectric
transducers is used to generate a focused wave of ultrasound
which penetrates the body part of interest; partial reflection
of the wave at the interfaces between tissues with different
acoustic impedance (density) is then gathered and converted to
a grey-scale 2D image. High-grey-valued ”ridges” in the image
denote tissue interfaces. Modern US machines can achieve
sub-millimeter spatial resolution and/or real-time temporal
resolution, penetrating several centimeters below the subject’s
skin. The technique is totally harmless and it has no known
side effects, to the extent that one of ist best known appli-
cations is the imaging of the foetus with pre-birth diagnostic
purposes.

In rehabilitation robotics, especially in prosthetics, this has
an immediate application: to use live US images of the residual
limb to control the rehab device. US is since a long time
successfully used as a diagnostic tool for hand musculoskeletal
disorders (e.g., synovitis and rheumatoid arthritis [1], [2], [3]),
so it is likely that US images contain enough information
to reconstruct — at least partly — the position, velocity
and/or force exerted by the fingers. If this intuition is true,
and the technology is advanced enough to make it applicable
in practice, then US could be used as a means to control
a mechanical hand. Moreover, it might be possible to apply

the same technique to amputees, according to the severity of
the amputation (and therefore to the required position of the
transducer on the subject’s forearm) and to the residual muscle
activity.

This feeling stems from simple observation of the US imag-
ing as the fingers move. The attached movie ”example.avi” was
gathered from a healthy subject using a standard portable US
machine, the transducer lying against the ventral side of the
wrist along the transverse plane (orthogonal to the axis of the
forearm, see Figure 1, right panel). Even from such a naı̈ve
analysis, a clear correspondance between finger movements
and deformation of the images is apparent: flexion of the index
and pinkie fingers, for example, results in ”holes” opening and
closing near the surface — since this is a cross-section of the
wrist, we are most likely witnessing the contraction of one of
the tendons of the M. Flexor Digitorum Superficialis. At the
same time it must be noted that the deformations associated
to finger movements are diverse and complex: sometimes
it is a local rotation, sometimes an enlargement/reduction,
and sometimes a combination of them. The motions tend to
superimpose to one another, and a contracting muscle will shift
what is around it in a rather complicated way. Quite clearly,
advanced image processing must be employed to solve this
problem.

In this paper we show an initial, very promising result along
this line. A human subject, wearing a sensorised dataglove,
was instructed to mimick with his right hand the movements
performed by an animated human hand model on a computer
screen. The movements consisted of repeated flexion of the
fingers and adduction of the thumb, either one by one or
simultaneous. The choice of these six motions is motivated
by the fact that they are enforced by the most advanced hand
prosthesis of the world at the time of writing, namely the
Vincent Hand (Vincent Systems GmbH, www.handprothese.
de/vincent-hand).

At the same time, US images of his wrist would be gathered.
Offline, local features were extracted from each frame and
synchronised with the finger positions as recorded by the
dataglove. Statistical analysis reveals that the features are al-
most perfectly correlated (in the sense of the standard Pearson
correlation) to finger positions; and that the correlation is
higher where the sections of anatomically relevant muscles ap-



pear; for example, pinkie movement is highly correlated with
features extracted near the section of the F.D.Superficialis, i.e.,
from the upper-left corner of the images seen in the movie —
where the ”hole” grows and shrinks.

All in all, it turns out that there is a straightforward linear
relationship between the image features and the finger posi-
tions, i.e., that p = Kv, where p ∈ R6 represents the position
of the fingers, v ∈ Rn encodes the n visual features extracted
from the US frames, and K is a 6×n matrix, estimated with a
simple least-square approach from a subset of the (pi,vi) pairs
gathered during the experiment. The relationship is robust
across single- and multi-finger movements; for example, a K
estimated from index and middle finger movements only can
then successfully be used to predict simultaneous movement
of the index and middle finger.

A. Related work

As far as we know at the time of writing, the only at-
tempt along these lines of research is [4], where significant
differences among optical flow computations for finger flexion
movements are reported (but not analysed). Optical flow [5]
seems not really the best feature choice here, since it is a
derivative operator, hard to compute and prone to accumulating
integral errors when applied to position recognition.

II. EXPERIMENTAL SETUP

A. Data gathering

1) Hand motion: an 18-sensor right-handed Cyberglove
(Cyberglove Systems, www.cyberglovesystems.com, see also
Figure 1, left panel) is used to gather the finger positions. The
Cyberglove is a light fabric, rather elastic glove, onto which 18
strain gauges are sewn; the sewing sheaths are chosen carefully
by the manufacturer, so that the gauges exhibit a resistance
which is proportionally related to the angles between pairs of
hand joints of interest. The device can then return 18 8-bit
values, proportional to these angles, for an average resolution
of less than one degree, depending on the size of the subject’s
hand, a careful wearing of the glove and the rotation range of
the considered joint. (For practical reasons the subject must
wear a cotton glove below the Cyberglove; we verified that
that would not limit the precision of the device.)

We hereby consider 6 hand motions, namely flex-
ion/extension of the 5 fingers and thumb adduction/abduction.
Thumb flexion/extension is roughly equivalent to thumb rota-
tion, indeed a very important motion, characteristic of the high
primates and paramount for most activities of daily living.

The above motions are captured by considering the five
metacarpophalangeal glove sensors, placed where the proximal
phalanxes of the fingers meet the palm, plus the thumb/index
abduction sensor for the thumb abduction/adduction. Accord-
ing to the placement of the sensors on the Cyberglove (see
Figure 1, center panel), we choose sensors 16, 12, 8, 4 and 0
for the pinkie, ring, middle, index and thumb flexion/extension,
and sensor 3 for the thumb rotation. A careful hardware
calibration enables us to obtain a resolution of about 7.5 bits
over the considered range, actually way below one degree

in all cases. Values are normalised between 0 and 1 so that
0 corresponds to the relaxed stance and 1 to the maximum
voluntary contraction for the motion under consideration. The
six motion values are streamed to a PC at the maximum
rate allowed by the glove’s underlying serial port connection,
namely 88Hz.

2) Ultrasound imaging: US images are gathered using a
pre-owned General Electric Logiq-e portable ultrasound ma-
chine (see www.gehealthcare.com/euen/ultrasound/products/
portable/logiq-e) equipped with a 12L-RS linear transducer.
We employ the ultrasound B-mode (the linear transducer
scans a plane across the body section) to produce a view of
the interior of the forearm at the height of the wrist, along
the transverse plane. More precisely, the probe is located at
the distal radioulnar articulation (see en.wikipedia.org/wiki/
Distal radioulnar articulation), at the level of the Pronator
quadratus.

After an initial round of examinations, the following set-
tings were chosen: ultrasound frequency of 12MHz, minimal
onboard image pre-processing (i.e., noise rejection / edge
enhancement), focus point at a depth of about 1.3cm, and
minimum depth of field (”focus number” set at 1). This results
in a frame rate of 28Hz. Since this US machine is not able
to stream images over to the PC we employ a VGA frame
grabber to grab the US frames across a peer-to-peer Ethernet
connection. More details about the image processing appear
in the following Section.

3) Stimulus: the stimulus, i.e., what the subject is required
to do during the experiment, is represented by an animated
hand model appearing on the PC screen situated at a comfort-
able distance. The model is controlled using exactly the same
6 motion values at a real-time rate of 25Hz. See Figure 2 to
get an idea.

B. Data synchronisation and preprocessing

Data synchronisation is enforced on a Windows PC
equipped with a multi-core processor, by gathering data from
each device asynchronously and accurately timestamping each
received datum. Timestamping is enforced by the HRT library
[6], giving a precision of up to 1.9µs. Linear interpolation
is used to find the glove motion and stimulus values best
corresponding to the time at which each image is received on
the PC. All data are then low-pass filtered with a Butterworth
5th-order filter, cutoff frequency at 1Hz.

C. Experimental protocol

One right-handed, male subject, 38 years old, joined the
experiment. He would wear the glove and then lie his hand and
part of the forearm relaxed on an orthopaedic support. Above
the support, a bench vice was used to fix the ultrasound trans-
ducer just above and onto the wrist, tightly but comfortably.
Standard ultrasound gel was applied between the transducer’s
head and the skin to allow the correct functionality of the US
machine. Figure 2 shows the situation. The subject was asked
to perform with his right hand what the hand model on the



Fig. 1. Data capturing devices: (left to right) the Cyberglove; the location of its sensors (16, 12, 8, 4, 0 and 3 are used); the ultrasound transducer placed
onto the subject’s wrist. Moisture due to ultrasound conductive gel is clearly visible.

Fig. 2. The experimental setup: the subject would mimick the hand-model
movements, as seen on the computer screen; meanwhile, the glove and
ultrasound machine would gather hand motions and US images.

screen would perform, trying to mimick both the movement
and its speed.

The stimulus consists of a sequence of basic movements,
either single- or multi-finger. Single-finger movements are:
pinkie, ring, middle, index and thumb full flexion and back,
and thumb full adduction and back. Multi-finger movements
are: (a) simultaneous flexion of the pinkie and ring, (b)
simultaneous flexion of the middle and index, (c) simultaneous
flexion of the pinkie, ring, middle and index, and (d) like
(c) but also adducting the thumb, as in a typical ”flat grasp”,
used to grasp credit cards or DVDs. Each basic movement
is performed at three different speeds (1, 3 and 5 seconds
for full flexion and back) and repeated 2 times (single-finger
movements) or 3 times (multi-finger movements); inbetween
movements, 1.5 seconds of rest are allowed. All in all,
there are 72 movements; appropriate labels are applied to all
samples in order to understand what movement and what speed
is associated to each US frame and hand position. The whole
experiment lasts about 6 minutes and no fatigue or discomfort
was reported by the subject.

III. IMAGE PROCESSING AND FEATURE EXTRACTION

A. Image acquisition

The used ultrasound machine is unfortunately not capable
of delivering a stream of B-mode images directly to a PC. For
this reason images have to be grabbed from standard VGA
interface using a conventional framegrabber. This implies
several timing problems that have to be addressed first. The
ultrasound machine generates images at a rate of 28Hz. These
images are sent to the VGA interface at a resolution of 1024
x 768 at 60Hz. An external framegrabber grabs these images
unsynchronized at about 56 Hz and sends them to a PC
under Windows via ethernet. Synchronizing this sequence of
asynchronous data handling is difficult and not in the projects
main focus. Therefore a proof that no frame drops occur in
this processing pipeline should be sufficient. The key to this
problem are three clearly differentiable noise levels in the sum
of absolute differences of two consecutive images:

1) framegrabber noise: the same ultrasound image is
grabbed twice by the framegrabber. The frame is invalid
and not to be used (except in case 3, see below)

2) ultrasound noise plus framegrabber noise: an update of
the ultrasound image occurred. The frame has changed
on the US since the last grab. This valid frame is to be
used.

3) tearing: due to the unsynchronized grabbing the top half
of the image is already updated (type 2 as stated above),
the bottom half not yet (type 1). The frame is invalid.
The next frame of type 1 has to be used instead as a
valid frame.

The image sequence passes therefore a noise dependent image
classification before feature extraction marking invalid images.

Images are cropped to the valid portion of the screen
showing the B-mode images and converted to gray scale.

B. Selection of sample positions

Features in the ultrasound image are extracted at a set of
uniformly spaced sample positions M as shown in Figure 3.

C. Feature extraction and processing

A standard B-mode ultrasound image shows areas in the
tissue where the acoustic impedance changes (such as bones or



Fig. 3. Uniformly spaced sample positions with |M | = 208

Fig. 4. Transversal B-mode sonograms of the wrist at two different finger
positions

tendons) as comparably large bright regions. A superimposed
noise with high spatial frequency refers to the inner structure
of the tissue and is dependent on the type of tissue. Images
are taken as transversal sonogram at the wrist and show a cut
through the muscles and tendons at this position (see Figures 2
and 4).

Looking at image sequences from the image processing
point of view while moving a finger shows some differential
changes between frames and some global absolute changes:

• dominant bright structures change their shape
• dominant bright structures move
• inner tissue structure (spatially high frequency noise)

shows rotational and translational movement vectors in
the image plane. This inner tissue structure correlates
only over a few frames since the muscles and tendons
dominant movement direction is in the normal axis of
the imaging plane.

1) Derivative measures: Movement direction and speed
from consecutive frames can be collected easily by analyzing
the optical flow. It detects the movement of tissue in the
x- and y direction of the image plane. Unfortunately the
dominant movement direction of muscles and tendons can not
be detected. As a differential measure it will show a random
bias after integration and is therefore not usable for detection
of the finger positions.

2) First order measures: Interpreting the visible structures
in an anatomical meaningful way is a difficult task even for
highly trained doctors and can therefore not be automated
by image processing. If the structures are not interpreted but
modeled as interest points or edges in a reference frame,
correct tracking of features in future frames is difficult and
error prone due to their massively changing shape. Therefore
a very simple measure is used that encodes the gray value
neighborhood around each sample position. The gray value

Fig. 5. Features α and β displayed as 2D-gradient vector for a short image
sequence at 6.66Hz.

moments are calculated for each point q in a circular area
with radius r around each sample point m ∈M with M being
the set of uniformly spaced sample positions. The gray value
distribution is approximated by a first order regression plane
g(r, c) = α(qr−mr)+β(qc−mc)+γ; with g(r, c) being the
gray value at position r,c. Therefore α denotes the mean image
gradient along row direction and β along column direction
respectively. Only these three features (α, β, γ) are extracted
at each sample position and used for further processing. Figure
5 shows the circular region Q around a sample point m and
the resulting gradient vector with the components α and β for
a short image sequence at t0, t3, t6, t9, · · · , t24.

IV. EXPERIMENTAL RESULTS

The experiment detailed in Subsection II-C ended up in
7764 US frames, each one associated with a motion value
obtained from the glove. At each point of the uniform grid
the (α, β, γ) plane parameters are evaluated, resulting in
13 × 16 × 3 = 624 image features (real numbers); the input
space consists then of image feature vectors v ∈ R624. Motion
vectors (the output space) p ∈ R6 consist of the 6 motion
values, roughly valued1 in [0, 1] ⊆ R.

A. Estimating K

Multivariate least-squares regression (a very basic regres-
sion technique, see, e.g., [7]) is applied to each dimension
of the output space in order to obtain linear coefficients for
the input space values. In other words, for each degree of
motion pj with j = 1, . . . , 6, we evaluate k1, . . . , k624 with
ki ∈ R such that pj ≈

∑10
i=1 kiei. This procedure ends up in

a 4× 10 matrix K, which can further on be used to estimate
new motion vectors: p = Ke. We employ the Matlab standard
multivariate regression function.

In order to have an idea of the generality of this procedure,
i.e., of how applicable this procedure is to features extracted
from so-far-unseen images, we first randomly permute the data

1The motion range cannot possibly be strictly ensured. Calibration in the
range 0-1 is performed at the beginning of the experiment by having the
subject reach a few standard hand postures, e.g., full finger flexion, full finger
extension etc., but nothing ensures that he won’t move outside these limits
now and then during the experiment.



TABLE I
ERROR RESULTS OBTAINED BY MULTIVARIATE LINEAR REGRESSION ON
EACH FINGER MOTION. AVERAGE ERROR VALUES ARE DISPLAYED FOR

MEAN ABSOLUTE ERROR (ERR), NORMALISED SQUARE-ROOT
MEAN-SQUARE-ERROR (NRMSE) AND CORRELATION (CC).

pinkie ring middle index th.rot. th.add.
ERR 0.006 0.006 0.004 0.005 0.008 0.009

NRMSE 0.006 0.007 0.005 0.006 0.007 0.009
CC 1.000 1.000 1.000 1.000 0.998 0.997

set, then K is estimated on a certain subset of the data (what
we will call training set) and tested for prediction on the
remaining half (the testing set). Samples in the training set
are normalised, as is customary, by dimension-wise subtracting
the mean value and dividing by the standard deviation; with
these very same statistics the testing samples are as well
normalised before prediction. The prediction is repeated for
50 times (each time a different permutation), then mean and
standard deviation of the obtained error are reported. As error
measures, we evaluate the mean absolute error (ERR), the
square-root mean-square error normalised over the range of the
target values (NRMSE) and the Pearson correlation coefficient
between the predicted and true target values (CC).

Table I summarises the best results, obtained when the
training set consists of half of the full dataset. Standard
deviations are uniformly 0 up to three digits of precision, so
they are not displayed. (Recall, once again, that the ranges for
the finger motions are roughly in the range [0, 1].)

In order to test the resilience of this estimate to smaller
training sets (or in other words, to check how many samples
are necessary to obtain a reasonable estimate), we continuously
decrease the size of the training set from one half to one
twelfth of the data set size, and again enforce the 50-fold
estimation. Figure 6 shows the results.

Fig. 6. NRMSE increase as the training set is progressively decreased to 1
n

,
for all hand motions.

As one would expect, the error increases as the training
set is reduced, getting as high as about 18% NRMSE in the
case of thumb adduction, which uniformly remains the hardest
motion to predict. As opposed to this, however, note that
the error seems very resilient to decreasing training sets: for
example, the NRMSE is still smaller than 5% for all motions,
even if n = 8, that is, K is estimated over 7764/8 = 970
samples. This means that, at least for this experiment, as few
as 970/28 ≈ 35 seconds of training might be enough (recall
that images are generated by the US machine at a framerate
of 28Hz).

Lastly, Figure 7, upper row, shows some examples of true
and predicted target values; 1294 samples are used for training
in that case (n = 6).

B. Compositionality of hand movements

Consider now Figure 7, lower row. Here K has been
estimated on single-finger movements, and multi-finger move-
ments have been then estimated using it. (Thumb movements
are not significant since they are involved in too few multi-
finger movements.) The Figure shows typical pinkie, ring
and middle finger motion estimations. As one can see the
situation is by far worse than when using subsets of the whole
data set, and nevertheless the correlation is largely preserved
(the Pearson coefficient is 0.7853, 0.7342, 0.8134, 0.7361 for
pinkie, ring, middle and index).

C. Local correlation

As a last test, we evaluate pairwise correlations between the
pinkie movement and the feature points. For each of the 208
points, the average correlation coefficient between the pinkie
movement and α, β, γ (no data filtering this time) is evaluated.
Figure 8 shows the 208 coefficients so obtained, organised in
13 rows and 16 columns as is seen in Figure 3.

Fig. 8. Correlation between the pinkie movement and the image features.
Compare with Figure 3 and example.mpg — higher correlation is apparent
in the upper-left corner of the image, that is where the cross-section of the
muscle which moves the pinkie is found.



As is apparent, points at the upper left corner show a
higher correlation than the average, with the pinkie movement;
that is where the cross-section of the M. Flexor Digitorum
Superficialis, actuating the pinkie finger, is located in our
images. Actually, the average correlation of points number
14, 15, 16, 30, 31, 32, . . . , 206, 207, 208 is 0.492 whereas the
overall average correlation is 0.321 (Student’s t-test to check
that the two sets of correlations are significantly different has
p < 0.01).

V. CONCLUSIONS AND DISCUSSION

The results of the experiment hereby reported clearly show
that there is a rather stable linear relationship between some
ultrasound image features of the wrist and the finger move-
ments. In particular, we set up an experiment in which a human
subject would move his fingers in a principled, repeatable
way; his finger movements and the ultrasound images of the
cross-section of the wrist would be gathered at the same time.
Later on, local features representing the image deformations at
208 uniformly spaced points would be evaluated and linearly
associated to finger positions. The linear regression shows an
excellent match to the true positions, even if the sample set
over which it is evaluated is reduced. Moreover, a regression
matrix estimated on single-finger movements only can be
used to predict, with high correlation coefficients, multi-finger
movements. Lastly, as one would expect, we show that high
correlation exists between, e.g., the muscle associated with
pinkie flexion and features extracted where in the image the
cross section of that muscle is seen.

To sum up, a simple linear relationship is established be-
tween US image features and finger positions. Since the image
features we have used are computationally lightweight, and
that prediction using a linear model is a very fast operation,
it is foreseable that this system could go on-line and work in
real-time. We are actually already working on this issue, with
the main application in mind, to operate the Vincent Hand (six
degrees of freedom, including active thumb rotation).

Other short- and medium-term research directions include:
evaluating the relative motion of the US transducer and the
subject’s wrist, in order to compensate the potential errors;
the use of target/features correlation to understand what the
most informative image zones are, finger-wise; a multi-subject
analysis of applicability; a deeper investigation on single-
finger motions as the sole source for the estimation of the
matrix K.

The final application of this system would be, of course,
that US images from the stump of an amputee could position-
control a dexterous prosthetic hand or a 3D hand model on
a screen, for phantom-limb pain therapeutic purposes. The
applicability to amputees obviously depends on (a) the level
of amputation - proximal or distal, (b) the level of residual
muscle activity in the stump, (c) the level of reinnervation
subsequent to the operation. Recent literature about the use of
surface electromyography and TMS in such patients [8], [9],
[10] lets us hope for the best.
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Fig. 7. (upper row) Typical true and predicted target values: (left to right) pinkie, thumb rotation, thumb adduction. The matrix K is estimated here for
n = 6, that is using 1294 samples. (lower row) Predicting multi-finger movements using a K estimated on the single-finger movements; (left to right) pinkie,
ring and middle.


