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ABSTRACT 

The efficient design and operation of intersections, particularly signalized intersections, depends on 

the availability of detailed traffic flow data. Information on the turning ratio and lane occupation is, 

however, commonly scarce or unreliable. Combining Floating Car Data (FCD) with other data 

sources offers the opportunity to fill this gap. As opposed to existing data fusion concepts, detector 

data is not directly used to deliver information on the traffic flow on a specific link, but it is evaluated 

in connection with the FCD to estimate the penetration rate of the traffic with probe vehicles. This 

information is combined with historic data and information contained in network connections. The 

data fusion itself is achieved by using a Kalman Filter (KF). By using FCD, the output of the data 

fusion process is up to date and can be used to take incidents and other fluctuations of traffic volumes 

into account. The elasticity of the filter to different input reliabilities and flow variations is shown. 

The concept works well and promises to be a useful tool for cities with sufficient FCD available. The 

performance depends in the first place on a good calibration, which can be achieved by extensive tests 

based on simulations and based on manual counts as part of an implementation. 
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INTRODUCTION 

Motivation, objective, limitations 

The efficient design and operation of intersections, particularly signalized intersections, depends on 

the availability of detailed traffic flow data. The collection and processing of traffic information, 

however, is a major challenge for transportation agencies. While cross-sectional data for links and 

intersection approaches is commonly available from validated flow models and detector data, 

information on the turning ratio and lane occupation is commonly scarce or unreliable. Combining 

information from probe vehicles (Floating Car Data, FCD) with other data sources (detector data, 

historic data etc.) offers the opportunity to fill this gap. 

While FCD is increasingly used for the determination of origin-destination (OD) matrices in 

networks and for the estimation of travel times in networks, the application to directional or lane based 

flow data at intersection level is still a more or less blank space in the research landscape. 

The presented methodology will help to close this gap. The objective is to generate reliable 

OD matrices on intersection level. The methodology can easily be adjusted to deliver also lane based 

results. While the output is based primarily on FCD in combination with detector data, other data 

sources, namely historic data and the information available from the network context, is incorporated 

to improve the quality of the output data and step into the breach left by insufficient FCD. The 

methodology can easily be extended to other data sources. The data is aggregated to observation 

intervals. The more accurate the available data is, the shorter this interval might be. 

As opposed to existing data fusion concepts, detector data is not directly used to deliver 

information on the traffic flow on a specific link, but it is evaluated in connection with the FCD to 

estimate the penetration rate of the traffic with probe vehicles. In this way the location of the detectors 

is of minor importance. 

The data fusion itself is achieved by using a Kalman Filter (KF). Hence, it is assumed that all 

data sources deliver inaccurate data with the error as white noise (i.e. normally distributed). How 

much the filter relies on the different data sources depends on the error involved, which is subject to 

the calibration of the filter. 

The proposed procedure relies heavily on the availability of representative FCD. As long as 

the penetration rate is low, the lack of probe information might be balanced by historic data, but the 

advantage of the methodology is thus reduced. Incidents can only be detected by online information. 

However, one outcome of the Kalman Filter is not only the traffic flow information, but also the 

reliability of this information. Even if no high quality input data is available, the filter will deliver 

results, but with less accuracy – and the filter will name the level of accuracy. It is important to note, 

that not only the judgment of this accuracy by the filter, but also the traffic flow estimation itself 

depends on the correct estimation of the variation of the input data from the different data sources. 

Many applications of FCD suffer from the lack of representativeness of the probes for the 

total population (e.g. when using taxi or bus FCD). This drawback can be overcome to some extent by 

the presented methodology by computing the penetration rate at different locations based on detector 

counts. 

Outline 

This article is arranged in five major sections. After a brief literature review on data fusion and FCD, 

the methodology for the implementation of the Kalman Filter to estimate the volumes of the vehicular 

movements at isolated intersections is described. The data sources used in the filter are elucidated in 
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the next section. The data fusion methodology can be extended to adjacent intersections or networks, 

as is described in a separate section. The performance of the filter is analysed subsequently for 

simulated scenarios, before closing the article with conclusions and the outlook towards future 

improvements. 

LITERATURE REVIEW 

Data fusion (DF) has been used to tackle a variety of problems in transportation engineering ranging 

from conventional problems in transportation planning to the most recent applications in ITS [1-3]. El 

Faouzi et al. [4] provide a comprehensive survey of how DF is used in different areas of ITS. The 

major fields to be mentioned here are advanced traveller information systems (ATIS), automatic 

incident detection (AID), advanced driver assistance (ADAS), network control, crash analysis and 

prevention, traffic demand estimation, traffic forecast and monitoring and accurate position estimation. 

Each of these applications can make use of different information sources and combine them using DF 

techniques to achieve better results. 

Floating Car Data (FCD) becomes a powerful data source when used as an input to DF 

techniques. The research on FCD dates already back to the last century. The major impediment to the 

application of FCD is still the modest availability due to low penetration rates or privacy issues. 

Nevertheless, many field experiments have been conducted and the technology is increasingly 

established as a complement to other data sources. 

FCD to estimate travel times 

Data from cameras, FCD or cell phone tracking are increasingly used in order to supplement the 

information provided by conventional measurement techniques and improve the accuracy of travel 

time estimates [6-8]. Dailey et al. [9] give a detailed description of a current DF within an ITS project 

and the presents a new quantitative data fusion algorithm to estimate speeds from volume and 

occupancy measurements. El Faouzi et al. [10-12] proposed estimation frameworks to fuse 

conventional detector data and FCD for travel time estimation based on a weighted means method and 

the evidence theory. Choi [13] and Choi and Chung [14] have tackled the problem of generating travel 

time from loop detectors, probe vehicles and video-camera sources. They proposed a fuzzy logic 

based approach with its evaluation on a theoretical example. 

Automatic incident detection 

Recently, there has been renewed interest in incident detection algorithms partly because of the 

availability of new sensors and data sources. One of these sources is probe vehicles. Applications of 

several data fusion techniques to traffic management to support incident detection have been reported 

in the literature, and the data fusion algorithms used includes Dempster–Shafer inference, Bayesian 

inference, and voting logic. Most of these applications have explored the use of probe vehicles data 

with the conventional traffic data for incident detection purposes [15-18]. 

Traffic demand estimation 

One of the most important problems in the field of transportation planning and control is the origin–

destination estimation from link counts. Several researchers proposed schemes to derive the OD 

matrices by combining data from different sources. The initial efforts to address this problem were 

made by Cremer and Keller [32, 33]. Further developments were pursued later by many authors [34, 

35]. The Kalman filtering is of common practice in this class of problems. Ben-Akiva and Morikawa 

[36] have explored the OD estimation methods that combine different data sources (stated preference 
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data and traffic measurements) and more recently, Lundgring et al. [37] described a method for 

adjusting time-dependent travel demand information with respect to link flow observations. They 

utilized the structure of the given OD-matrix, which is compounded from different sources, for 

making simple overall adjustments. 

Traffic forecasting and monitoring 

Many prediction schemes of traffic flow were obtained by means of classic autoregressive models, 

especially time series techniques. Some authors have tackled this problem by using Bayesian 

frameworks [38]. Some others used Kalman filtering [39] or neural networks and system identification 

[40], and more recently a nonparametric paradigm was adopted via kernel techniques [41]. None of 

these proposals allow one to achieve highly accurate predictions except in some special situations (for 

some network configuration and/or with high detector coverage). This is caused to some extent by the 

dynamics of traffic flow which cannot be formalized by a single procedure. Granger [42] showed that 

the linear combination of several predictors from a single data set can outperform the individual 

predictors. In traffic forecasting with heterogeneous data sources, El Faouzi provided a methodical 

framework to combine various forecasts of the same quantity [42, 43]. In [44], the integration problem 

of in-vehicle information and data provided by loop detectors was studied. The core of the integration 

step was the extended Kalman filtering. More recently, Sau et al. [45] investigated a traffic monitoring 

problem with data from various sources by applying a particle filter. Choi [46] examined the problem 

of missing data estimation and proposed a framework for missing data inference based on evidential 

reasoning. 

Accurate positioning estimation 

Inertial navigation systems (INS) are one of the earliest forms of navigation techniques. INS, which 

functions on the principle of dead-reckoning, has a potential problem of „„integration drift” which is 

the accumulation of small errors in the measurement of acceleration and angular velocity into 

progressively larger errors in velocity, which are compounded into still greater errors in position. On 

the one hand, GPS data are accurate though when the satellite signals are blocked by tall buildings 

GPS outage occurs. DF can effectively be used to combine the advantages of both techniques and 

tackle their drawbacks. One of the earliest approaches in GPS/INS integration is to use Kalman 

Filtering [47, 48]. Also different types of neural networks have been used to combine GPS and INS 

information [49-51]. Such systems reconstruct vehicle dynamics by training artificial intelligence 

modules when GPS signals are available. 

Conclusion 

The Kalman Filter is by now a well established procedure in data fusion. Though it is based on the 

assumption of normally distributed (white) noise, applications where this condition was not fulfilled 

showed many advantages of the filter over comparable techniques and a sufficient quality. 

FCD becomes more widely used. Numerous applications have been developed in the past. 

Most of them are directed at either the estimation of OD matrices in networks or on travel time 

predictions. Using FCD on intersection level to determine travel volumes for different flow directions 

is yet a new field for FCD. 
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DATA FUSION METHODOLOGY FOR INDIVIDUAL INTERSECTIONS 

The Kalman Filter 

The Kalman Filter (KF) uses measurements and their accuracy to correct estimates for the desired 

output (in the given case: traffic flow volumes). It consists for each time interval of a prediction step 

and one or more update steps. The basic assumption of the KF is that the true state of the system (here 

the traffic flow) evolves from the last step as 

                   (1) 

with x being the true state, u is some optional control input, w is the process noise, and k 

depicts the time interval. Fk is the state transition model which is applied to the previous state and Bk is 

the control input model, for each time interval k. The true state (and its estimate accordingly) is a 

vector containing the traffic flow for the commonly twelve traffic movements for each considered 

intersection as illustrated in Figure 1 (shown for left-side traffic). For lane based outputs the vector 

will contain the traffic volumes for all approach lanes. Together with the state itself the filter computes 

the reliability P (covariance matrix) of the estimate from Eq. (2). 

                    
     (2) 

where Pk is the a posterior error covariance matrix (a measure of the estimated accuracy of the 

state estimate),   
  is transpose of Fk and Qk is the covariance of the process noise. If the 

measurements are distorted by white noise (i.e. the error is normally random distributed) and the error 

is accurately known, the KF leads to a maximum likelihood estimate of the system state. 

 

Figure 1 Typical two way intersection with twelve movements 

For the traffic flow the control input could be seen in the traffic demand. But precisely this demand is 

not known, but can only be estimated by measurements and historic data. Hence, the prediction step of 

the KF consists only of adding noise to the output of the last time step and assuming otherwise an 

unchanged traffic state. The state transition matrix F is, hence, a unity matrix. 

During the update step(s) the KF computes an innovation y (difference between the prediction 

and the measurement) from the measurements z (e.g. probe observations per movement) and the 

observation model H (in this case containing the penetration rates). 
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                (3) 

with its accuracy (covariance) S based on the measurement noise R and the error covariance of 

the prediction P: 

              
     (4) 

How much the innovation influences the a posteriori estimate (estimate of the state/traffic flow after 

the update) is determined by the Kalman Gain K. The optimal Kalman Gain used here is based on the 

assumption of white noise process and the measurement noise (Normal Distribution with zero mean). 

            
   

   (5) 

The more reliable the measurement is in relation to the accuracy of the prediction (error covariance 

determined by the noise terms), the more the innovation influences the estimate. The new estimate is 

derived from the innovation and weighted by the Kalman Gain K: 

                (6) 

Finally the accuracy P of the new state estimate is determined. 

                     (7) 

The number of update steps depends on the number of available measurements. In the given 

methodology, three update steps are used: 

 FCD scaled by the penetration rate (based on detector counts) 

 historic data 

 network context 

The “measurement” vector contains FCD, historic data, and flow estimates from adjacent intersections 

respectively, as will be explained in the following sections. 

SOURCES USED FOR THE DATA FUSION 

Floating Car Data (FCD) 

The data fusion is based in the first place on FCD, i.e. the number of probe vehicles passing the 

intersection(s) under scrutiny. It is assumed that the raw data of the probes is already converted into 

link based information by using, for instance, map matching algorithms. The information has to 

contain the entry and exit link (the approach and exit lanes, if lane based information is aspired) with 

the desired time resolution (e.g. five minute intervals) for each probe. Furthermore, the passing time of 

all probes at the detector locations included in the data fusion process has to be known. Errors might 

result from invalid mapping of probe locations to links and from gaps or artefacts in the probe data. 

The probe volumes observed during the current time interval for the respective intersection 

are contained in the measurement vector. The diagonal of the observation model H is filled with the 

penetration rates, which are determined by using detector counts, as will be explained in the 

subsequent subsection. The noise of the FCD has to be estimated. The accuracy of the detectors used 

for the determination of the penetration rate and the variation of the penetration rate in the network 

(the representativeness of the probe vehicles) has to be considered. The accuracy of the probe 

information has to be carefully calibrated for the filter to achieve the best results. 

Detector data 

The FCD delivers information on the number of probes passing an intersection. Probe vehicles are 

only a sample of the total vehicle population. The probe information has to be converted into total 

vehicle volumes. This conversion is only possible, if the penetration rate of the traffic with probes is 

known. To estimate this penetration rate, count data from detectors is used. By comparing the number 
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of vehicles passing a detector with the number of probes passing the same location the penetration rate 

is estimated. For the observed link this penetration rate is directly used. For links without detectors, 

the average penetration rate of all detector locations is assumed, as long as no better estimate on the 

distribution of the probes in the network with reference to the total traffic is known. 

To clarify the procedure, Figure 2 provides a simple example. Using the flow volumes of 

floating cars qFC,A,j and qFC,B,j and the detector counts qDet,i at the three detectors D shown in Figure 2, 

three individual penetration rates pi (one for each detector) are computed according to Eq. (8). 

 
   

        
 
 

      
 and    

        
 
 

      
 respectively 

(8) 

The average penetration rate can be approximated by 

 
   

   
 
 

 
 

(9) 

with k depicting the number of detectors. For the streams crossing a detector, the individual 

penetration rate for this detector is used. For all remaining streams the average penetration rate    is 

assumed, as long as no more accurate information is known. The flow volumes of floating cars are 

used as the measurements zk for the FCD update step. These measurements zk divided by the 

penetration rate (contained in the observation model matrix H) are compared with the prior flow 

estimates xk to give the innovation yk. of this update step. 

  

Figure 2 Illustration for the determination of the penetration rate from detector counts 

This procedure works particularly well, if the penetration rate is constant in the network. An error is 

introduced if the probe flows are not representative for the whole vehicle population and the number 

of detectors is low. If the deviation is systematic and known, it can be incorporated in the data fusion 

by correction factors on certain links. The methodology will deliver more reliable results, if many 

detectors are used. The penetration rate will be accurate at locations where only one vehicle 

movement is detected (e.g. exclusive turning lane) given accurate probe and detector counts. In every 

case an error might result from inaccurate detectors. Unreliable detectors should be excluded from the 

data sources. 
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Historic data 

Commonly the traffic flow at a certain time of the current day will be very similar to the flow at the 

same time on a similar day (e.g. working day, Tue-Thu). If no sufficient FCD is available and no 

unexpected changes are likely or no online information is desired, the flow estimation can be based on 

historic data. Historic data in this context depicts data gathered on past similar days. The accuracy of 

the historic data depends largely on the quality of the data used for generating the historic data and on 

the clustering of data to similar days (see below). Once the filter has been established, the historic 

database can be continuously updated with the filter outputs. This requires, of course, a good pattern 

recognition algorithm to detect incidents and special days. 

It is crucial for the performance of the filter that the reliability of not only the historic data is 

correctly judged. The less reliable the historic data is, the more the filter will rely on the other data 

sources. The accuracy of the historic data principally depends on the variation of the traffic flow. This 

variation can be reduced by an intelligent clustering process. Historic data cannot predict anomalies 

like incidents. The online information from probes should consequently be preferred to historic data. 

To use historical data, first a database containing traffic flow patterns for different days has to 

be established. The traffic flow on a link follows a particular pattern over time, i.e., for a whole year, 

and can be very well described by typical and standardized patterns [52]. To investigate traffic flow 

patterns, it is necessary to create clusters of typical traffic days [53]. Categories such as month of the 

year, week of the month, day of a week and hour of a day can be considered. Furthermore, conditions 

such as weather (e.g. dry, wet) and type of the day (typical day/holiday/weekend) can be included for 

detailed clustering. Given the historical data and the clustering scheme, one can categorize archived 

data and develop traffic flow patterns for each type of roads [54]. Using developed models, it is easy 

to generate an artificial, but rather reliable, traffic flow pattern for a particular link. 

IMPLEMENTATION ON CORRIDORS AND NETWORKS 

Data fusion on corridors 

If the traffic has to be estimated at two or more adjacent intersections, the link between these 

intersections can be used as a source of information. Namely the vehicles leaving one intersection in 

direction of the next intersection will arrive there after their travel time. Only if significant entries, 

exits or on-street parking facilities exist on the connecting link, the volumes will change. 

The network only offers an insight into the sum of vehicles leaving one intersection. 

Commonly no information is given on the assignment of these vehicles to different streams at the next 

intersection. The update consists, thus, of a scaling of the input and output streams of the respective 

adjacent intersections relative to each other. The scaling factor is determined by the sum of the inflows 

in relation to the sum of the respective outflows. The distribution of the inflow among different 

streams is left unchanged. 

Figure 3 illustrates the procedure for two intersections A and B. The procedure described here 

assumes short travel times in comparison to the aggregation interval and no entries/exits between A 

and B, i.e. the traffic volumes leaving A towards B (qA,2, qA,6, qA,10) are assumed to equal the traffic 

volumes reaching B from A (qB,1, qB,2, qB,3) during the same interval (blue) and vice versa (green). 

The measured streams, however, will differ from this equation due to measurement errors. 

The difference can be expressed as a factor f calculated as the ratio of inflow qin to outflow qout at 

cross-section A-B. Four factors are calculated for each connecting link, one for each inflow and 

outflow. Eq. (10) exemplifies the determination of the scaling factor for the traffic from A to B. The 

two factors for the traffic from B to A are calculated along the same lines. 
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(10) 

 

Figure 3 Illustration of using the information contained in the network 

All twelve streams involved in this update are converted into “measurements” by scaling the original 

estimates. The scaled stream volumes are used as the measurement input for the Kalman Filter as 

shown in Eq. (11). 

                                  (11) 

with zin and xin representing the streams to be updated (i.e. for AB: qB,1, qB,2, qB,3 for the 

inflow and qA,2, qA,6, qA,10 for the outflow). 

The measurement error R depends on the state estimate error covariance P of the streams used 

for the scaling. If the traffic volumes at intersection A, for instance, are more reliable due to better 

availability of FCD or detector counts, more trust is put into the outflow of A than into the inflow of B 

(for AB). The Kalman Filter automatically weights the measurements z in relation to this reliability. 

The determination of the measurement error R is exemplified in Eq. (12) for the inflow into B.  

                                 (12) 

The Kalman Gain determines the extent to which the scaled estimates as measurement input change 

the current state estimate; cf. Eq. (5) and (6). If the error is zero, the outflow and inflow sums have to 

be equal, or the other way round, if the sums are not equal, the measurement error has to be at least as 

big is the difference between the two sums. 

Consideration of travel times and entries/exits along links 

The travel time of the vehicles on the connecting link between two adjacent intersections can only be 

neglected, if it is significantly shorter than the observed time interval. The more similar travel times 

and observation time interval become, the higher the involved error resulting from the update step 

using the network context will be. 

A procedure taking these travel times into account has to derive the measurement inputs z not 

only from the current time interval, but also from the recent time intervals. The extent to which the 
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earlier intervals should be used depends on the travel times and its distribution. The calibration of the 

filter requires, thus, careful consideration. The variation of the travel times should also be reflected in 

the measurement noise matrix R. 

If entries and exits on a link connecting two adjacent intersections exist, the sum of vehicles 

reaching the next downstream intersection has to be adjusted accordingly. This is again connected to 

some error due to the varying number of vehicles leaving or entering the link and lacking knowledge 

about their volumes, which has to be considered in the measurement error. Alternatively, the entry/exit 

can be considered as another intersection. 

FILTER PERFORMANCE 

The Kalman Filter was tested in a controlled environment. Representative traffic data was generated 

for two intersections connected by a link as illustrated in Figure 3. By changing the variation of the 

traffic flow, varying the reliability of detector data and FCD, and varying the penetration rate of the 

traffic with probe vehicles the sensitivity of the filter to these conditions could be tested. Here the root 

mean squared error (RMSE) is used as the primary performance measure. Maximum and average 

deviations of estimated traffic volumes from the true values are given for comparison. 

Calibration variables 

The performance of the filter depends on the correct weighting of the measurements, i.e. the accurate 

or suitable judgment of the noise terms in relation to each other. Because the accuracy of the different 

measurements will not be exactly known in an application context, the filter has to be calibrated by 

varying the different noise terms and comparing the output with a control sample. The noise is 

contained in the measurement and process noise matrices Q and R. 

Data generation 

For a performance analysis artificial data has been generated for a pair of intersections. A flow pattern 

for one day in 15 minute intervals was defined. The assumed traffic flow was generated based on this 

pattern, but varied following a Normal Distribution. 100 data sets generated in this way served as the 

historic data. One set was excluded and used as the current flow. The FCD and detector counts deviate 

from the assumed current flow following again a Normal Distribution with given standard deviation. 

The historic data set and the randomly selected current flow are shown in Figure 4 with the variation 

parameters provided in Table 1. 

Table 1 Parameters used for base scenario data generation 

Parameter Value Explanation 

Flow variation 10 % Variation of traffic volumes around given mean 

Probe variation 10 % Variation of penetration rate 

Penetration Rate 10 % Penetration rate of total traffic with probes 

Detector Variation 10 % Variation of detector counts around true number 

Monte Carlo Runs 20  

Different penetration rates, probe vehicle variation (representativeness of the probes for the total 

population), fluctuations of traffic flow rates around the defined pattern, and accuracies of the detector 

measurements were used to analyse the performance of the filter with reference to the base scenario as 

in Table 1. The noise terms of the filter have been based on the known variation of the different inputs 

(FCD, detector counts, historic data). 
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The flow variation describes how much the traffic volumes vary around a fixed pattern from day to 

day. For this analysis it is assumed that the average of the historic data describes a typical flow pattern. 

The individual flow follows this pattern with certain accuracy (the flow variation). Incidents are 

excluded from this analysis. 

 

Figure 4 Sample generated data sets and the randomly selected dataset to represent real world data 

Performance on intersection level 

 

Figure 5 Filter output for single intersection, stream qB,1 

Figure 5 shows the result of the filter for stream qB,1 a penetration rate of 10 %, a flow variation of 10 % 

and a detector reliability of 10 %. The dashed lines represent the 90 % confidence interval. It can be 

seen to which extent the filter relies on the historic data and the FCD. Due to the comparably high 
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penetration rate, the FCD is more relied upon, which is crucial in order to detect incidents and make 

the filter independent from prior knowledge of the traffic flow, which is often not available. 

Figure 6 shows the RMSE of the filter as a function of the differing inputs (pair-wise varied). 

a) and b) show the sensitivity of the model to the penetration rate of probe vehicles averaged over all 

streams and for a single stream (tream qA,3 in Figure 3), respectively. As expected the estimation error 

decreases as the penetration rate increases. The trend is non-linear. Figure 6 c) and d) represent the 

model sensitivity to the random variation of traffic counts at each stream. While the error increases as 

the flow variation increases, the error increases for the single stream as traffic volumes at a single 

stream are much more sensitive to the variations. 

 

Figure 6 Elasticity of Kalman Filter to different penetration rates and flow variations given by the Root 

Mean Squared Error (RMSE) 

Probe vehicles are randomly sampled from the whole population of the vehicles. As a result, the 

number of observed probe vehicles in a particular stream may not perfectly represent the whole 

number of vehicles in that stream. Such representativeness is expressed by the probe variation. The 

elasticity of the model to the variations in the number of probe vehicles is investigated in Figure 7 a) 

and b). When probe variation increases, that is the probe data represents the whole population of the 

vehicles less accurately, the estimation error increases. The estimation error for a single stream 

depends on the total traffic volume at that particular stream. As for the case of this comparison, 

estimation errors for stream qA,3 seem to be less sensitive to changing variations. Finally, Figure 6 c) 

and d) show the impact of detector inaccuracies on the estimated traffic volumes. 

This analysis underlines the importance of a sufficient penetration rate. For a moderate flow variation 

of 10 %, a penetration rate of at least 10 % is desirable. Of course, the required penetration rate 
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depends on the local situation and the aspired accuracy of the filter. But it can be seen, that the 

accuracy of the filter changes only significantly for low penetration rates. If a critical penetration rate 

is exceeded, good results can be expected. 

A major influence on the filter accuracy is exerted by the traffic volumes and the aggregation 

interval. The error of the FCD multiplies by the reciprocal of the penetration rate. And since traffic 

volumes take discrete values, the precision reduces with low traffic volumes (one vehicle presents a 

higher percentage of the total volume for low traffic volumes). The filter is less reliable for minor 

approaches and off-peak time. This means on the other hand, that for the situations commonly of 

major concern (major approaches during peak time), the filter performs well. The decision has to be 

met between higher accuracy with lower precision (long aggregation interval), and lower accuracy, 

but higher precision (short aggregation interval). 

 

Figure 7 Elasticity of Kalman Filter to different probe and detector variations 

Performance on network level 

If the data fusion is extended to network level, the link volumes can be used to scale the outflows and 

inflows of adjacent intersections as described before. This procedure is particularly useful, if the data 

quality varies markedly between adjacent intersections. Figure 8 illustrates the effect of this third 

update step (after FCD and historic data). Shown are the true (blue empty diamonds) and estimated 

traffic volumes of stream qB,8 distinguished for the three update steps (dark green: FCD only; light 

green: FCD and historic data, HD; purple dots: FCD, HD, and network update) together with the 

cumulated total error. 
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Figure 8 Filter output for three update steps on one stream (penetration rate: 10 %) 

To avoid a bias by the random data generation, a Monte Carlo Simulation has been run with 20 

different random seeds. The average performance (RMSE, minimum, maximum and average 

difference between true data and data fusion estimates) is shown in Table 2, distinguished for the three 

update steps and for a stream with low traffic volumes (qB,1) as compared to a stream with high traffic 

volumes (qA,2). 

Table 2 Data fusion performance (Penetration rate: 10 %, 20 Monte Carlo runs) 

Stream 
 

FCD 

(veh/15min) 

FCD&HD 

(veh/15min) 

Filter output 

(veh/15min) 

qA,2 RMSE 4.1 3.0 2.8 

 Min -16 -15 -14 

 Max 9 5 5 

 Mean -0.4 -0.2 -0.2 

qB,1 RMSE 2.9 2.3 2.3 

 Min -9 -8 -9 

 Max 6 3 3 

 Mean -1.1 -1.2 -1.3 
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Figure 9 Root mean squared error (RMSE) of all streams (A: 1-12, B: 13-24) for a Monte Carlo 

Simulation with 20 runs 

CONCLUSIONS AND OUTLOOK 

The presented methodology drafts a new application of FCD for the generation of OD matrices on 

intersection level. These matrices (flow direction or lane based) are crucial for efficient signal control, 

intersection design, and further planning applications. The output of the data fusion process is up to 

date and can be used to take incidents and other fluctuations of traffic volumes into account. 

Data from probe vehicles is fused with detector counts using a Kalman Filter. Historic data 

can be incorporated, if no current FCD is available or the penetration rate is low. The filter can further 

be extended by taking the information contained in the network itself into account. The flow 

relationships between adjacent intersections can be used as another input for the filter. The 

performance of the filter depends – apart from the penetration rate of floating cars, which should be 

more than 10 % – to large extent on the accurate estimation of the error involved in the different 

inputs. The Kalman Filter uses the given error terms together with the FCD, detector counts, and 

optionally the historic data and the network context as an input to compute a maximum likelihood 

estimate of the traffic volumes (Normal Distribution of the error assumed). The elasticity of the filter 

to different input reliabilities and flow variations has been shown. The concept works well and 

promises to be a useful tool for cities with sufficient FCD available. The performance depends in the 

first place on a good calibration, which can be achieved by extensive tests based on simulations and 

based on manual counts as part of an implementation. 

The presented methodology is a starting point for more powerful data fusion. Ways to 

improve it are the consideration of different traffic volumes on different detectors (so far all detectors 

are equally weighted regardless of the traffic volumes), more sensibly dealing with constraints (so far 

negative volumes are set to zero), and the consideration of cross-correlations (so far all measurements 

are seen as independent, which they are not necessarily). Also the methodology for the network 

context might lead to feedback loops in closed networks. 
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