Oxide CMC Components Manufactured via PIP Processing Based on Polysiloxanes

Martin Frieß, Sandrine Denis

German Aerospace Center (DLR), Institute of Structures and Design, Stuttgart (Germany)

ECerS XII, 12th Conference of the European Ceramic Society, Stockholm (Sweden), June 19-23 2011
Content

- Introduction and Motivation
- Manufacture of OXIPOL
 - Resin transfer moulding (RTM)
 - Wet filament winding
 - Warm pressing
- Properties of OXIPOL
- Summary and outlook
Why Ceramic Matrix Composites (CMC)?

- Design of fibre/matrix interface
- Composite properties defined by fibre/matrix interface
 - Pseudo-ductile fracture behaviour
 - Weak bond between fibre and matrix
 - Formation of energy absorbing mechanisms
 - Dissipation of tension in fibre/nmatrix interface
Ceramic Matrix Composites

- Increase in fracture toughness

Ideal stress strain behavior
Reference: DiCarlo and Dutta (1995)

Fracture mechanisms
Reference: Zok, Evans and Mackin (1995)
Manufacture of OXIPOL Using LPI-Processing

- Oxide fibre fabric, e.g.: Al$_2$O$_3$·SiO$_2$ (Nitivy)
- Solution of phenolic resin
- Commercial polysiloxane as matrix precursor

Fibre coating
- (2h / 700°C)
- (2h / 175°C)

RTM
- Filament winding
- Warm pressing
- (9h / 265°C / 20 bar)

Intermediate machining

Joining

Pyrolysis
- Polysiloxane → SiOC
- (N$_2$ / 1100 °C / 90 h / p_∞)

Oxidation of fugitive coating
- (20h / 700°C)

Finishing

3 – 4 x
Fabrics Variation

Manufacturer’s data

<table>
<thead>
<tr>
<th>Ref.</th>
<th>Fibres</th>
<th>Fabrics</th>
<th>Manufacturer</th>
<th>Weave</th>
<th>Mass per unit area [g/m²]</th>
<th>Filament tensile strength [MPa]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitivy</td>
<td>Nitivy 72/28</td>
<td>2626P</td>
<td>Nitivy Co. LTD</td>
<td>Plain</td>
<td>280</td>
<td>1800</td>
</tr>
<tr>
<td>N610</td>
<td>Nextel 610</td>
<td>DF19</td>
<td>3M</td>
<td>8 harness satin</td>
<td>654</td>
<td>3100</td>
</tr>
<tr>
<td>N720</td>
<td>Nextel 720</td>
<td>XN625</td>
<td>3M</td>
<td>8 harness satin</td>
<td>637</td>
<td>2100</td>
</tr>
</tbody>
</table>
Coating of Fabrics with Phenolic Resin via Foulard
Properties of applied Polysiloxanes

<table>
<thead>
<tr>
<th>Polysiloxane</th>
<th>MSE 100</th>
<th>MK</th>
<th>MSE 100 + 50% MK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empirical formula</td>
<td>Methoxymethyl polysiloxane</td>
<td>Methyl polysiloxane</td>
<td>-</td>
</tr>
<tr>
<td>Density after curing [g/cm³]</td>
<td>1.14</td>
<td>0.6 (powder)</td>
<td>1.14</td>
</tr>
<tr>
<td>Density after pyrolysis (SiOC) [g/cm³]</td>
<td>-</td>
<td>-</td>
<td>2,3</td>
</tr>
<tr>
<td>Viscosity at 25 °C [mPas]</td>
<td>30</td>
<td>solid</td>
<td>solid</td>
</tr>
<tr>
<td>Viscosity at 120 °C [mPas]</td>
<td>30</td>
<td>> 2000</td>
<td>< 100</td>
</tr>
<tr>
<td>Curing type</td>
<td>Polycondensation</td>
<td>Polycondensation</td>
<td>Polycondensation</td>
</tr>
<tr>
<td>Ceramic yield at 1100 °C [%]</td>
<td>15</td>
<td>82</td>
<td>80</td>
</tr>
<tr>
<td>Volume shrinkage at 1100 °C [%]</td>
<td>93</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>Cost [€/kg]</td>
<td>18</td>
<td>23</td>
<td>21</td>
</tr>
</tbody>
</table>
Resin Transfer Moulding (RTM) I

1 Pressure Inlet
2 Mould
3 Seal
4 Resin chamber
5 Fibre Structure
6 Vacuum pump

- 250°C Temperature limit
- 20 bar Pressure limit
- Possibility of processing precursors with cross-linking via condensation
- Ability of exact adjustment of fibre fraction
- Complete infiltration of preform volume
- Ability of processing in inert atmosphere
Open Porosity of OXIPOL versus PIP cycle

![Graph showing open porosity of OXIPOL versus PIP cycle. The graph plots open porosity (%) against material status (Preform, 1.Pyrolyse, 2.Pyrolyse, 3.Pyrolyse, 4.Pyrolyse, 5.Pyrolyse, Oxidation). The graph includes three distinct lines labeled A, B, and C, each representing different material statuses.](image-url)
RTM-mould for OXIPOL Manufacture
Lay-up of Oxide Fabrics into RTM-mould
Manufacture of Radomes via Filament Winding and PIP Processing I: Filament Winding

C-fibre pre-product

Clamping unit

Fence

Winding mandrel

fibre impregnation
Manufacture of Radomes via Filament Winding and PIP Processing II: Reinfiltiration in Resin Bath
Investigated PIP Process via Warm Pressing

- **Fibre coating**
 - Variation of oxide fabrics
 - Variation of phenolic resin

- **Polymerisation**
 - Powdery polysiloxane precursor

- **Pyrolysis**
 - Polysiloxane \rightarrow SiOC

- **Reinfiltration**
 - Wet polysiloxane precursor bath

- **Pyrolysis**
 - Polysiloxane \rightarrow SiOC

- **Oxidation**

The process involves the conversion of Polysiloxane into SiOC, followed by reinfiltration with a wet polysiloxane precursor bath. This is repeated three times (3x).
Variation of the Fugitive Coating

<table>
<thead>
<tr>
<th>Type</th>
<th>A *</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phenolic resin content JK60 [mass-%]</td>
<td>0</td>
<td>10</td>
<td>10</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Coating cycles</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Pyrolysis cycles</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

* Configuration N720-A is desized

⇒ OXIPOL variation on 15 sample plates
Tensile Tests: Strengths before Exposure

Before exposure

- Nitivy fibres
- Nextel610 fibres
- Nextel720 fibres

Tensile strength improvement with:
- Several coating with lower resin concentration
- Intermediate pyrolysis of the coated fabrics

Coating of N610 increases tensile strength:

$$\sigma_{\text{max}} \text{ 2 x 5\%JK60 int. pyr.} = 3.6 \times \sigma_{\text{max uncoated}}$$
Tensile Tests: Strengths after Exposure

After 20 h exposure at 1200 °C

- Nitivy fibres
- Nextel610 fibres
- Nextel720 fibres

Independently of coating:
- Tensile strength decreases after exposure

These coatings were not adapted for 1200°C
Oxidation Phenomena during Thermal Exposure

Matrix growing after exposure due to two reactions:

- Net weight loss
 \[C + O_2 \rightarrow CO_x \]

- Net weight gain
 \[Si-C + O_2 \rightarrow Si-O + CO_x \]

- Close the gap fibres/matrix
- Decrease of energy absorbing effects and tensile strength
- Need for oxidation resistant fibre coating
- For example \(LaPO_4 \)
Summary

• The manufacture of OXIPOL can be performed by different methods and opens up new application areas

• Resin transfer moulding (RTM) is well suited for resins cured via polycondensation and is very efficient for densification of CMC

• Filament winding of oxide fibres was successfully applied to manufacture complex structures

• OXIPOL manufacture based on warm pressing provides high potential for cost reduction

• Fugitive coating is not applicable at high temperature in air due to embrittlement of CMC (matrix degradation and gap closure)

→ new oxidation resistant coatings providing easy cleavage are needed, e.g. LaPO$_4$