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Abstract— The procedure of manually generating a 3D model
of an object is very time consuming for a human operator. Next-
best-view (NBV) planning is an important aspect for automation
of this procedure in a robotic environment. We propose a
surface-based NBV approach, which creates a triangle surface
from a real-time data stream and determines viewpoints similar
to human intuition. Thereby, the boundaries in the surface are
detected and a quadratic patch for each boundary is estimated.
Then several viewpoint candidates are calculated, which look
perpendicular to the surface and overlap with previous sensor
data. A NBV is selected with the goal to fill areas which are
occluded. This approach focuses on the completion of a 3D
model of an unknown object. Thereby, the search space for the
viewpoints is not restricted to a cylinder or sphere. Our NBV
determination proves to be very fast, and is evaluated in an
experiment on test objects, applying an industrial robot and a
laser range scanner.

I. INTRODUCTION

The demand for generating 3D models of physical objects
has increased in recent years. Thereby, various objects such
as cultural heritage artifacts, household articles or mechanical
parts are digitized for replication, inspection or object recog-
nition. In order to obtain a precise 3D model, usually laser
scanners are hand-guided by a human operator or attached
to a robot while planning the trajectory manually. This can
be a very slow and cumbersome procedure for the operator.

In the last few decades, several technologies have been
developed, which obtain 3D data using an accurate 3D laser
range scanner [1], and which post process the scanned data
resulting in a 3D model [2]. However, 3D scanning remains
expensive on account of the hardware, and the substantial
amount of time human intervention is required. Systems
have been developed where the object is positioned on a
turntable and a 3D scanner automatically performs a scan of
the object in fixed degree steps [3]. Nevertheless, commercial
3D scanner automated turntables can only obtain a 3D model
of very small objects without larger concave areas, resulting
in incomplete models. Furthermore, they are not applicable
when building a 3D model of an object with a mobile robot
[4]. In future, humanoid robots such as the HRP-2 [5] or
Justin [6] must work in an everyday environment and be
able to grasp any kind of object. Therefore, the robot needs
to recognize different objects, and if these are unknown,
generate a 3D model.

The task where to position the sensor next, is very intuitive
for a human operator given an online visualization of the
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modeling process, but very complex for the robot. This
problem is referred to as the view planning problem (VPP)
and has been addressed by several researchers since the
1980s. Scott [7] presents a good review of different next-
best-view (NBV) algorithms, which he divides into two main
categories: model-based and non-model-based. Non-model
based implies that no or hardly any a priori knowledge of
the object is known, whereas for model-based view planning
a model of the object is given beforehand.

The goal of this work is to automatically generate a
complete 3D model of an unknown, complex object, using
a non-model-based NBV approach. Therefore, we introduce
the Viewpoint Estimator, which is based on a combination
of fundamental methods. After the generation of a real-time
streaming surface, the boundaries of the scan data are clas-
sified based on the surface information, the surface trend of
these boundaries is estimated and viewpoints are calculated
and prioritized taking the sensor properties into account.
Thereby, similar to the human operator, the robot performs
a next scan of the object along one of the boundaries of
the given 3D model, looking onto the unknown area. In
this paper, we concentrate on the completion of the model.
Our focus is not the determination of a minimal number of
viewpoints or the gain of workspace information.

II. RELATED WORK

According to Chen [8] previous research efforts concern-
ing the VPP focus on finding the NBVs by occlusion as
a guide [9] [10] or volumetric analysis [11]. In the work
of Pito [10] the occlusion-based concept of positional space
is introduced as a basis for view representation. A sphere
or cylinder circumscribes the object, which is partitioned
into three types of information, recovered from range data:
the void volume, the void surface and the seen surface.
Banta [11] integrates three NBV algorithms into one large
system giving voxels the status occupied or unoccupied. This
approach incrementally iterates over a sphere and verifies the
status of the voxels from the candidate viewpoint direction.
These and most other NBV algorithms restrict the search
space of the viewpoints to a cylinder or sphere model.
Therefore, the candidate views always point to the center of
the cylinder or sphere reducing the problem from six to two
degrees of freedom. This simplification of the search space is
necessary to reduce the number of iterations. The drawback
of the limited viewpoint space is that it is difficult to model
complex objects with larger concave areas. Therefore, Chen
[8] suggests the trend surface in order to predict the unknown
portion of an object, which is based on surface information



and not on occlusion or a volumetric analysis. The global
shape of the previously scanned surface is estimated in order
to determine the NBV for the expected surface. Zhou [12]
also predicts the surface to the left and the right side of the
visual surface and selects the NBV with the larger visible
surface. However, his model is restricted to a cylinder and
his method does not work on objects which contain larger
concave areas or occlusions. These authors and many others
suggest a method to solve the VPP theoretically but neglect
to verify their algorithms online in a real life environment,
where the time is crucial, with both a robotic system and
a real sensor. This indicates that they do not take into
account noise from the sensor and position error of the robot.
However, there have been some approaches implementing
a complete system capable of automatically modeling an
unknown object. Both Callieri [13] and Larsson [14] present
a system for automated 3D modeling in three steps consisting
of a 3D laser scanner, an industrial six axis robot and a
turntable. First a rough scanning is performed in order to
obtain only the bounding box of the object. Second NBVs
are determined based on a cylinder model and the object is
scanned from several directions resulting in an approximate
model containing holes. The third step, which Larsson has
not implemented so far, should perform a rescan of hole
areas where no information could be obtained during the
second step due to occlusions or a significantly differing
line of sight and surface normal. Both systems are limited
to a cylinder viewpoint space and are not based on a surface
which is reconstructed online. Loriot [15] implemented a
system with a similar setup using a fixed scanner and moving
the object for the NBV. However, this system is restricted to
very small objects and aims at the development of a 3D
scanner automated turntable.

We propose an approach, which does not restrict the search
space to a sphere or cylinder. This makes the viewpoint
determination more complex but allows for a more flexible
viewpoint space. Another benefit of an unrestricted search
space is that the grazing angle, which is the angle between
the line of sight and the surface normal, is also not restricted.
Better modeling results can be obtained since the grazing
angle is directly related to the quality of the sampled data.
Furthermore, we determine NBVs based on surface data,
which allows us to verify the completeness of the model
directly, by hole detection, and to apply the algorithm to any
generic sensor. Instead of interpolating holes of the resulting
mesh in a postprocessing step, our algorithm creates a model,
which is complete and barely contains any holes. This is not
possible when utilizing a volumetric NBV method. For our
approach, the mesh is reconstructed from a real-time stream
during scanning as Bodenmüller [16] suggests. Therefore, the
NBV can be calculated straightforward from the estimated
curve of the partial object model.

III. VIEWPOINT ESTIMATOR

In order to automatically create a 3D model of an unknown
object, first the workspace of the robot needs to be explored
in search for the object. In this paper, we assume that the

position of the object is known and focus on the generation
of a 3D model of the object. Therefore, in order to avoid
collision, we assume that at least a coarse bounding box of
the object is known and the remaining workspace of the robot
is empty. The only constraint on the object is that its volume
is selected according to the scanner precision and it has no
very sharp angles at the edge as is the case for e.g. a piece of
paper. Otherwise, there are no assumptions concerning the
surface of the object.

The Viewpoint Estimator applies a 3D laser scanner since
the quality of the data is significant for the required result, the
precise 3D model completion of the object. The algorithm is
applicable to all kinds of range sensors, since it is based on
the 3D mesh. Here, it is demonstrated with a laser scanner.
The Viewpoint Estimator consists of the following stages:

1) Boundary Classification
2) Boundary Curve Estimation
3) Viewpoint Determination

During the first stage, the Boundary Classification, the differ-
ent boundaries of the object are detected and classified. This
method is similar to the approaches which find the NBV by
occlusion as a guide [9] [10], with the difference, that our
boundary search is based on the surface information and not
a voxel map. The Boundary Curve Estimation performs a
region growing starting at the different boundaries in order
to find vertices in the area and fit these to a quadratic patch.
During the Viewpoint Determination stage, sensor viewpoints
are determined using the estimated curve with the constraints
that the sensor looks perpendicular to the estimated surface
and there is an overlap with the previous scan.

Figure 1 gives an overview of the complete procedure in
order to automatically generate a 3D model. First an initial

Fig. 1. Overview of the automated 3D model completion process

linear scan along the longest dimension of the bounding box
of the object is performed. During the scan, the surface is
reconstructed from a real-time stream, while removing depth
points with a grazing angle > 75◦. Linear scan means that
the laser scanner moves along a direct line in physical space
with a constant orientation. A triangle mesh is build during
the scanning process by incrementally inserting the oriented
3D points [16] to the global object mesh. The mesh data
structure used in this work consists of vertices vi with a
position pi and a normal ni and directed edges ei with a start
vertex vi and an end vertex vj and two additional vertices



vl and vr, which close the adjacent triangle to the left and
the right. This data structure is efficient for our algorithm
since the triangle faces do not need to be stored explicitly.
After the scan, the Viewpoint Estimator generates several
viewpoints, which are put to stack, and then the Next-Best-
View Selection is performed. After that subsequent scans are
performed and new viewpoints are generated. During the
Next-Best-View Selection, previous viewpoints are validated
by the criteria until the area in the field of view is filled. The
algorithm aborts if no viewpoints remain. This is the case
when Viewpoint Estimator cannot find any further boundaries
in the current global object mesh. Then a final more precise
3D mesh is generated and registered.

The three stages of the Viewpoint Estimator and the Next-
Best-View Selection are described in detail in the following.

A. Boundary Classification

The current global object mesh, which is built from all
present scans, is transformed into the coordinate system of
the sensor in order to determine left, right, top and bottom
boundary from the sensor point of view. Fig. 2(a) shows an
example of the mesh from one scan of a Mozart bust seen
from the sensor point of view, where the classified boundaries
are illustrated.

Here, the sensor coordinate system is defined so that the z-
coordinate represents the viewing direction, the x-coordinate
is to the left and the y-coordinate is in the up direction.
The laser line is projected into the xz-plane. We iterate
over all the newly inserted edges ei of the mesh. Thereby,
consecutive and previous edges of ei are inspected by the
criteria if a triangle is assigned only to one side (see blue
vectors in Fig. 2(b) ). The direction of the edges are inverted,

(a) Boundaries of Mozart bust (b) Left boundary classification

Fig. 2. The classified boundaries of a mozart bust scan are illustrated: left
(green), right (red), top (blue) and bottom boundary (yellow). The search for
the left boundary in the mesh is shown: for each edge along the boundary the
angle between the edge and the scan direction is computed and compared
with a threshold.

if required, so that no triangle is assigned to the left side,
vl = n.d., as is the case in the figure. In order to determine
e.g. the left boundary of the mesh, the angle α between the
scan direction s and the current edge ei is calculated:

α = arccos(
s · ei

|s||ei|
) (1)

If α > αt then a penalty p, which is initialized with 0, is
decreased by 1. Thereafter the angle is calculated accordingly
for the edge ej , which is next in the edge chain. The penalty
is reset to 0 once an edge with a good angle is found. The
algorithm aborts the boundary search once the penalty falls
below a threshold pt and then the procedure is repeated in the
other direction with the previous edge ek of the edge chain.
An edge chain is considered as reasonable left boundary if it
consists of a certain number of edges emin. The procedure
for determining the right, top and bottom boundaries is
performed accordingly during the same iteration, by inverting
the threshold angle for the right boundary and considering
the stripe direction for the top and bottom boundary. The
direction of the normals along the boundary are compared
with the sensor viewing direction and discarded if they are
from the opposing side.

B. Boundary Curve Estimation

Once the boundaries are detected and classified, for each
boundary a region growing is performed, starting at the
vertices of the boundary and limiting the search by a pro-
jected 2D bounding box. This results in a boundary region of
the given mesh with unknown information about the shape
beside the boundary. The goal is to estimate the surface trend
of the unknown area using the boundary region. We choose
a simple approach to fit all its vertices vi, using only the
positions pi = [xpi , ypi , zpi ], to a quadratic patch:

zpi
= f(xpi

, ypi
) = ax2

pi
+bxpi

ypi
+cy2

pi
+dxpi

+eypi
+f
(2)

A quadric is chosen since it is of low order and it gives a
good estimate to whether a boundary mesh area, which is
not be subject to too much change, is curved outward or
inward in the direction of the unknown area. Therefore, the
approximate curve in the unknown area can be estimated
quickly, which suffices to determine viewpoints according to
the trend of the surface.

Whaite [17] uses the same quadric to estimate an ellipsoid
of the complete object in order to grasp it. However, we us
it to estimate a possible NBV.

C. Viewpoint Determination

Now possible viewpoints for each boundary are calculated
looking perpendicular to the estimated quadratic patch at
a certain distance d (see Figure 3). The field of view
overlaps with the previous scanned mesh in order to obtain
a complete model. Also, this is necessary to improve the
result of the final model by registration of the different
scans. Starting at the detected boundary, candidates for a
viewpoint are determined by calculating points and normals
of the estimated quadratic patch. For simplification, we start
at a point along the boundary, which is the midpoint of the
first and last vertex of the boundary. We calculate possible
surface points pi in the direction of the unknown area by
inserting xpi and ypi into (2). When performing this for
the left boundary we keep ypi

constant and increase xpi
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Fig. 3. The field of view overlaps with the mesh from the previous scan
and the sensor looks perpendicular to the estimated quadratic patch at a
certain distance d.

by a step size. Then the normal ni of this surface point is
calculated from the derivatives of (2):

ni =

 xni

yni

zni

 =


∂f

∂xpi
∂f

∂ypi

−1

 =

 2axpi
+ bypi

+ d
bxpi

+ 2cypi
+ e

−1


(3)

The zni
is set to −1 since the viewing direction of the

scanner is described by the positive z-axis and surface points
are in the opposite direction. Then for this surface point
a candidate viewpoint is calculated at a certain distance d
from the curve and in direction of the normal. The candidate
viewpoint is required to have an overlap of o with the
previous mesh, with the constraint, that the angle between
two consecutive viewpoints does not exceed a limit. If the
candidate viewpoint does not comply with the constraints,
then for the left boundary the value of the step size is
decreased and a new candidate is determined or the algorithm
aborts. For the left boundary, xpi

is increased and a new
surface point is calculated. As soon as the viewpoints for
the different boundaries are determined, the mesh and the
viewpoints are transformed back into the world coordinate
system.

When using a sensor, which measures 2.5D range data
without moving the sensor, this viewpoint can be utilized
directly. Since we apply a laser scanner, which only measures
a one dimensional stripe, not only one but several viewpoints
are required. Therefore, we perform a linear scan along the
boundary of the complete object using the orientation of
the calculated viewpoint. The grazing angle for one scan
could be improved by calculating several viewpoints along
the boundary and determining a path, which moves along
these viewpoints.

D. Next-Best-View Selection

However, not only one but several boundaries per side can
be detected in the mesh. Therefore, a viewpoint from the
stack needs to be selected as NBV. Fig. 4 shows an example
where two left boundaries are detected due to occlusion.
Since the occlusion should be eliminated, in this case the

Fig. 4. Object with occlusion: two left boundaries are detected. In order to
eliminate occluded areas, the viewpoint based on the rightmost left boundary
needs to be applied.

viewpoint for the rightmost boundary is selected. Now, a
linear scan is performed for the current NBV along the
complete object and the newly generated mesh information
is compared with the previous. If the newly generated mesh
does not contain at least n new points when compared with
the initial scan, the scan is discarded, and a scan for the next
viewpoint from the stack is performed. Otherwise, the new
mesh and the previous mesh are combined, transformed into
the coordinate system of the sensor during the previous scan
and several viewpoints are obtained as described in the three
steps above. Then once again, the viewpoints are prioritized
and saved to the stack. If the algorithm aborts and no left
boundaries remain on the stack, it continues with valid right
boundaries and then with valid top boundaries. Again, in
order to eliminate occlusions the leftmost right boundary, the
lowermost top boundary and the topmost bottom boundary
are prioritized.

IV. EXPERIMENTS

In our experiments, we used the following values for the
parameters of the Viewpoint Estimator. For the Boundary
Classification a boundary angle threshold αt = 55◦, a
penalty pt = −5 and a boundary minimum edge length
emin = 15 are used. We choose an overlap o = 0.2 in
the Viewpoint Determination stage, which means that 20%
of the laser line will represent parts of the object previously
scanned. The amount of required new points of a scan n is
set to 0.1. However, for other setups these parameters might
have to be adjusted depending on the object shape and size
and the scanner system.

A. Setup

In order to verify the performance of the Viewpoint Es-
timator, an industrial six-axis robot type Kuka KR16 [18]
was selected. The reasons for choosing this robot are the
positioning accuracy and the robot workspace, which allows
for automatic 3D model completion of medium-sized objects
without a turntable. The laser scanner is attached in a 90
degree angle to the robot flange (see figure 5) so that

the object can be fully covered. We apply the Laser
Stripe Profiler (LSP), which is part of the DLR 3D-Modeler
[19]. The 3D-Modeler is a multi-sensory compact device
applicable for 3D modeling in a robotic environment. The
LSP works at at frame rate of 25 Hz and measures 224 points



Fig. 5. Experimental Setup: the DLR 3D Modeler is attached to the flange
of an industrial robot, type Kuka KR16, in a 90 degree angle. The object,
here a camel, is placed on a small, static platform.

per line. The robot is synchronized with the 3D-Modeler in
order to measure the pose of the sensor [20], when scanning
the object, which we place on a fixed, static platform at a
height of 670mm.

B. Objects

First an initial scan of the objects is performed from
bottom to top fixed positions. Then a NBV is determined as
described in the previous section and the robot performs a
linear scan while avoiding a collision with the bounding box
around the object. The test objects are a Mozart bust, which
is of smaller size and could also be scanned automatically
with a cylinder or sphere model, and a camel (see figure 5),
which is medium-sized and consists of some larger concave
areas. The results for the two objects, which are listed in table
I, are obtained on a PC with Quad Xeon W3520 2.67GHz
CPUs and 6 GB RAM. The time for calculating viewpoint
candidates for each boundary of one scan and determining a
NBV was below one second for both models. For the camel
it was higher since the object is larger, and therefore also
the number of acquired depth points during scanning and
the number of triangles in the final mesh are also greater.

TABLE I
VIEWPOINT ESTIMATOR RESULTS FOR THE TWO OBJECTS

Mozart Camel
Object size (mm) 87x114x215 307x187x328
Number of scans (NBVs) 10 11
Time to determine NBV (sec) 0.1 - 0.3 0.2 - 0.7
Total model acquisition time (min) 6 9
Total number of measured points 416573 891063
Triangles in final mesh 228949 464387

The total procedure for acquiring the model of the object
took a few minutes, which includes the time for moving
the robot during scanning and moving the robot to the next

scanpoint without colliding with the object. One reason why
the time is so high compared to the time to determine the
NBV is that the robot was moved slowly during scanning
in order to obtain enough depth points for a precise model.
This accounts for approx. 80% of the time. Furthermore,
the collision free path planning is achieved by defining a
bounding box of the object. The final triangle mesh of the
objects (see figure 6) was generated by registration of the
different scans, which are somewhat precise due to the robot
positioning accuracy, and creation of a triangle mesh with
higher accuracy than the mesh used during the Viewpoint
Estimator. Both tasks used standard postprocessing software.

Fig. 6. Final triangle mesh of the Mozart bust and the camel

Both models are complete apart from two larger holes on
each side of the Mozart bust and one hole at the chin of the
camel. The algorithm still needs to be improved regarding
occlusion of the laser and adaptive scan in order to eliminate
holes such as these. Of course these holes can also be filled in
a postprocessing step but we wanted to show the final model
based only only on the data acquired during the automatic 3D
scanning. Also the bottom was not scanned, which was not
possible without repositioning, since the objects are placed
on a platform.

C. Discussion

The NBV approach suggested in this paper is based on a
combination of fundamental methods and performs very fast.
It was tested in a real environment and not only on simulated
data. The time for calculating a NBV is negligible compared
to the time for moving the robot to the next position and for
performing the scan. Therefore, the time for generating a 3D
model of our automated 3D scanning system is comparable
to a human operator, who scans the object manually. In our
implementation the object size is not restricted by a turntable
as in [13] [14] [15] and we can still perform an almost
complete scan. However, the object size is restricted by the
workspace of the robot, but allows for larger objects than a
turntable. Moreover, the model is generated in one step and
no further steps are necessary. Nevertheless, the algorithm
still needs to be evaluated on larger objects. This was not



possible with our setup without repositioning. Furthermore,
even though we do not explicitly consider the robot path, the
path to the next scanpoint in most cases is short since we
determine the viewpoint for the detected boundaries of the
scanned part of the object. Loriot [15] determines the mass
vector chain and e.g. for his second scan has to move the
object half way around. Moreover, he has to reposition the
object to scan the object from the top in a good angle.

Recently, major advances for 3D reconstruction using a
single moving camera [21] have evolved. Here, the hardware
is a lot cheaper than a 3D laser scanner. However, the 3D
model is not scaled, is not as precise as from a laser scanner,
is not reconstructed from a real-time stream and can only be
generated offline after the camera has been moved around
for a while. Therefore, mono cameras are not yet practical
for our non-model based NBV approach but might be in near
future.

V. CONCLUSIONS AND FUTURE WORK

In this paper, a surface-based NBV approach, the View-
point Estimator, is presented, which creates a 3D model of
an unknown object. The algorithm does not require any a
priori knowledge of the object. However, collision free path
planning requires an approximate bounding box of the object.

The NBV is determined by detecting the boundaries in the
scanned surface, which is reconstructed from a real-time data
stream, and by estimating the surface trend of the unknown
area beside the boundaries. This approach is intuitive and
similar to a human operator, who looks at the given 3D
model and scans the area beside the boundaries, where no
information is given. Since boundaries are not only detected
on the exterior but also on the interior of the given surface,
lack of data due to occlusions are avoided. The algorithm
is evaluated by automatically scanning two test objects with
a robot. In our experiments, the determination of the NBV
proved to be very quick. The resulting 3D models of the
objects are almost complete, although no filling of holes
in a postprocessing step is performed. This approach works
without restricting the search space of the viewpoints to a
cylinder or sphere, and therefore can automatically generate
models of complex objects.

Currently for each boundary only one viewpoint is de-
termined and the two scanpoints are interpolated. Future
work will be to evaluate if separating the boundary into
different regions, fitting a quadratic patch for each region and
calculating several scanpoints for one boundary will improve
the results. The scan would not be linear anymore but would
adaptively follow the surface trend not only towards the
unknown region but along the boundary. If some holes still
remain, we would implement a hole detection algorithm in
order to perform a rescan of areas with holes.

In the future, the approach in this work and the problem of
work cell exploration [22] will be combined. First the robot
will explore the workspace, in terms of free space and object
location. During exploration a voxel model of the object and
environment will be created, and used to avoid collision when
creating a complete 3D model of the objects.
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