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Abstract— Accurate monitoring of urban areas using remote
sensing data requires reliable change detection techniques. Nev-
ertheless, while most of the changes are optically visible and
easily detectable by an expert user, automatic processes are quite
difficult to develop. That is why, the interpretation of changes
has remained up-to-now visual in most operational applications
in remote sensing. This paper provides an automatic approach
for 3D change detection based on the joint use of the height and
spatial information. In fact, when dealing with urban areas, one
possibility to cope with the automatic growth monitoring is the
exploitation of the height information relative to the different
man-made objects that exist in the scene. The subtraction of
Digital Surface Models (DSMs), acquired at different epochs,
should thus provide a valuable information about the 3D urban
changes occurred in the studied area. However, when at least one
of the DSMs presents some artifacts, a simple DSM subtraction
could result also in the detection of virtual changes. To remove
these virtual changes, we propose in this work to include, in
addition to the height information, some shape features that
could be of a great help in describing the geometry of the
constructed or demolished man-made structures. After that, the
Support Vector Machine (SVM) classifier is used to differentiate
real from virtual changes. Evaluation of the proposed approach in
terms of completeness, correctness, overall accuracy, etc has been
performed proving its efficiency and relatively high accuracy.

I. INTRODUCTION

In the last few decades, the constantly intensive global
urbanization has made the urban and suburban areas among
the most dynamic sites on Earth. New innovative tools are thus
required for better monitoring of such areas. Remotely sensed
imagery in some cases may be the only reliable source for
better understanding of urban areas. In fact, satellite imagery
can significantly improve the monitoring of cities in a wide
range of applications, e.g. urban growth monitoring, disaster
damage assessment, urban change detection, etc.
The overall goal of this paper lies in the development of
automatic urban growth monitoring using height and spatial
or shape information. In fact, urban changes are in general
either related to building construction/demolition or vegetation
growth. These two issues should be well described if the
height and shape information are available. In the literature, to
monitor height changes, subtraction of Digital Surface Models
(DSMs) has been widely used (e.g. [1]–[3]). This simple
approach could provide reliable results if accurate DSMs are
available. However, if at least one of the used DSMs shows
some artifacts (which is quite often the case), we are in

general faced by the problem of significant height differences
over some complex 3D structures. This would result in the
detection of virtual changes, generally characterized by strange
shapes. Therefore, this work suggests the additional use of
several shape features in order to describe the geometry of the
spatial extent of the different constructed/demolished build-
ings, generally characterized by quite regular shapes. Similar
approach has been used in [4], [5] to detect respectively
buildings and building changes using Lidar and Laser DSMs.
Accurate building detection maps have been obtained. This
is somehow due to the very good quality of the used DSMs
and to the successful tuning of the different thresholds. In
this article, the used DSMs are generated from two pairs
of Ikonos stereo images acquired at different epochs. Since
the quality of the DSMs is not as good as the Lidar/Laser
ones, some post-processing steps have been included so that
the proposed approach does not remain limited only to high
quality DSMs. Also, still in the frame of the automatization of
our change detection approach and to avoid the manual tuning
of the different thresholds, after the feature extraction step, we
suggest to separate the real changes from the virtual ones,
using the Support Vector Machine (SVM) classifier which
has shown great efficiency and robustness in various pattern
recognition applications ( [6]).
The organization of this paper is as follows: Sections II and
III describe the data used in this work and the different steps
of the proposed 3D change detection approach, respectively.
Section IV assesses the accuracy of our method using different
objective metrics, while section V gives some conclusions and
perspectives.

II. PRESENTATION OF THE DATA

In this work, we perform a multi-temporal and multi-season
change monitoring of an Asiatic urban area using DSMs. Two
pairs of Ikonos-2 stereo images ( c⃝EUSI provided under the
EC/ESA GSC-DA) acquired in spring 2006 and winter 2010
have been used to generate the corresponding DSMs, using
the Semi-Global Matching algorithm (SGM) implemented at
DLR ( [7], [8]). Since the resulting DSMs show holes when
the matching between the two stereo images fails (e.g. over
occluded areas), the delta surface fill technique has been
applied to fill the DSMs with data from the corresponding
SRTM DSM. Fig. 1 displays the two filled DSMs.
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(a) DSM from spring 2006.
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(b) DSM from winter 2010.

Fig. 1. The two DSMs used in this work to perform a multi-temporal and multi-season change monitoring of an Asiatic urban area.

III. CHANGE DETECTION METHODOLOGY

A typical solution to detect positive and negative changes
consists in subtracting one DSM from the other. Such an
approach provides generally good results when every pixel in
the image represents the real height of the corresponding point
in the studied area. However, when at least one of the DSMs
exhibits artifacts, this simple approach can not be reliable. In
this work, after the subtraction of the two DSMs depicted in
Fig. 1, we propose to introduce some post-processing steps in
order to generate accurate change detection results. Actually,
after examining deeply the DSM difference image depicted in
Fig. 2, we have found out that:

∙ most of the virtual changes come from the DSMs artifacts
caused either by the SRTM-based filling over shadowed
areas or by some precision errors in the height com-
putation. To overcome the first problem, we propose to
eliminate shadows over the wrongly filled areas. Whereas,
a histogram-based thresholding and shape feature extrac-
tion were included in our change detection procedure
to remove automatically the virtual changes caused by
height computation errors.

∙ the real changes are mainly linked to the construction of
several new buildings or to varying levels of vegetation
growth since the data have been acquired in different
seasons. Therefore, in our change detection procedure, we
will focus on building detection using shape features and
vegetation detection using the Normalized Differenced
Vegetation Index (NDVI) computed from the multispec-
tral images.

A. Shadow elimination

One of the common artifacts in DSMs over urban areas
comes from the SRTM-based filling. Exemplarily, neighboring
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Fig. 2. Absolute difference between the DSMs of Fig. 1.

buildings separated by a narrow road appear usually as one
connected structure in the filled version of the DSM as can be
seen in Fig. 3. In order to recover this problem, we propose to
apply the following shadow-hole mask on the DSM difference
image:

𝑀𝑎𝑠𝑘 = (𝑀𝑎𝑠𝑘𝐿𝑆ℎ𝑎𝑑𝑜𝑤 ∪𝑀𝑎𝑠𝑘𝑅𝑆ℎ𝑎𝑑𝑜𝑤) ∩𝑀𝑎𝑠𝑘𝐻𝑜𝑙𝑒, (1)

where 𝑀𝑎𝑠𝑘𝐿𝑆ℎ𝑎𝑑𝑜𝑤 and 𝑀𝑎𝑠𝑘𝑅𝑆ℎ𝑎𝑑𝑜𝑤 are the shadow masks
computed, according to the method of [9], from the left and
right stereo images, respectively, and 𝑀𝑎𝑠𝑘𝐻𝑜𝑙𝑒 represents the
hole mask calculated from the unfilled DSM.
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Fig. 3. Illustration of the usefulness of the shadow detection in improving
the DSM quality inside urban areas. (a) Multi-spectral image. (b) Unfilled
DSM. (c) DSMs subtraction. (d) Improved DSMs subtraction.

B. Histogram-based thresholding

As done in [10], we perform a histogram-based thresholding
on the DSM difference image after applying the shadow-
hole mask to remove the virtual changes coming from height
computation errors. Observing the histogram of the difference
image (Fig. 4), possible changes are located far away from the
average value. To determine the threshold Threspos relative to
the possible positive changes, a histogram-based thresholding
is applied as follows:

Threspos = min
𝑘∈[0,ℎmax

pos ]

(∑𝑘
𝑖=0 ℎpos(𝑖)∑ℎmax

pos
𝑖=0 ℎpos(𝑖)

)
> 0.99, (2)

where ℎpos is the histogram relative to the positive changes and
ℎmax

pos is the maximal height difference. The threshold relative
to the possible negative changes is similarly computed.
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Fig. 4. Histogram of the DSM difference image whose absolute value is
depicted in Fig. 2 after applying the shadow-hole mask.

C. Feature extraction and SVM-based real change detection

After thresholding, the changes are treated as segments and
different features have been computed for each segment in
order to describe at best the real positive and negative changes.
The mainly observed 3D changes are linked either to vegeta-
tion changes since the two stereo images have been acquired
in two different seasons (spring and winter), or to building
construction since a quite long period (4 years) separates the
acquisition years of the two stereo image pairs. Therefore, for
feature extraction, the following steps have been followed:

∙ First, NDVI masks are computed from the multi-spectral
images and their overlaps with the change segments are
examined in order to detect changes relative to vegetation.

∙ After that, assuming that the rest of the change segments
are linked to building construction, we suggest to com-
pute the following shape features for each segment: area,

elongation (ratio of the major axis length and the minor
axis one), eccentricity (ratio of the distance between the
foci of the ellipse that has the same second-moments as
the segment, and its major axis length), solidity (propor-
tion of the pixels in the convex hull that are also in the
segment), extent (ratio of pixels in the segment to pixels
in the total bounding box) and compactness (ratio of the
square root of the area to the perimeter of the segment).
In addition to these features, we compute the mean and
standard deviation of the height over each segment.

After feature extraction, we propose to use SVM to classify
the segments into real and virtual changes. We run SVM 10
times with different training and testing data to avoid any
dependency between the choice of the training data and the
classification results. In Fig. 5, we provide the mean of the 10
repetitions. The degrees of redness and blueness represent the
probability of each segment to be a real change: the higher the
mean value of each segment is, the more probable the segment
to a real change corresponds.
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Fig. 5. Positive (in blue) and negative (in red) change map. The degrees of
blueness and redness represent the probability of each segment to be a real
change.

IV. ACCURACY ASSESSMENT

To assess the accuracy of our change detection results,
we have compared a sub-image of the change map (Fig.
6(a)) to a Ground Truth (GT) map (Fig. 6(b)) that has been
manually derived from the stereo images. We could notice that
only two changes (whose centroids are located approximately
at (1360, 1250) and (1400, 1280)) out of 32 have not been
detected. They correspond actually to 3m height differences
which have been removed during the thresholding step. Also
the changes whose centroids are located at (1275, 1010) and
(1278, 1055) have been detected as one connected component
since their boundaries are separated only by 4 pixels.
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(a) Change detection map.
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(b) Ground Truth (GT) map.

Fig. 6. Change detection results versus GT.

A pixel-to-pixel evaluation of our change detection approach
in terms of confusion matrix, is summarized in Table I where
TP (True Positive) and TN (True Negative) are the numbers of
pixels classified as ”Change” and ”Non-change” by both maps,
respectively, and FP (False Positive) and FN (False Negative)
are the numbers of pixels classified as ”Change” only in our
change detection map or only in the GT one, respectively.

TABLE I

PIXEL-TO-PIXEL EVALUATION OF OUR CHANGE DETECTION ALGORITHM.

Ground truth
Our results Change Non-change

Change 13530 (TP) 1362 (FP)
Non-change 3083 (FN) 622025 (TN)

Based on the quantities computed in Table I, the following
objective metrics ( [4], [11]) were employed to provide a
quantitative assessment of our change detection algorithm:

Branching Factor = FP/TP, (3)

Miss Factor = FN/TP, (4)

Completeness(%) = 100× TP/(TP + FN), (5)

Correctness(%) = 100× TP/(TP + FP), (6)

Quality Percentage(%) = 100× TP/(TP + FN + FP), (7)

Overall Accuracy(%) = 100× (TP + TN)/#pixels. (8)

Each metric mentioned above provides its own quantitative
measure for evaluating the overall performance of the algo-
rithm. The branching and miss factors describe the two types
of potential mistakes (FP and FN) that may occur in the
automatic process. The completeness represents the percentage
of ”Change” pixels which are correctly detected while the
correctness shows the percentage of detected ”Change” pixels
which belong indeed to the ”Change” class. The quality
percentage describes how likely a ”Change” pixel produced
by the automatic approach is true, and is the most stringent
measure of the overall results of the six statistics. The overall
accuracy shows the percentage of correctly classified pixels.
The suggested 3D change detection algorithm shows a branch-
ing factor of 0.1 and a miss factor of slightly poor perfor-
mance (0.22). This indicates that the number of over-classified
”Change” pixels is less than the number of missed ”Change”

pixels. A rate of 81.4% in completeness and a higher rate of
90.8% in correctness have been obtained. This is also due to
the tendency of our algorithm to produce less FP pixels than
FN ones. Finally, the proposed change detection technique
shows a quality percentage of 75.2% and an overall accuracy
of 99.3%, proving its efficiency and relatively high accuracy.

V. CONCLUSIONS AND PERSPECTIVES

This paper suggested an automatic urban area monitoring
technique by extracting height and spatial information from
DSMs generated from two pairs of stereo data acquired at
different epochs. Height changes are computed through DSM
subtraction. Whereas, spatial information is extracted by com-
puting several shape features for each change. Finally, the sep-
aration between real and virtual changes is performed through
SVM-based classification. To provide a quantitative assess-
ment of the developed change detection algorithm, different
common objective metrics such as completeness, correctness,
etc have been computed. The results are globally satisfying and
promising, although some of them could still be improved and
completed. They can be considered as preliminary results for
some higher level urban area monitoring where for instance
a fusion between the multi-spectral data and the DSMs is
considered in the overall change detection process.
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