
896 IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, VOL. 9, NO. 5, SEPTEMBER 2012

Impact of Azimuth Ambiguities on
Interferometric Performance

Michelangelo Villano, Student Member, IEEE, and Gerhard Krieger, Senior Member, IEEE

Abstract—The impact of azimuth ambiguities on interferomet-
ric performance in terms of phase bias and standard deviation
of the interferometric phase is analyzed, resorting to the inter-
ferogram statistics for jointly circular Gaussian processes. The
theoretical results are validated through simulation and compared
with measurements on a TanDEM-X interferogram, affected by
azimuth ambiguities.
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remote sensing, synthetic aperture radar (SAR).

I. INTRODUCTION

A ZIMUTH ambiguities arise in synthetic aperture radar
(SAR) images from finite sampling of the Doppler spec-

trum at the pulse repetition frequency (PRF). Since the spec-
trum repeats at PRF intervals, the signal components outside
this frequency interval fold back into the main part of the
spectrum [1], [2].

The impact of azimuth ambiguities on interferometric per-
formance is usually condensed in a coherence loss component
γAmb,Az [3], given by

γAmb,Az =
1

1 +AASR
(1)

where AASR is the azimuth ambiguity-to-signal ratio. In this
respect, azimuth ambiguities are considered in the same way as
thermal noise. Furthermore, the increase in the AASR caused
by an interferometric antenna beam misalignment and its im-
pact on the standard deviation of the interferometric phase is
considered in [4].

Fig. 1 displays a detail of a TanDEM-X [3] interferogram
acquired over the Franz Josef Land, an archipelago located in
the far north of Russia. The main acquisition parameters are
given in Table I. In the top left-hand part, some sea ice, which
surrounds the islands of the archipelago, can be distinguished.
In this region, an unexpected coherence modulation can be ob-
served, for which an explanation was not clear at the beginning.
Taking a look to the interferometric phase, it can be noticed that
the pattern of the bottom part of the image is somehow repli-
cated in the sea ice region. The relative displacement of such a
replica and the considerable backscatter difference between the
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Fig. 1. Detail of a TanDEM-X interferogram affected by azimuth ambiguities,
acquired over the Franz Josef Land, Russia (approximately 2.8 km × 9.2 km).
(a) Interferometric phase. (b) Magnitude of the complex coherence. The vertical
solid lines have been added to highlight the azimuth cut to which Figs. 5 and 6
refer.

TABLE I
MAIN ACQUISITION PARAMETERS FOR THE

TanDEM-X INTERFEROGRAM OF FIG. 1

two areas suggest that this effect may be due to azimuth ambi-
guities. Therefore, not only are azimuth ambiguities responsible
for a coherence loss component, but they could also determine
a significant phase bias, as well as a coherence modulation.

A much deeper analysis of this phenomenon may be con-
ducted by modeling the interferogram affected by azimuth
ambiguities as the sum of interfering components and deriving
its statistics.
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II. SIMPLE MODEL FOR INTERFEROGRAMS

AFFECTED BY AZIMUTH AMBIGUITIES

Let u[x, y] be a single-look complex SAR image. u[x, y]
can be written as the sum of an ambiguity-free signal m[x, y],
from now on referred to as main signal, and a signal due to
the azimuth ambiguity a[x, y], from now on referred to as
ambiguity signal

u[x, y] = m[x, y] + a[x, y]. (2)

We assume that the in-phase and quadrature components
of m[x, y] are independent identically distributed Gaussian
random variables with mean zero and variance Pm/2, where
Pm is the variance or power of m[x, y]. We also assume that the
in-phase and quadrature components of a[x, y] are independent
identically distributed Gaussian random variables with mean
zero and variance Pa/2, where Pa is the variance or power of
a[x, y]

Pm =E
{
|m[x, y]|2

}
Pa =E

{
|a[x, y]|2

}
. (3)

Furthermore, we assume that m[x, y] and a[x, y] are sta-
tistically independent. As a consequence, the in-phase and
quadrature components of u[x, y] are independent identically
distributed Gaussian random variables with mean zero and vari-
ance (Pm + Pa)/2, where Pm + Pa is the variance or power of
u[x, y].

In an interferometric scenario, both master and slave images,
u1[x, y] and u2[x, y], are affected by azimuth ambiguities

u1[x, y] =m1[x, y] + a1[x, y]

u2[x, y] =m2[x, y] + a2[x, y]. (4)

m1[x, y] and m2[x, y] are characterized by a variance or power
equal to Pm and are in general correlated, being their com-
plex correlation coefficient γm = |γm| exp(jφ0m). a1[x, y] and
a2[x, y] are characterized by a variance or power equal to
Pa and are also in general correlated, being their complex
correlation coefficient γa = |γa| exp(jφ0a). mk[x, y], k = 1, 2,
and ak[x, y], k = 1, 2, are instead uncorrelated.

If an interferogram is formed from u1[x, y] and u2[x, y], four
components, denoted as v1[x, y], v2[x, y], v3[x, y], and v4[x, y],
arise

v[x, y] =u1[x, y]u
∗
2[x, y]

= (m1[x, y] + a1[x, y]) (m2[x, y] + a2[x, y])
∗

=m1[x, y]m
∗
2[x, y] +m1[x, y]a

∗
2[x, y]

+ a1[x, y]m
∗
2[x, y] + a1[x, y]a

∗
2[x, y]

= v1[x, y] + v2[x, y] + v3[x, y] + v4[x, y]. (5)

v1[x, y] is the interferometric contribution formed from the two
main signals, m1[x, y] and m2[x, y], v4[x, y] is the interfer-
ometric contribution formed from the two ambiguity signals,
a1[x, y] and a2[x, y], while v2[x, y] and v3[x, y] are the inter-
ferometric contributions obtained by combining the main and
ambiguity signals.

III. STATISTICAL CHARACTERISATION OF

INTERFEROGRAMS AFFECTED BY

AZIMUTH AMBIGUITIES

The phase bias and the standard deviation of the interfero-
metric phase of an interferogram affected by azimuth ambigu-
ities are analytically derived in the following. The expression
of the joint probability density function (PDF) of magnitude
and phase of the interferogram is recognized based on some
considerations on jointly circular Gaussian processes, while
its parameters are obtained by equating the expression of the
expected value of the complex interferogram with the sum of
the expected values of the four components of (5).

The processes m1[x, y] and m2[x, y] can be assumed to be
jointly circular Gaussian. The processes a1[x, y] and a2[x, y]
can also be assumed to be jointly circular Gaussian. Be-
ing u[x, y] = [u1[x, y], u2[x, y]] a linear functional of jointly
circular Gaussian processes, namely the sum of m[x, y] =
[m1[x, y],m2[x, y]] and a[x, y] = [a1[x, y], a2[x, y]], u1[x, y]
and u2[x, y] are also jointly circular Gaussian [5].

The statistics of SAR interferograms are discussed in [6]
and [7]. Being u1[x, y] and u2[x, y] jointly circular Gaussian
processes, the interferogram v[x, y] can be statistically charac-
terized in terms of a joint PDF of magnitude |v| and phase φ[7]

p|v|,φ (|v|, φ) =
2|v|

πI2 (1− |γ|2) exp
{
2|γ||v| cos(φ− φ0)

I (1− |γ|2)

}

×K0

(
2|v|

I (1− |γ|2)

)
(6)

where K0(·) is the modified Bessel function of order zero.
This joint PDF is characterized by three parameters, namely

I , the geometric mean of the powers of the two complex
processes u1[x, y] and u2[x, y], |γ|, the magnitude of the
complex coherence of the interferogram formed from u1[x, y]
and u2[x, y], and φ0, the expected value of the interferometric
phase of the interferogram formed from u1[x, y] and u2[x, y].
The geometric mean of the powers I can be straightforwardly
evaluated. As the powers of u1[x, y] and u2[x, y] are both equal
to Pm + Pa, it holds

I = Pm + Pa. (7)

The remaining two parameters, |γ| and φ0, will be deter-
mined in the following.

The expected value of v[x, y] can be evaluated by summing
the expected values of its four components. The expected values
of v2[x, y] and v3[x, y] are equal to zero, as v2[x, y] and v3[x, y]
are products of uncorrelated random variables. The complex
expected value E{v[x, y]} is then given by

E {v[x, y]}
= E {v1[x, y]}+ E {v2[x, y]}
+ E {v3[x, y]}+ E {v4[x, y]}

= E {v1[x, y]}+ E {v4[x, y]}
= Pm|γm| exp(jφ0m) + Pa|γa| exp(jφ0a)
= |Pm|γm| exp(jφ0m) + Pa|γa| exp(jφ0a)|
exp (j arg {Pm|γm| exp(jφ0m) + Pa|γa| exp(jφ0a)})

= Pm

√
|γm|2+

(
Pa

Pm

)2

|γa|2+2
Pa

Pm
|γm||γa|cos(φ0a−φ0m)

exp

(
j arg

{
exp(jφ0m) +

Pa

Pm

|γa|
|γm| exp(jφ0a)

})
. (8)
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Fig. 2. Phase bias, coherence magnitude, and standard deviation of the interferometric phase as a function of the difference of the interferometric phases
φ0a − φ0m, for different sets of parameters. The dashed lines represent the magnitude of the complex coherence and the standard deviation of the interferometric
phase in the absence of ambiguities. (a) Pa/Pm = −10 dB, |γm| = 0.8, |γa| = 0.6. (b) Pa/Pm = −5 dB, |γm| = 0.7, |γa| = 0.6. (c) Pa/Pm = 0 dB,
|γm| = 0.6, |γa| = 0.6. (d) Pa/Pm = 5 dB, |γm| = 0.6, |γa| = 0.7.

The expected value of v[x, y] can also be expressed as a
function of the parameters of the joint PDF of (6) as

E {v[x, y]} = I|γ| exp(jφ0) = (Pm + Pa)|γ| exp(jφ0). (9)

The parameters |γ| and φ0 can therefore be obtained by
equating the amplitudes and phases of the expressions given
in (8) and (9), holding

|γ|= 1

1+ Pa

Pm

√
|γm|2+

(
Pa
Pm

)2

|γa|2+2
Pa
Pm

|γm||γa| cos(φ0a−φ0m)

(10)

φ0 = arg

{
exp(jφ0m) +

Pa

Pm

|γa|
|γm| exp(jφ0a)

}
(11)

respectively. It is interesting to notice that, for |γa| = 0, azimuth
ambiguities are only responsible for a coherence loss compo-
nent, exactly the one given in (1).

The phase bias resulting from the presence of the azimuth
ambiguity is thus given by

φbias=φ0 − φ0m=arg

{
1 +

Pa

Pm

|γa|
|γm| exp (j(φ0a − φ0m))

}

=arg

{
1 +

Pa

Pm

|γa|
|γm| cos(φ0a − φ0m)

+j
Pa

Pm

|γa|
|γm| sin(φ0a − φ0m)

}
. (12)

The phase variance instead can be related to the magnitude
of the complex coherence |γ| from (10) by the following
formula [7]:

σφ=

√
π2

3
−π arcsin (|γ|)+arcsin2 (|γ|)−Li2 (|γ|2)

2
(13)

where Li2(·) is Euler’s dilogarithm.
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Fig. 3. Comparison of simulated and theoretical results. The interferometric
phases of the interferogram formed from the main signals and the one formed
from the ambiguity signals are constant and linear, respectively. Pa/Pm =
−5 dB, |γm| = 0.7, |γa| = 0.6. (a) Phase bias. (b) Magnitude of the complex
coherence.

Fig. 2 shows the phase bias, the magnitude of the complex
coherence, and the standard deviation of the interferometric
phase, as a function of the difference of the interferomet-
ric phases φ0a − φ0m, for different values of Pa/Pm, |γm|,
and |γa|.

The theoretical results have also been validated through
simulation. An interferogram affected by the ambiguity has
been generated according to the model of (4) and (5), the in-
terferometric phases of the interferograms v1[x, y] and v4[x, y]
being constant and linear, respectively. Pa/Pm, |γm|, and |γa|
have been set to −5 dB, 0.7, and 0.6, respectively. The theo-
retical phase bias and magnitude of the complex coherence are
superimposed on the simulated ones in Fig. 3, and are in good
agreement.

IV. MAGNITUDE OF THE COMPLEX COHERENCE

OF THE INTERFEROMETRIC CONTRIBUTION

FORMED FROM THE AMBIGUITY SIGNALS

In the following, an expression for the magnitude of the
complex coherence of the interferometric contribution formed
from the ambiguity signals |γa| is derived.

Assuming that the right or the left azimuth ambiguity pre-
dominates over the other one, for each area of the interfero-
gram affected by the ambiguity, an area responsible for the
ambiguity itself can be identified. Let us denote as |γaR| the
magnitude of the complex coherence of the area responsible for
the ambiguity. The magnitudes of the complex coherences |γa|
and |γaR| are equal but for the coherence loss component due
to the signal-to-noise ratio (SNR). Moreover, the SNR of the
ambiguity signal and the SNR of the signal responsible for the

ambiguity are related through the first azimuth ambiguity-to-
signal ratio (FAASR), defined as in

FAASR =

∫ Bp/2

−Bp/2
G2(f + PRF )H2(f)df∫ Bp/2

−Bp/2
G2(f)H2(f)df

(14)

where Bp is the processed Doppler bandwidth, G2(f) is the
two-way antenna power pattern in azimuth, H(f) accounts for
the amplitude weighting of the Doppler spectrum applied in the
processing, and where uniform scene reflectivity is assumed.

The FAASR must not be confused with the AASR. If a scene
is considered, where only a single point target is present, the
SAR image corresponding to this scene will include a main
response and many infinite right and left ambiguities. Always
assuming uniform scene reflectivity, while the AASR is the
ratio of the power of all ambiguities to the power of the main
response, the FAASR is the ratio of the power of the first-order
right or left ambiguity to the power of the main response.

Denoting as SNRR the SNR of the area responsible for the
ambiguity, it holds

|γa| = |γaR|
1

1+SNR−1
R

FAASR−1

1
1+SNR−1

R

= |γaR|
1 + SNRR

FAASR−1 + SNRR
. (15)

V. COMPARISON WITH MEASUREMENTS

ON REAL SAR INTERFEROGRAMS

An ambiguity-free interferogram can be obtained by remov-
ing azimuth ambiguities in both the master and slave images
by means of a Wiener filter [8]. This technique has been ap-
plied to several interferograms affected by azimuth ambiguities,
showing its effectiveness for both point-like and distributed
scatterers. The removal is achieved at the expense of a slight
degradation of the azimuth resolution, which only interests the
areas affected by ambiguities.

The ambiguity-free version of the interferogram of Fig. 1
is provided in Fig. 4. An azimuth cut, highlighted in Figs. 1
and 4 by the vertical solid lines, is analyzed. Fig. 5 shows
the estimated phase bias, obtained by taking the difference
of the interferometric phases of the interferogram affected by
ambiguities and the ambiguity-free one, while Fig. 6 shows the
magnitude of the complex coherence for the two mentioned
interferograms.

In order to show that the observed phase bias and the magni-
tude of the complex coherence are consistent with their theoret-
ical expressions, given in (12) and (10), respectively, Pa/Pm,
|γm|, and |γa| have to be estimated for the images under
analysis. The ratio Pa/Pm can be estimated as explained in [8].
In the areas of the image where the effects of ambiguities are
particularly visible, this ratio is approximately equal to 0 dB.
|γm| can be retrieved from the magnitude of the complex coher-
ence of the ambiguity-free interferogram (right portion of solid
line in Fig. 6) and is equal to |γm| = 0.45. |γa| can be instead
estimated using (15), where |γaR| = 0.88 (left portion of solid
line in Fig. 6), SNRR = 23.5 dB (from system performance
analysis), and FAASR = −22.73 dB, obtaining |γa| = 0.48.
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Fig. 4. Ambiguity-free version of the interferogram of Fig. 1. (a) Interfero-
metric phase. (b) Magnitude of the complex coherence. The vertical solid lines
have been added to highlight the azimuth cut to which Figs. 5 and 6 refer.

Fig. 5. Estimated phase bias for the azimuth cut highlighted by the solid line
in Figs. 1 and 4.

Fig. 6. Magnitude of the complex coherence for the azimuth cut highlighted
by the solid line in Fig. 1 (dotted) and Fig. 4 (solid).

Fig. 7 shows the phase bias, the magnitude of the complex
coherence, and the standard deviation of the interferometric
phase as a function of φ0a − φ0m, for such values of Pa/Pm,
|γm|, and |γa|. It can be noticed that the predicted range of
phase bias is consistent with Fig. 5, as well as the predicted
range of the magnitude of the complex coherence is consistent
with the dotted line in Fig. 6.

VI. CONCLUSION

Azimuth ambiguities affect the interferometric performance,
modifying the interferogram statistics. As a consequence, a
phase bias, dependent on the difference of the interferometric

Fig. 7. Phase bias, magnitude of the complex coherence, and standard de-
viation of the interferometric phase as a function of the difference of the
interferometric phases φ0a − φ0m, for different sets of parameters. The dashed
lines represent the magnitude of the complex coherence and the standard
deviation of the interferometric phase in the absence of ambiguities. Pa/Pm =
0 dB, |γm| = 0.45, |γa| = 0.48.

phases of the interferogram of ambiguity and main signals, is
introduced. As far as the magnitude of the complex coherence
is concerned, it decreases as the absolute value of the difference
of the interferometric phases increases. For high values of
Pa/Pm, the coherence can also exceed the magnitude of the
complex coherence in the absence of ambiguities. This behavior
is consistent with observations on real SAR interferograms.

REFERENCES

[1] F. K. Li and W. T. K. Johnson, “Ambiguities in spaceborne synthetic
aperture radar systems,” IEEE Trans. Aerosp. Electron. Syst., vol. 19, no. 3,
pp. 389–397, May 1983.

[2] A. Freeman, W. T. K. Johnson, B. Huneycutt, R. Jordan, S. Hensley,
P. Siqueira, and J. Curlander, “The “Myth” of the minimum SAR antenna
area constraint,” IEEE Trans. Geosci. Remote Sens., vol. 38, no. 1, pp. 320–
324, Jan. 2000.

[3] G. Krieger, A. Moreira, H. Fiedler, I. Hajnsek, M. Werner, M. Younis, and
M. Zink, “TanDEM-X: A satellite formation for high-resolution SAR inter-
ferometry,” IEEE Trans. Geosci. Remote Sens., vol. 45, no. 11, pp. 3317–
3341, Nov. 2007.

[4] D. Geudtner, M. Zink, C. Gierull, and S. Shaffer, “Interferometric align-
ment of the X-SAR antenna system on the space shuttle radar topography
mission,” IEEE Trans. Geosci. Remote Sens., vol. 40, no. 5, pp. 995–1006,
May 2002.

[5] R. G. Gallager, Circularly-Symmetric Gaussian Random Vectors. [Online].
Available: http://www.rle.mit.edu/rgallager/documents/CircSymGauss.pdf

[6] D. Just and R. Bamler, “Phase statistics of interferograms with applications
to synthetic aperture radar,” Appl. Opt., vol. 33, no. 20, pp. 4361–4368,
1994.

[7] R. Bamler and P. Hartl, “Synthetic aperture radar interferometry,” Inv.
Probl., vol. 14, no. 4, pp. R1–R54, Feb. 1998.

[8] A. Monti Guarnieri, “Adaptive removal of azimuth ambiguities in SAR
images,” IEEE Trans. Geosci. Remote Sens., vol. 43, no. 3, pp. 625–633,
Mar. 2005.


