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ABSTRACT:

The practical use of very high resolution visible and nedirared (VNIR) data is still growing (IKONOS, Quickbird, GEye-1, etc.)
but for classification purposes the number of bands is laiitecomparison to full spectral imaging. These limitatiomsy lead to the
confusion of materials such as different roofs, pavementg]s, etc. and therefore may provide wrong interpretatimhuse of clas-
sification products. Employment of hyperspectral data atlar solution, but their low spatial resolution (compgrin multispectral
data) restrict their usage for many applications. Anothrgrovement can be achieved by fusion approaches of mudtisgata since
this may increase the quality of scene classification. hatiégn of Synthetic Aperture Radar (SAR) and optical datevicgely per-

formed for automatic classification, interpretation, ahdrige detection. In this paper we present an approach fphigi resolution
SAR and multispectral data fusion for automatic classificein urban areas. Single polarization TerraSAR-X (Spgittimode) and
multispectral data are integrated using the INFOFUSE freorle, consisting of feature extraction (information figgiounsupervised
clustering (data representation on a finite domain and dsinaality reduction), and data aggregation (Bayesian aralenetwork).

This framework allows a relevant way of multisource data bimration following consensus theory. The classificationasinfluenced
by the limitations of dimensionality, and the calculatiamplexity primarily depends on the step of dimensionakggiuction. Fusion
of single polarization TerraSAR-X, WorldView-2 (VNIR or lfiset), and Digital Surface Model (DSM) data allow for diféat types
of urban objects to be classified into predefined classesterfest with increased accuracy. The comparison to claasific results
of WorldView-2 multispectral data (8 spectral bands) isviled and the numerical evaluation of the method in comparte other

established methods illustrates the advantage in theifttasi®n accuracy for many classes such as buildings, logetaion, sport
objects, forest, roads, rail roads, etc.

1 INTRODUCTION a neural network classification enhanced by preprocessgidg a

postprocessing. Employment of 2 SAR images, 6 Landsat& spe

AVAILABILITY of high and very high spatial resolution mukti  tral images, and 6 Landsat-7 spectral images resulted icldise

sensory data opens new perspectives for processing, litioagn sification into 5 classes (City center, Residential arearSpbuild-

and decision making in urban areas containing a variety of obings, Water, Vegetation) with Kappa coefficient equal t80.9

jects and structures. Nevertheless, high resolution datapire-

sented by optical sensors with limited spectral resolutiGor ~ Fauvel et. al. (2006) applied decision fusion (fuzzy detisule)

example, the well known satellites providing high resalntilata ~ for classification of urban area. The overall accuracy dfsifeca-

(IKONOS, Quickbird, GeoEye-1) acquire multispectral datdy ~ tion for 6 classes (Large buildings, Houses, Large roadsegt,

in VNIR range, except the new WorldView-2 satellite. Limite Open areas, and Shadows) is 75.7 %.

spectral range covered by the multispectral sensors ddeal-no

low to obtain high accuracy of thematic classification aslasl

relatively high number of classes. Employment of hyperspéc

data is not a solution because of the low spatial resolutiomost

spaceborne sensors. Data fusion is employed to overcome thinstead of continuous representation of data, a discretesen-

limitation on spatial resolution. Different modalitieschdiffer- ~ tation of the data on a finite domain is employed. Discreteerep

ent types of digital data (e.g. multispectral, SAR, DigiEtve- sentation is motivated by the fact that integration of incoensu-

tion Model (DEM), Geographic information system (GIS),tc ~ rable multisensory data with different nature and statstould

maps, etc.) allow significant increase of the accuracy of-aut be difficult using conventional statistical methods. Toroeene

matic recognition and interpretation for urban areas 0n|$h'e this d|ﬂ|cu|ty, a kind of “discretization” of continuous this em-

case when a correct fusion method0|ogy is used. ployed resulting in data with several pOSSible states (mgltl-
nomial distribution, see (Aksoy et al., 2005)). Neural ety

A fusion methodology should properly deal with differerdte- Bayesian network, or discrete graphical models are emglaye

tics of input incommensurable multisensory data (e.g.captind  integrate the multisensory data with discrete states.

SAR). Several fusion methodologies following consensesity

(Benediktsson et al., 1997) were developed and successigtl  The fusion framework consists of three main steps:

(Pacifici et al., 2008, Fauvel et al., 2006, Rottensteinealgt

2004) but still the number of thematic classes is low.

2 PROPOSED FUSION MODEL

1. Information fission: feature extraction from input data.
Pacifici et. al. (2008) developed the best fusion algoritiom f The aim of this step is to extract as much as possible in-
2007 GRSS Data Fusion Contest. The algorithm is based on  formation from input data (Palubinskas and Datcu, 2008).



These features are expected to characterize differenéprop

is also used for textural feature extraction and for praxgdipec-

ties of structures and objects separately in each dataesourctral information on the objects of a scene. In our experin@&st

After feature extraction a large amount of redundant infor-

mation is obtained.

. Feature representation on a finite domain.The aim of this
stage is to represent a feature on a finite predefined domai
A kind of feature value range “quantization” is made. This

bor features (Daugman, 1988) were calculated on TSX data and
on Red color channel from WV-2 data. A bank of gabor wavelets
consists of 48 filters (6 orientations, ¢r /6, 7/3,7/2, 27, 37),

4. different periods of filter’s sine component /4, /2, %w, ),

and 2 different sigma values (= 1, 4)), recursive implementa-

representation can be made using several ways. Unsupetion of Gabor filtering is employed (Young et al., 2002).

vised clustering allows to make this task. Here, objecth wit
similar properties are grouped and the feature dimensiona
ity is reduced. Unsupervised clusteringrfieans, entropy
basedk-means (Palubinskas, 1999)) is used.

. Fusion and classification of coded featuress performed
using a neural network (multilayer perceptron). Trainifig o

[The number of clusters for feature representation on fiette/as
equal to 50 (used for representation of all features).

2.3 Fusion strategies and classification

the neural network is performed according to superviselyOne of the main interests is to compare the influence of data fu
selected classes and training areas. Configured neural negion for classification accuracy, and to compare fusion giitgle
work is used for fusion and classification of clustered inputsensor classification results. Availability of WV-2 mujiéctral

features.

2.1 Employed data

The optical and SAR data were orthorectified (SRTM 30m DEM)
and distortions introduced by terrain are decreased. @uttio
fied WorldView-2 (WV-2) and SpotLight Level-1B Product Tafr
SAR-X (TSX) data were used. Detailed description of empioye

data is given in Table 1. WV-2 multispectral data were pan- 4.
sharpened by the General Fusion Framework method (Palubin-5.

skas and Reinartz, 2011). Registration of optical and redta
was made in ENVI using manual selection of control points. In
more complicated cases other registration methods shewdb
ployed, e.g. (Suri and Reinartz, 2010). Detailed DigitaifSce

data allows to compare fusion of multisensory data to diassi
tion result of VNIR or WV-2 multispectral data. Thereforbet
following combinations of multisensory and single-sendata
can be created:

1.
2.
3.

WV-2 VNIR (single sensor, 4 features (spectral bands)),
WV-2 (single sensor, 8 features (spectral bands)),

VNIR + TSX Texture + Optical Texture,

WV-2 + DSM (9 features),

TSX Texture + Optical Texture + DSM (97 features),
WV-2 + TSX Texture + Optical Texture (104 features),
WV-2 + TSX Texture + Optical Texture + DSM (105 fea-
tures).

6.
7.

Model (DSM) of urban scene is generated using the Semiglobal

Matching algorithm if Worldview-2 stereo pairs or tripletsth
small convergence angles (less then 20 degrees) are dwailab

VNIR data were taken from WV-2 multispectral image (bands
2,3,5,6). This range was taken since most of the very highres
lution spaceborne sensors (e.g. IKONOS, Quickbird, GedgEye

Table 1: Parameters of the WorldView-2 and TerraSAR-X dataetc.) acquire multispectral data in VNIR range.

for the test scene

Parameter WorldView-2 TerraSAR-X
Product Standard  Im- EEC

agery

Multispectral, .
Sensor mode PAN Spotlight HS
Orbit Descending Descending
Acquisition time | 10 July 2010,| 7 June 2008,
(UTC) 10:30:17 05:17:48
Look angle 5.2, Left 49.2218, Right
Ground  pixel| = 5 0.5 % 0.5
size, m
Polarization - Single, VV
Bits per pixel 16 16

2.2 Feature extraction

Specific feature types should be extracted to make exhgudtin
scription of data. For example, a multispectral image candeel
for extraction of spectral information, Difference Vegéia In-
dex (DVI) indexes, while TSX data is more suitable for exti@t
of texture features (Co-occurence, Gabor, Laws, etc.).sbore
data sources (e.g. DEM) feature extraction is not carriecnd
the data directly represented on the domain. The cardimafit
the domain should be appropriately defined for differentufiezs
(multispectral, textural, DEM, etc.).

TSX image is employed for characterization of objects sierfa
structure and textural properties (e.g. grass land vestbdill
field, bare soil versus construction sites, etc.). Multisfze data

Altogether, 23 classes were defined: 1. Water; 2. ForesgJre
3. Grass/Low vegetation; 4. Bare soil; 5. Construction; $ite
Swimming pool; 7. Asphalt road; 8. Concrete road; 9. Fodtbal
field; 10. Tennis field; 11. Green house; 12. Rail road; 13.
Tram line; 14. Cemetery; 15. Parking/car; 16. Shadow; 17.
Red roofing tiles; 18. Grey roofing tiles; 19. Dark roofinggile
20. Roofing concrete; 21. Vegetation roof; 22. Zinc roof; 23.
Roofing copper.

Selection of training and test regions was made manuallgrdec
ing to available ground truth data. It should be noted that th
validated ground truth is limited by the size (e.g. vectaadan
classes 4, 5, 6, 11, 17-23 is available only for a small nurober
objects and buildings). The ground truth for the area under i
vestigation was proofed by the ATKIS vector map provided by
Bavarian State Agency for Surveying and Geoinformatiom¢La
desamt fur Vermessung und Geoinformation). Vector datden
materials available in the scene was created and providé&t.by
Wieke Heldens (Heldens et al., 2009).

3 RESULTS AND DISCUSSION

Table 2 presents results for fusion and classification using
tisensory data as well as for single sensors. Comparisonaf t
other methods: Maximum Likelihood (ML) (not following con-
sensus theory) and Neural Network (NN) is also given for com-
parison. Neural Network employs 1 hidden layer, 40 neurons f
97, 104, or 105 features, 8 neurons for 9 features. INFOFUSE
is based on Neural Network (1 hidden layer, 40 neurons for 97,



104, or 105 features, 9 neurons for 8 features), 50 clusters f culty to obtain very high classification accuracy for the cfpe
each featurek-means clustering was employed. For single sen-cally defined classes of buildings with different roofing eratls
sor data (VNIR, WV-2, WV-2+DSM) fusion and classification (classes: 18. Grey roofing tiles and 19. Dark roofing tiles).
using INFOFUSE 100 clusters were used for each feature. The

ML was run in the ENVI software.

Fusion and classification results for different combinadiof the

data and features as well as classification using singl®sdata § —
are given. The best accuracy of the classification provigedib
FOFUSE and NN methods on the combination of the multispec-
tral data, Gabor texture features are acquired both on teah S 8
optical band and the DSM data. g
Table 2: Classification accuracy using different methodetioer .S 3
with the proposed approach. OVA — overall accuracy, Kappa —’Uﬁ)
Kohen's Kappa. Best result is marked in bold S S
[Method  |Employed features | OVA, % | Kappa] é S
ML VNIR (4) 70.73 |0.6846 2
ML WV-2 (8) 77.11 |0.7530 3 o
ML VNIR+Texture (100) 7211 |0.6975 ¢ ML
ML W\-2+DSM (9) 85.48 | 0.8409 o NN
ML Texture+DSM (97) 60.57 |0.5666 o © INFOFUSE
ML WV-2+Texture (104) 81.42 |0.7932 FTTTrTrrTrrT T T T T T T i TTod
ML WV-2+Texture+DSM (105)[ 82.19 | 0.8019 5 10 15 20
NN VNIR (4) 68.59 ]0.6600 Class number
NN WV-2 (8) 73.88 |0.7182 Figure 1: Class test accuracy for the WV-2+TSX Texture-+Cti
NN VNIR+Texture (100) 75.29 |0.7316 Texture+DSM data fusion and classification using the ML, NN,
NN WV-2+DSM (9) 85.65 |0.8426 and INFOFUSE
NN Texture+DSM (97) 60.86 |0.5643 Subscenes of a classification map (INFOFUSE; WV-2 multispec
NN W\-2+Texture (104) 82.64 10.8076 tral+TSX Texture+Optical Texture+DSM) are presented ig-Fi
NN WV-2+Texture+DSM (105) | 87.06 | 0.8566
ures 2, 3, and 4.
INFOFUSE | VNIR (4) 70.36 |0.6779
INFOFUSE | WV-2 (8) 71.90 |0.6957 Table 3 illustrates influence of a particular feature or eeffisr
INFOFUSE | VNIR+Texture (100) 77.01 |0.7502 proper separation of classes with similar spectral or texfrop-
INFOFUSE | WV-2+DSM (9) 75.06 | 0.7383 erties according to the fusion and classification strategy.
INFOFUSE | Texture+DSM (97) 71.86 |0.6906 . I )
INFOFUSE | WV-2+Texture (104) 8486 108358 '(I:lzt:;eei. Influence of data sources for classification of paldr
INFOFUSE | WV-2+Texture+DSM (105)| 90.11 | 0.8907 Sensor or feature
Class 1 Class 2 influence
Feature representation on a finite d_oma_un allows to (_:onvert I "Road Building DSM
commensurable features and data with different statlgtioper- Rail toad/Tram
ties and distributions into one type of distribution (e.qultimom- Road TSX Texture
inal distribution (Aksoy et al., 2005)). Fusion of multisemy rogd
data using INFOFUSE based on a neural network (OVA=90.1092| Rail road Tramroad | TSXTexture
Kappa=0.8907) allowed to obtain higher accuracy compaong | Bare soil Construction site| TSX Texture
fusion and classification results obtained by the neurabort Football field Grass/Low vege| TSX  Texture,

with the same structure (OVA=87.0697, Kappa=0.8566). &hes

tation

Multispectral

high accuracies of classification can be explained that #te v
idated ground truth is available only for limited small ssex

Parking/car

Road

Texture on opti-

objects (e.g. several buildings). Therefore in practicaviig
ground truth for larger area) the accuracy is expected tes= |

Low accuracies of the ML classification method may be caused

cal data
Grass/Low vege-
Cemetery tation TSX Texture
TSX Texture,

Green house

Building

Multispectral

that the ML classifier can not efficiently deal with differedis-
tributions of the data and features, or the multisensor datat
classified in the way of consensus classification (Benesbkigt
al., 1997). Low accuracy for classification of single soule¢a

4 CONCLUSIONS

by the INFOFUSE method (WV-2, 8 features) as well as fusion ofin this paper we present results on high resolution mulsisgn
WV-2+DSM data (9 features) can be caused since the size of theata fusion for classification. The developed method fadloan-

finite domain (i.e. the number of clusters) is low. Therefotess
of information during clustering influences the accuracypar-
ing to the methods dealing with original 11-bit single saudata.

Figure 1 illustrates classification accuracy for the deficladses.
Classification results (Table 2 and Figure 1) illustrate difé-

sensus theory rules for multisensory data fusion and alkows
fuse and classify input data (Multispectral, SAR, and DSMD i
extended number of classes.

The data classification is not influenced by the limitatiofidio
mensionality and the calculation complexity primarily dads
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Figure 2: A region of the classification map (INFOFUSE): (ejlMe range multispectral image (bands 5,3,2), (b) fusind classifi-
cation by INFOFUSE (this region contains several of the 28ss)
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Figure 3: A region of the classification map (INFOFUSE): (s)jble range multispectral image (bands 5,3,2), (b) fusiod classifi-

cation by INFOFUSE (this region contains several of the 28s#s)

on the step of feature representation using unsupervisestect  statistics. Separate feature processing and representatia fi-
ing. Representation of input features on a finite domainaadlo nite discrete domain allows to reduce memory size, storagg,
to properly employ multisensory data with different natarel ~ processor requirements. Employing WV-2 multispectratrde
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Figure 4: A region of the classification map (INFOFUSE): (ejlMe range multispectral image (bands 5,3,2), (b) fusind classifi-
cation by INFOFUSE (this region contains several of the 23s#s)
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