
1

Service Interoperability on Context Level in
Ubiquitous Computing Environments

Thomas Strang
�

, Claudia Linnhoff-Popien
�

�

German Aerospace Center (DLR)
�

Ludwig-Maximilians-University Munich (LMU)
Institute for Communikations and Navigation Institute for Computer Science

Muenchener Str. 20 Oettingenstr. 67
D-82230 Wessling/Oberpfaffenhofen, Germany D-80538 Munich, Germany

Email: thomas.strang@dlr.de Email: linnhoff@informatik.uni-muenchen.de

ABSTRACT

Within distributed systems, interoperability is a key feature enabling
the interaction between distributed components. This paper elabora-
tes several approaches of achieving interoperability on different levels
with a focus on service interoperability. The analysis of existing ap-
proaches motivates the introduction of the context level as a new level
of service interoperability. It is shown how context relates to interope-
rability and why it is useful to deal with contextual service interopera-
bility on a separate level. In particular, ubiquitous computing systems
benefit from a procedure called dynamic context association, which
supports service provider and service user in gaining access to diverse
and rapidly changing context information. A new XML based Context
Ontology Language (CoOL) which specifies a common understanding
of the relations between services and context models is outlined.

Keywords: Interoperability, Context Awareness, Ubiquitous Com-
puting, Context Ontology Language

I. INTRODUCTION

Modern IT infrastructures are designed following the prin-
ciple of distributed systems currently, where a set of individu-
al computers are connected via network. In this way they are
available as a coherent system for users and different applica-
tions [1]. One of the most important properties of distributed
systems is the cooperation of different components to achieve a
common aim. It is especially remarkable, that the differences of
the participating components with respect to hardware, network
or software, as well as the kind of communication between the
components, are adapted by the system and hence, hidden from
the user. By doing so, users and applications are able to interact
in a consistent and uniform way within a distributed system.

Any cooperation requires a common understanding of the co-
operating components about the data exchanged and the ser-
vices provided. Thereby the so called interoperability between
two or more components is guaranteed by applying a common
specification. Wegner [2] defines interoperability as the “ability
of two or more software components to cooperate despite dif-
ferences in language, interface, and execution platform”. But
as we will show in section II, this is a very general definition
of interoperability. Within the past 20 years the issue of inter-
operability has been handled on several levels, but the proposed
solutions are not able to fulfill all of the requirements arised.
Particularly the context of an application or service is covered
imperfectly in existing interoperability considerations, which is
our motivation of introducing a new context level in section III.

In this section we introduce the terminology used by us to de-
scribe the context, how information regarding the context may
be sensed and processed and why particularly Ubiquitous Com-
puting environments benefit from taking context into account.
Contextual service interoperability is reviewed from two diffe-
rent perspectives, compatibility and substitutability, in section
IV. It is motivated, why it is necessary to have a context ontolo-
gy language to specify a common understanding of the relations
between services and context models, before we conclude our
work in section V with a summary and an outlook.

II. INTEROPERABILITY IN DISTRIBUTED SYSTEMS

Interoperability is an objective addressed very early during
the design, development and enhancement of distributed sy-
stems, and requires usually some kind of middleware or plat-
form during runtime. Interoperability disburdens the develop-
ment with respect to the reusability of components, which are
usually developed at different places and times by different per-
sons.

Already at the beginning of the evolution away from centrali-
zed approaches towards distributed systems consisting of a net-
work of connected powerful personal computers in the middle
of the 80’s, the first step of the ladder of interoperability evoluti-
on had been climbed with the introduction of the concept of the
Remote Procedure Call (RPC). An RPC allows to make a call to
a procedure which is located on another machine than the cal-
ler instance by keeping this mechanism itself transparent. Any
input parameter of a function is serialized (marshalling), any
output or return parameter of a function call is deserialized (un-
marshalling) by the platform providing the RPC functionality.
The necessary routines and formats (e.g. parameter encoding
rules) have been specified and published, enabling the interope-
rability of hardware components of different hardware vendors
(plattform interoperability).

At the end of the 80’s the next step on the ladder of in-
teroperability evolution was climbed with CORBA’s Interface
Definition Language (IDL). By the combination of distributed
technologies as an instrument of the abstraction from the com-
munication layers and the object orientation as the concept of
encapsulation and reusability it could be achieved, that applica-
tions, which are developed in different programming languages,
running on unequal hosts and operating systems using different



2

network protocols, are interoparabel to each other (program-
ming language interoperability).

Platform Interoperability
(RPC)

Programming Language Interoperability
(IDL)

Service Interoperability

Signature
Level

Protocol
Level

Semantic
Level

Fig. 1
CLASSIC LEVELS OF INTEROPERABILITY

Research on the issue of interoperability has been further in-
tensified in the 90’s and has been honed particularly on the level
of applications and services. In literature, service interoperabi-
lity is usually subclassified to signature level, protocol level and
semantic level [3], [4], [5] (see also Fig. 1):

� The syntax of the interface of any service is described on
the signature level. This encloses usually the name of any
operation as well as type and sequence of any parameter
of the interfaces. Popular languages for interface specifi-
cation are CORBA’s Interface Definition Language (IDL)
or the Web Service’s Web Service Definition Language
(WSDL) [6]. The standardisation of the mechanisms to en-
sure interoperability on the signature level benefit from the
greatest progress at the time being.

� Interoperability on the protocol level is aspired by defini-
tion of the relative order, in which the methods of a ser-
vice are called, respectively in which a service calls the
methods of another service on his part, as well as any
blocking conditions. Whereas the first ideas on interope-
rability on the protocol level have been published alrea-
dy 1997 by Yellin and Strom [7], appropriate approaches
currently gaining a renaissance by the term Web Service
Choreography Interface (WSCI) [8]. Also on the protocol
level can be seen access rules, defining the conditions of
authorized service access [9]. A comprehensive analysis
of the protocol level can be found for instance in [10].

� The problem of a divergent understanding and interpreta-
tion is attempted on the semantic level, because the infor-
mation regarding the semantic of a component is usually
not covered by any interface or protocol description. Hei-
ler presented in [3] the sample, that according to a stu-
dy “the probability that two database designers, even do-
main experts, will chose the same element names for the
same data is only between seven and eighteen percent”.
Often the developer and the user of a component have di-
vergent views of the possible fields of application and the
comprehension of the component’s services. Thus, an on-
tology [11] is required, which tries to specify a common
understanding by only using a defined terminology for de-
scribing the semantic meaning. There are still many open
questions in the semantic level. XML based languages li-
ke DAML+OIL [12] or its successor DAML+S [13], [14],
both designed in the framework of the Semantic Web, may
be capable to fulfill some of the requirements of that level.
A comprehensive list of publications regarding the seman-

tic level can be found at [15].
The next sections will discuss, to what extend specifications

on a fourth level, the context level, are advantageous and valua-
ble to describe the interoperability of components (with a focus
on services).

III. CONTEXT LEVEL

After having done a deep inspection of a wide range of past
and current research publications and proposals we arrived at
the conclusion, that when considering service interoperability
at signature, protocol and semantic level, the context is covered
imperfectly. Already S. Heiler stated in [3] that “interesting se-
mantic information is context-dependent”. But information re-
garding the context are considered on the semantic level inade-
quately [10], because even if on the semantic level the (internal)
behaviour of a service can be described for instance by the use
of pre/post conditions [16], [13] or abstract type frameworks
[17], the relation to the (external) situation is usually not cover-
ed in literature dealing with interoperability. Thus we propose
to bundle reflections with respect to the context in its own layer,
the so called context level, (see also Fig. 2).

Service Interoperability

Signature
Level

Protocol
Level

Semantic
Level

Context
Level

Fig. 2
EXTENDED LEVEL OF SERVICE INTEROPERABILITY

Because of the fact that the terms context and situation in
current publications is used in various ways it is necessary to
define the terminology used by us:

� A context information is any information which can be
used to characterize the state of an entity concerning a spe-
cific aspect.

� An entity is a person, a place or in general an object.
� An aspect is a classification, symbol- or value-range, who-

se subsets are a superset of all reachable states.
� A context is the set of all context information characteri-

zing the entities relevant for a specific task in their relevant
aspects.

� An entity is relevant for a specific task, if its state is cha-
racterized at least conceirning one relevant aspect.

� An aspect is relevant, if the state with respect to this aspect
is accessed during a specific task or the state has any kind
of influence on the task.

� A system is context aware, if it uses any kind of context
information before or during service provisioning.

� A situation is the set of all known context information.
Our definition of the terminology is in the first items close to

the one given by Dey [18]. Compared to Dey, we try to be more
concrete when using the term relevance by distinguish between
an entity being relevant or an aspect being relevant. The defi-
nitions above differ from most other definitions of context (e.g.
[18], [19], [20]) by introducing the terminology of an aspect.
Think of an aspect primarily as an axis of discrete or continous
values, where a concrete context information is an instance of
that aspect, where the state of an entity is characterized “softly”



3

by one or more elements of the allowed value range. For instan-
ce if the aspect is based on continous values like an interval of
real numbers, a valid context information with respect to that
aspect may be a probability density function (PDF) [21]. For
each single entity, the relation between our definition of context
and multiple aspects fits Couderc’s image of a “kind of cursor
in a multi-dimensional information space” [22], [23]. Figure 3
shows an example of the usage of the terminology introduced
above, where a specific context information (geographical posi-
tion) with respect to a specific aspect (Gauss-Krüger coordina-
tes) characterizing a specific entity (mobile phone) is expressed
in an XML instance document.

<instance
xmlns="http://demo.heywow.com/schema/cool"
xmlns:a="http://demo.heywow.com/schema/aspects"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<contextInformation>
<entity system="urn:phonenumber">

+49-179-1234567
</entity>
<characterizedBy>

<aspect name="GaussKruegerCoordinate">
<observedState xsi:type="a:o2GaussKruegerType">
367032533074

</observedState>
<units>10m</units>

</aspect>
<certaintyOfObserver>90<certaintyOfObserver>

</characterizedBy>
</contextInformation>

</instance>

Fig. 3
EXAMPLE OF A CONTEXT INFORMATION INSTANCE DOCUMENT

According to the definition above, the situation of a service is
the set of all known context information being available before
or during a service’s execution. Under these circumstances it is
irrelevant, whether the context information is provided by the
service itself, the service provider or any other element of the
infrastructure. Here we have an important distinctive feature to
several approaches of the semantic level, where merely access
is given to the internal state of an object, especially if using
pre/post conditions [10]. We are currently designing and imple-
menting a system which allows one to associate context infor-
mation at runtime dynamically to any object of interest. In our
system context observers are responsible for acquiring sensor
data, as well as processing and cultivating that data to represent
context information. Context information are associated to real
objects by shadow objects (see also Fig. 4).

A shadow object is a representative of an entity which may,
but does not require to have a network accessible object instan-
ce. An example: If the object is a thermometer, the associa-
ted shadow object contains context information regarding some
temperature aspect, although the thermometer itself may not ha-
ve any electronic interface. It is up to the assigned context ob-
server how to obtain the context information, for instance by
periodically requesting this information from a human obser-
ver (what would be obviously an extreme case). This example
shows that a context observer instance is strongly coupled to a
context information instance, which characterizes a specific en-
tity (thermometer), represented by an associated shadow object,
with respect to a specifc aspect (temperature).

Sensor
Data

Context
Observer

Context
Information

Shadow
Object

ObjObject

A

B

C

Fig. 4
ASSOCIATION OF CONTEXT INFORMATION VIA SHADOW

OBJEKTS

If an entity is already a network accessible object (e.g. a mo-
bile phone), access to the object’s attributes like its call-state
(on-hook or off-hook) is given by the object’s interface and
service endpoint. By accordingly integrating the procedure into
the service platform (for instance by setting up an intermediate
SOAP node [24] with a router like acting role), access to con-
text information may be given as like as to additional attributes
of the real object, without the requirement to adapt the object
itself [25].

The separation between context information and its use in the
service environment in the sense of the observer pattern [26]
eases the integration of Ubiquitous Computing systems which
have become very popular at the beginning of the new milleni-
um [27]. The Ubiquitous Computing paradigm represents basi-
cally three new facets of using distributed systems:

1) Smart Devices
2) Spontaneous or Ad-Hoc Networking
3) Context Aware Services
Here the context level is not only important for the last item.

Also in the area of spontaneous networking there is a strong
benefit from being able to specify which aspects of the current
network situation are relevant and thus must be taken into ac-
count in the sense of ad-hoc configurations [28]. Smart devices,
especially small mobile connected devices like mobile phones,
personal digital assistants (PDAs) or simple sensor modules
(e.g. thermometers, noise sensors etc.) are on the one hand able
to provide important context information about relevant enti-
ties (e.g. persons, rooms etc.). On the other hand, in particular
small devices with their restricted input and output facilities as
well as their resource limitations benefit from information gai-
ned from the environment of usage (e.g. the current geographic
position), because this data is not required to be entered by the
user. The context level uses context information which is acqui-
red from sensors in Ubiquitous Computing environments, and
which characterize the state of relevant entities.

An interesting piece of context information is particularly ob-
tained from the mobility of the devices in Ubiquitous Compu-
ting systems: The spatial position in relation to a given refe-
rence system (e.g. WGS84). By mapping to symbolic informa-
tion (“building A, room 008”) and linking to relational infor-
mation (“in the vicinity to”) a position information becomes a



4

location. Services accessing a context information representing
the current location are titled location based services (LBS). But
there is more to context than location [29]. Another very im-
portant kind of context information is obtained from time. Ob-
viously a service may deliver very different results depending
on execution before, during or after a certain point or period in
time. Furthermore any information acquired by a sensor (e.g.
position, time, temperature, intensity of light, speed etc.) may
serve as context information. Within the so called primary con-
text information, access is given to the raw data of the respective
reference system (WGS84 coordinate, universal time, tempera-
ture in degrees Celsius, intensity of light in Lux, speed in km/h
etc.). In contrast the raw data is processed and cultivated in one
or more steps before representing secondary context informati-
on. From this consideration it becomes obvious, that the value
range of an aspect of a primary context information always is
the reference system itself. Compared to this, the definition of
a classification, symbol- or value range for an aspect is coer-
cively required to designate a closed set of possible states of a
secondary context information. An example: The set

���������
	��
���������������
� ������� �"!$#�%'&�(*)
defines the value range (set of possible states) of a prima-

ry context information representing the state of a temperature
sensor. In contrast, the set

� �������,+��-�
�.��/�0 �1�32�465879�;:,<�=?>@)
defines the value range of a secondary context information

representing the state of another temperature aspect. Indeed it
is up to the responsible context observer to decide which state
the context information represents, for instance by performing
a threshold decision. A context sensor can be seen as a functionA

, fusing data from B sources and assigning a valid state from
the value range

�
of a certain aspect to a specific instance of a

context information:

ADCFE3G B E <85��H�JILKNMOK BQPSR�TVU C �V�FW P 2XM
�ZY�W[�����;\^]_W[K`I
Here

W
is the degree of certainty a context sensor assures from

itself to be able to assign the correct state of that context infor-
mation (soft determination).

It is important to specify within the definition of an aspect
which state is caused by what conditions, but neither, how the
necessary information are obtained (i.e. which sensors are ac-
cessed, definition range T ), nor how the functions

A
works.

A subclass of context information are the so called highlevel
quality of service (HL-QoS). Although the naming may be so-
mewhat misleading, HL-QoS and their integrative potential in
service environments are dealt with in several publications (i.a.
in [30], [31], [32]). Highlevel QoS are in general non-functional
parameters characterizing the performance, reliability, availa-
blility or security of a service. Based on these parameters it
is possible for instance within a Web Service Level Agreement
(WSLA) [33] to specify which action in case of over- or unders-
hooting a boundary value agreed on in a WSLA document has
to be taken by whom. The language elements used are partly
very well capable of defining aspects and relevance conditions.

But the overall concept of WSLA is unfortunately inappropria-
te for our purposes because of the static composition of such a
“contract” in the form of a single WSLA document, as well as
the limited validity between exactly two contract signers. It is
required to have a quite more flexible way of spontaneous com-
position and examination of the current situation, i.a. based on
context information, whose existence is unknown at the time of
creation of a WSLA document.

All non-functional parameters like the quality properties
mentioned above are not assigned to one of the classic service
interoperability levels uniformly in literature. Mani und Naga-
rajan [31] see them for instance as an extension of an interface
specification and thus assign them to the signature level. Weller
[30] proposes to access quality, payment and deadlock parame-
ters in parallel to a service’s execution, settling them at the pro-
tocol level. But most often non-functional or non-operational
specifications are handled (if at all) at the semantic level. An-
kolekar et. al. [13] for instance defined some few functional
attributes named characteristics like geographicRadius or de-
greeOfQuality. According to their proposition a service’s non-
functional behaviour and the conditions to run a service can be
described with these kind of attributes. In our opinion, it ma-
kes much more sense to deal with the interoperability of ser-
vices with respect to contextual conditions and dependencies
on a new level, the context level. In doing so, this enables a
thematic focussing and eases the separation of services, which
are interoperable with respect to the three classic levels, but not
on the context level, or vice versa. An example for this are the
prime services [34] of the new european satellite navigation sy-
stem Galileo [35]. Although the software of a Galileo receiver
is interoperable to the Galileo system in the sense of the three
classic levels of service interoperability, it is interoperable to
the prime services (higher degree of accuracy etc.) only in a
“commercial” context (that means by paying a fee), but not in
a “free” context. Another example is an electronic public trans-
port timetable service: A client may be interoperable with such
a service in city A on the context level, but not with the same
service provided in city B when currently being in A, even if
interoperability is given with respect to the three classic levels
in both cities.

Before and during the usage of a service the relevance of a
context information is very important. The set of relevant enti-
ties and the resulting context information characterizing those
entities is changing rapidly. In contrast, the set of the specific
aspects determining the relevance of an entity is fixed. Thus it
is the aspects which have to be specified on the context level
for each service. On the basis of the specified aspects it can be
evaluated in advance and during execution if there are relevant
entities for a service. By using the associated context informa-
tion found in that way it can be decided whether the execution
of a service is (from the contextual point of view) possible and
advisable, or not. The set of relevant entities has influence on
the service in multiple ways also at runtime. This set determi-
nes for instance if the conditions having been responsible for
selecting this service during discovery are still given and va-
lid during execution. If not, the execution of that service will
be temporarily interrupted or permanently aborted. One exam-
ple for this may be the physical distance to a point-of-interest



5

(POI): With the distance to that POI increasing, the execution
of any POI specific service makes even less sense.

In the style of a context ontolgy introduced by Ötztürk and
Aamodt [36] we call this kind of external context information a
environment related context information, because the contextu-
al “environment” of a service has influence on its execution. In
contrast, there are the (from the service’s point of view) exter-
nal context information, which are target-oriented for the ser-
vice itself, which is why we call them target related context
information. An example may be a routing service from loca-
tion A to location B, where A is assigned the current position
of the user’s device automatically by the system, obtained from
the current situation. Nevertheless, we do not share Ötztürk’s
and Aamodt’s opinion that this kind of external context infor-
mation has to be seen as static during service execution time,
as one can see from an example for target related context infor-
mation: Because of the mobility of a user, the current position
keeps changing over time. An example for an internal context
information may be the starting time of a meeting at location
B, which is used internally by the mentioned routing service
for calculating the route. An overview of this classification is
shown in Fig. 5.

Context Information

Internal
Context Information

External
Context Information

External
Target Related

Context Information

External
Environment Related
Context Information

Fig. 5
CLASSIFICATION OF CONTEXT INFORMATION

We are currently defining a Context Ontology Language
(CoOL) based on XML which may be used to exactly specify
the relevant aspects of a service. See Fig. 3 on page 3 for an
example of an instance document using parts of CoOL. One
advantage of having such a language is to be able to describe
not only the kind of aspect in a human and machine readable
and evaluable way, but also to specify all possible states a con-
text information may represent with respect to that aspect. Thus
a CoOL document may contain one or more closed definitions
of possible states of an aspect. Furthermore, by applying several
different CoOL documents for the same entity, a very high flexi-
bility and extendability can be reached. CoOL links the object-
associated context information with the services itself, and thus
enables context aware service usage, and additionally enables
the determination of contextual service interoperability.

IV. CONTEXTUAL SERVICE INTEROPERABILITY

One of the most central questions in our current work is what
are the conditions for two services and/or a service and the plat-
form for being interoperable with respect to the unstable situa-
tion.

Vallecillo, Hernández und Troya identified in [10] two pro-
perties, compatibility and substitutability, which must be given

for any interacting components to be interoperable with respect
to the classical three levels of service interoperability.

Transferred to the context level, compatibility could be defi-
ned in a sense that two interacting components work together in
a correct manner, if both sides have a common understanding
of all relevant aspects. This includes the kind of selection of the
relevant entities as well as the set of states a context informati-
on may represent in the relevant aspects (including the usage of
the same units). This may be reached my referring to the same
CoOL specification.

On the same level substitutability of a service by another one
may be defined as having the identical set of relevant aspects. If
the competence of a service for a specific task has been deter-
mined based on a certain environmental related context infor-
mation, this service may be substituted by another one without
violating contextual service interoperability only if the other
service is competent for the same environmental related con-
text information. An example are two services A and B, both
being able to return the address of a pharmacy with emergency
service in the vicinity of a given position information. Service
A may be substituted in the sense of contextual service inter-
operability by service B if and only if B is capable of returning
a valid address for any position information where A is capable
of returning a valid result (we call this the same spatial com-
petence of A and B). Note that the results are not necessarily
the same. Likewise this does apply also with the target related
context information: Substitutability of A by B means here that
B is target-oriented in the same context like A.

In [37] a two-step-procedure is proposed to certify any kind
of interoperability, which is for instance also employed in [33]:
In the first step, called the logical certification, any specification
of the components are checked regarding consistency, integri-
ty etc. In the second step, called the physical certification, it
is checked if an implementation follows a given specification.
Whereas the logical certification is usually done by human in-
teraction, the physical certification can be done very well by
simulation or integration into real systems on trial in many ca-
ses.

An analogous procedure is recommended for checking for
interoperability on the context level. After first reviewing the
definitions of the aspects and any related relevance conditions
given in one or more CoOL documents with respect to consi-
stency, integrity etc. by locigal certification, the physical certi-
fication may be done by some automatism integrated into the
service platform much more easily.

V. CONCLUSION AND OUTLOOK

We showed in the previous sections, that it is valuable to con-
sider the context of a service from several perspectives, which
is done insufficiently in existing research work. By introducing
the new context level as another sublevel of service interopera-
bility, we have been able to separate services, which are inte-
roperable with respect to the three classic levels of service in-
teroperability (signature, protocol and semantic level), but not
on the context level and vice versa. We motivated the necessity
of having a context ontology language. One of the objectives of
combining the object-associated context information with the
outlined XML based Context Ontology Language (CoOL) is to



6

have a tool which allows one to improve scenarios of context
aware service usage. This is particularly important in modern
Ubiquitous Computing environments, where we want to get the
most benefit out of the huge amount of multi-networked smart
mobile devices. By examination of service interoperability on
the proposed context level it can be decided with the help of
the tool what the contextual conditions are to be interoperable.
Based on that, service handover on higher levels as well as con-
cepts of (at least partial) autonomy may be realized.

REFERENCES

[1] A. S. Tanenbaum, Distributed Systems. Prentice Hall, 2002.
[2] P. Wegner, “Interoperability,” ACM computing surveys, no. 28, pp. 285–

287, 1996.
[3] S. Heiler, “Semantic Interoperability,” ACM computing surveys, no. 27,

pp. 271–273, 1995.
[4] T. Murer, D. Scherer, and A. Wuertz, “Improving component inter-

operability information,” in Proceedings of Workshop on Component-
Oriented Programming (WCOP’96) at 10th European Conference on
Object-Oriented Programming (ECOOP’96), pp. 150–158, dpunkt, July
1996.

[5] A. Vallecillo, J. Hernandez, and J. M. Troya, “Woi’00: New issues in
object interoperability,” in LNCS 1964: ECOOP’2000 Workshop Reader,
pp. 256–269, Springer, 2000.

[6] E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana, “Web
Services Description Language (WSDL).” http://www.w3.org/TR/wsdl,
2001.

[7] D. M. Yellin and R. Strom, “Protocol specifications and component adap-
tors,” ACM Trans. Prog. Lang. Syst., no. 19, pp. 292–333, 1997.

[8] A. Arkin, S. Askary, S. Fordin, W. Jekeli, K. Kawaguchi, D. Or-
chard, S. Pogliani, K. Riemer, S. Struble, P. Takacsi-Nagy, I. Tricko-
vic, and S. Zimek, “Web Service Choreography Interface (WSCI).”
http://www.w3.org/TR/wsci, 2002.

[9] P. Miller, “Interoperability: What is it and why should i want it?.”
http://www.ariadne.ac.uk/issue24/interoperability, 2000.

[10] A. Vallecillo, J. Hernández, and J. M. Troya, “Component interopera-
bility,” Tech. Rep. ITI-2000-37, Departmento de Lenguajes y Cienci-
as de la Computación, University of Málaga, July 2000. Available at
http://www.lcc.uma.es/ � av/Publicaciones/00/Interoperability.pdf.

[11] M. Uschold and M. Grüninger, “Ontologies: Principles, methods, and ap-
plications,” Knowledge Engineering Review, vol. 11, no. 2, pp. 93–155,
1996.

[12] J. Hendler and D. L. McGuinnes, “Darpa agent markup language,” IEEE
Intelligent Systems, vol. 15, no. 6, pp. 72–73, 2001.

[13] A. Ankolekar, M. Burstein, J. R. Hobbs, O. Lassila, D. L. Martin, S. A.
McIlraith, S. Narayanan, M. Paolucci, T. Payne, K. Sycara, and H. Zeng,
“Daml-s: Semantic markup for web services,” in Proceedings of the In-
ternational Semantic Web Workshop, 2001.

[14] M. Paolucci, T. Kawmura, T. Payne, and K. Sycara, “Semantic matching
of web services capabilities,” in First Int. Semantic Web Conf., 2002.

[15] “Semantic Web.” http://www.semanticweb.org.
[16] B. Liskov and J. Wing, “A behavioural notion of subtyping,” ACM Trans.

Prog. Lang. Syst., no. 16, pp. 1811–1841, 1994.
[17] P. Kähkipuro, L. Marttinen, and L. Kutvonen, “Reaching interoperabili-

ty through ODP type framework,” Tech. Rep. C-1996-96, Department of
Computer Science, University of Helsinki, June 1996.

[18] A. K. Dey, “Understanding and using context,” Personal and Ubiquitous
Computing, Special issue on Situated Interaction and Ubiquitous Com-
puting, vol. 5, no. 1, 2001.

[19] A. Schmidt and K. V. Laerhoven, “How to build smart appliances,” IEEE
Personal Communications, August 2001.

[20] W. N. Schilit, A System Architecture for Context-Aware Mobile Compu-
ting. PhD thesis, Columbia University, 1995.

[21] M. Angermann, J. Kammann, P. Robertson, A. Steingass, and T. Strang,
“Software representation for heterogeneous location data sources within
a probabilistic framework,” in Proceedings of International Symposium
on Location Based Services for Cellular Users (Locellus 2001), (Munich,
Germany), pp. 107–118, February 2001.

[22] M. Banatre and P. Couderc, “Unleashing context-aware application with
spatial programming,” in Keynote on IST Mobile Venue 2002: Radio Re-
source Management and Mobile Location Workshop, (Athens, Greece),
May 2002.

[23] P. Couderc, Mobilité contextuelle dans les systèmes d’information. PhD
thesis, Université de Rennes-1, 2001.

[24] M. Gudgin, M. Hadley, J.-J. Moreau, and H. Frystyk, “SOAP messaging
framework.” http://www.w3.org/TR/soap12-part1, October 2001.

[25] M. Samulowitz and C. Linnhoff-Popien, “Interaction patterns for dyna-
mic personalisation of service endpoints in ubiquitous computing envi-
ronments,” in Accepted for KIVS 2003, (Leipzig, Germany), 2003.

[26] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns.
Addison-Wesley, 2002.

[27] M. Satyanarayanan, “Pervasive computing: Vision and challenges,” IEEE
Personal Communications, pp. 10–17, August 2001.

[28] M. Angermann and J. Kammann, “Cost metrics for decision problems in
wireless ad hoc networking,” in Proceedings IEEE CAS 2002, (Pasadena,
USA), September 2002.

[29] A. Schmidt, M. Beigl, and H.-W. Gellersen, “There is more to context
than location,” Computers and Graphics, vol. 23, no. 6, pp. 893–901,
1999.

[30] S. Weller, “Online article: Web services qualification,” 2002. Availa-
ble at http://www-106.ibm.com/developerworks/webservices/library/ws-
qual/?dwzone=webservices.

[31] A. Mani and A. Nagarajan, “Online article: Understanding quali-
ty of service for web services,” 2002. Available at http://www-
106.ibm.com/developerworks/library/ws-quality.html.

[32] M. F. Bertoa and A. Vallecillo, “Quality attributes for cots components,”
in Proceedings of the 6th ECOOP Workshop on Quantitative Approa-
ches in Object-Oriented Software Engineering (QAOOSE 2002), (Mala-
ga, Spain), June 2002.

[33] H. Ludwig, A. Dan, R. Franck, A. Keller, and R. King, “Web Service
Level Agreement (WSLA),” in IBM WebService Toolkit Documentation,
2002.

[34] V. Liebig, “Galileo,” Ignition, pp. 2–7, September 2002.
[35] R. Schneiderman, “Position - location - whose technology?,” Wireless Sy-

stems Design, pp. 14–20, March 2000.
[36] P. Ötztürk and A. Aamodt, “Towards a model of context for case-based

diagnostic problem solving,” in Context-97; Proceedings of the interdis-
ciplinary conference on modeling and using context, (Rio de Janeiro),
pp. 198–208, February 1997.

[37] T. D. Group, “Online article: Interoperability.” Available at
http://www.lsi.us.es/ � tdg/doc/topics/interoperability.html.


	Introduction
	Interoperability in Distributed Systems
	Context Level
	Contextual Service Interoperability
	Conclusion and Outlook
	References

