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ABSTRACT

SAR Tomography techniques with long wavelength ac-
quisitions have demonstrated the capability of imaging
the vertical structure of forests. In particular, Coherence
Tomography (CT) is capable to estimate the low spa-
tial frequency components of the vertical profile from a
limited number of tracks, given the height boundaries in
which the scattering occurs. However, the CT inversion
procedure is sensitive to errors in such height boundaries
and phase miscalibration residuals. In this paper, we pro-
pose a CT-based inversion robust to height and phase er-
rors. A performance analysis is carried out with simu-
lated data in a variety of scenarios, and first-cut results
with real data are shown.

Key words: Synthetic aperture radar interferometry; to-
mography; robust processing.

1. INTRODUCTION

In the last decade, the accurate and reliable estimation
of forest biomass has gained increasing attention within
the SAR remote sensing community, given its crucial
role in terrestrial carbon budget. First approaches for
biomass estimation were based on the allometric relation
between biomass and top canopy height [1]; however, the
performance of such estimation is limited in forest sys-
tems with strong density variations. Recently, experimen-
tal evidence has suggested the possibility to extend the
height to biomass allometry by considering the low spa-
tial frequency components of the vertical biomass distri-
bution function [2]. In the radar remote sensing frame-
work, conventional SAR Tomography techniques have
demonstrated the capability of imaging the vertical struc-
ture by exploiting the spatial (i.e. baseline) diversity of
the acquisitions, possibly jointly with polarization diver-
sity [3—-6]. However, especially considering the imple-
mentation of space-borne missions, temporal decorrela-
tion problems limit the number of suitable acquisition for
the tomographic processing. For this reason, the Coher-
ence Tomography (CT) technique has been recently pro-
posed [7,8]. In brief, CT aims at decomposing the verti-

cal profile on a set of orthogonal basis functions through
a least squares fitting with the available complex coher-
ences (possibly obtained by combining different polar-
izations), after compensating them for the phase histo-
ries produced by the ground topography and the volume
depth along the baselines. So doing, the tomographic re-
construction reduces to the estimation of the coefficients
of the series and can be carried out with a low number
of acquisitions. However, if the topography and the vol-
ume height are not estimated with sufficient accuracy,
the related phase errors dramatically affect the CT inver-
sion, with misleading results in terms of vertical profiles.
The same effect shows up also in presence of phase non-
idealities due to atmospheric propagation and inaccura-
cies in the relative radar platform position measurements
between the acquisitions.

This work tackles the problem of the robust estimation
of forest vertical profiles by means of CT in presence of
the above mentioned phase errors. To counteract their ef-
fects, the proposed solution consists in relying as much
as possible on the coherence amplitudes. It is demon-
strated that with the coherence amplitudes the reliable
LS estimation is possible of the absolute values of the
Legendre coefficients; to estimate their signs, the coher-
ence phases can be used. This two-step CT is expected to
furnish more accurate results with respect to the original
CT inversion at the complex level. The performance in
profile estimation of the proposed algorithm will be ana-
lyzed in controlled conditions by means of simulated co-
herences, with reference to realistic vertical profiles, and
pros and cons discussed. In addition, first-cut experimen-
tal results will be shown by using SAR data acquired with
the DLR’s E-SAR airborne sensor.

2. BASICS OF COHERENCE TOMOGRAPHY

We suppose to process a coherence data set in which only
the vegetation contribution is present, i.e. without (or at
least very reduced) ground backscattering. This can be
achieved for instance by combining data with different
polarizations, and by selecting the optimal polarization
combination e.g. employing all the baselines and all the
polarizations in a coherent processing [9]. Moreover, the
a priori knowledge is needed regarding the volume depth



H and the ground topography zy. If not available, these
two quantities can be estimated from the data, possibily
exploiting again different polarizations [10].

2.1. Vertical profile as a weighted sum of Legendre
polynomials

Let B(z) be the wanted vertical profile, where z denotes
the vertical height dimension. The CT inversion is based
on the fact that B(z) can be expanded as a weighted sum
of polynomials:

B(z) =) anPu(2) (1)

where a,,, n = 0,1,2, ..., are the expansion coefficients
and P, (z) the polynomials. For a given baseline, cor-
responding to a vertical wavenumber k., this profile fur-
nishes the following complex coherence:
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with 0 < y(k,) < 1. As common [7], we consider the
Legendre polynomials. For this purpose, the height axis
needs to be scaled from [zg, 29 + H] to [—1, 1]. The first
Legendre polynomials are':

PQ(Z) =1
Pi(z) =2 3
Py(z) = (322 —1)/2 )
P3(z) = (352% — 3022 + 3)/2
while in general it results [11]:
2n —1 -1
Po(z) = ”n Pi(2) — L Py o(2). (4

In terms of coherence, after the height rescaling and by
using the Legendre expansion, equation (2) can be written
as

(k) = eTF20eV N " a, fo (k) )

where ky = k,H/2 and f,(ky) = fil P, (2)el*v2dsz.
The functions f,,(ky ) can be calculated in closed form as
follows:

2n—1

fn(ky) = an—l(kv) + frn—2(kv)
folly) =27 ©
[ sink k

With a slight abuse of notation, the re-scaled height axis is named
again z for simplicity.

2.2. Legendre coefficients estimation

We suppose that a finite number of acquisitions are avail-
able, furnishing K non-zero baselines. No hypotheses
are made regarding their spatial regularity. At the k—th
baseline the coherence (k. ) is estimated and all the
coherences are collected in the K —dimensional column
vector «. Thus, supposing that IV coefficients are of inter-
est, CT aims at estimating the Legendre coefficient vector
a, where [a],, = an, n = 0,..., N, given the coherence
vector -y, the volume depth H and the ground topography
Z0-

Starting from the original formulation in [7], here we
adopt a slightly different CT formulation which is based
on a least squares (LS) fitting between the available co-
herences and the Legendre-reconstructed ones’. As a
consequence, remembering that ag = 1 [7], the CT coef-
ficients can be estimated by minimizing the following LS
functional:

K

T=> lw—eklP=lvy=" 1. D
k=1

The vector «;, of the Legendre-reconstructed coherences
can be further expressed as a function of f,(ky ) and

a. Following also the development in [7], for the k—th
coherence lag define the N X 2 matrix:

szlifl(%v,k) f2(£V7k) fB(IBV,k) } ®

and the 2—dimensional vector:

[, st
= | s it | ®

where

A = ,Yke_jkv,ke_jkz,kzo' (10)

After forming the following matrices:

F, b,
F=| : [,b=] : |, (11)

the functional in (7) can be rewritten as:
J=|Fa—-b|?, (12)
from which the coefficient vector is estimated after a min-

imization:
a= (FIF)"'FTp. (13)

2From an algebraic point of view, it is worth noting that this LS for-
mulation is the best criterion that can be adopted when the number of
baselines is higher than the number of desired coefficients (overdeter-
mined system of equations).



3. AMPLITUDE-BASED COHERENCE TOMOG-
RAPHY

As shown in (12), the coherence fitting is performed after
the compensation of the phase history generated along
the baselines by zy and H. However, errors in the esti-
mation of zg and H introduce errors in the phase com-
pensation (10)*. To reduce the effect of phase-related
errors in the coherence, here we propose to use the co-
herence amplitudes. For the sake of brevity, in the fol-
lowing the proposed method will be named Amplitude-
based CT (ACT). It is worth remarking that amplitude-
only processing strategies have been already proposed in
a tomographic-like context e.g. in [12] for the separation
of point-like scatterers interfering in the same resolution
cell in urban scenarios. However, the application to forest
volumes is by far more challenging since continuous ver-
tical profiles are to be estimated, while in the urban case
only discrete scatterers parameters are of interest (e.g.
the height and/or the deformation velocity). In addition,
speaking in purely “tomographic” terms, it is well-known
that the amplitude and phase information are both useful
in order to exploit the modulation induced by the beat-
ing phenomena for the separation of the multiple signal
components, and to possibly enhance statistical accuracy
even for a single scatterer. This affirmation is true also
for the proposed ACT, for which it is demonstrated that
the coherence amplitudes are not enough to completely
characterize all the expansion coefficients, but the phase
is needed to estimate the sign of some of them.

More in detail, by further manipulating (5), we have
F6l? = l? = Y aplflkvp) P+

+2) ) asnasm fu(kvie) fmn(kvi)  (14)

n m#n

for 2n,2m < N. Notice that the phase compensation
is not needed anymore. The expression in (14) is com-
posed by two terms, the second of which depends on the
cross-products of the even order coefficients. As a con-
sequence, it is apparent that from (14) the estimation is
possibile of the absolute value only of the odd order co-
efficients and of absolute value and sign of the even order
coefficients. Moreover, equation (14) is in principle com-
plicated to be inverted. Nevertheless, for the application
of interest we can assume N = 3 [2], in which case (14)
becomes*:

k2 = | folkvie) P = af| fr(kvii) P + a3 fa (Ve P+

+ a3| f3(kv,e)|” + 2az fo(kvi) f2(kv,).  (15)

Extending (15) to all the available baselines, the follow-
ing matrices and vector are introduced:

e F: (K, N)—dimensional matrix with generic ele-
ment [FO}k,n = |fn(kV,k)|2;

31t should be noted that errors in H will affect also the functions
fn(kv,k), even if at lower extent [8]. Here, our objective is to develop
an inversion algorithm robust against the more detrimental phase errors.
4Again, ag = 1.

e Fi: (K, N)—dimensional matrix with elements
[F1]r2 = 2fo(kvk) fo(kv,) and [F1]g nz2 = 0;

e ~': K —dimensional vector with generic element
VIk = [el® = [folkv)[?,

and the coefficient vector can be estimated according to
the following optimization criterion:

& = argmin |[Fo(a ® a) + Fia —~'|2,  (16)
[e 4

where “®” indicates the Schur-Hadamard product, i.e.
the element-by-element product, and

a=|la| ay laz| 7. (17)

As previously discussed, the optimization functional (16)
is symmetric with respect to the axes a; = 0 and a3z = 0,
thus it allows the estimation of |a; | and |ag|, while a3 con
be estimated with sign.

Coversely to the classical CT functional (12), the ACT
functional (17) does not have a closed-form solution, as
a consequence specific numerical procedures must be set
up. A possibility is to distinguish between the estimation
ofa; = [ |a1| |as] ]7 and the estimation of a. In fact,
if ao is known, then the optimization functional is linear
in a1 ® i, which can thus be estimated in closed form.
The suggested iterative relaxation procedure is composed
by the following steps:

1. Initialization. Suppose that an initial value for as is
available, namely G2[0]. (i) Calculate 4[0] by sub-
tracting from ~’ the coherence contribution related
to az[0]. (i) Calculate the initial estimates |a1[0]]
and |a3[0]] by means of the closed-form expressions
reported in the Appendix.

2. Iteration. The m—th iteration is composed by two
steps. (i) Compute an update ao[m] from 7[m],
which is calculated by subtracting from =’ the co-
herence contribution related to |G1[m — 1]| and
|as[m — 1]|. (ii) Compute update estimates |Gq[m]|
and |as[m]| from the coherence residual update
[m]. Steps (i)-(if) admit closed form expressions,
as reported in the Appendix. To stop the iteration, a
possibility is to require that the normalized distance
between &[m] and &[m — 1] is lower than a given
threshold.

To estimate the signs of G; and a3, which can not be fur-
nished by (16), a simple strategy consists in using the co-
herence complex values. In other words, one can calcu-
late the quantity J in (12) for & as a function of all the
possible combinations of the signs of G; and a3, and then
choose the sign combination which minimizes J.

To conclude this Section, some important remarks are in
order. First of all, we notice that the ACT functional (16)
is in general different from the CT functional (12), and
in principle they could give some slightly different co-
efficient estimates. Anyway, in our performance analysis
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Figure 1. Vertical profiles estimated with CT and ACT in
the reference scenario. The height axis is rescaled in the
interval [—1,1].

(see Section 4) this difference has never been of particular
concern. Second, the suggested iterative relaxation pro-
cedure requires a very low computational load. In fact,
at each iteration, closed form expressions can be used;
not only, but from experimental evidence a low number
of iterations are required to reach the optimal coefficient
vector. On the other hand, since functional (16) is in gen-
eral not convex, the iterative procedure assures a conver-
gence to a relative minimum (which is actually the result
of any known iterative method). However, at each iter-
ation the minimizing functional is convex, and admits a
single minimum. Finally, concerning the number of base-
lines needed for the inversion, we recall that in the con-
ventional complex CT inversion each baseline allow the
estimation of two coefficients. For instance, in the spe-
cific case of N = 3, K = 2 is enough. On the other hand,
to solve the ACT non-linear functional (16), a number of
baseline N > K is needed, thus reducing the amount of
information which can be extracted from each baseline.
This is reasonable, since in (16) only the amplitudes are
used. However, K = 2 is sufficient to estimate N = 3
ACT coefficients thanks to the iterative procedure.

4. PERFORMANCE ANALYSIS WITH SIMU-
LATED DATA

In this Section, the robustness in the Legendre coefficient
estimation is analyzed for CT and ACT in presence of
phase miscalibration residuals and errors in H and zp.
With reference to the typical parameters of an acquisi-
tion from an airborne platform (e.g. the DLR’s E-SAR),
we considered a dual baseline acquisition, with horizon-
tal baselines measuring 5m and 20m with respect to the
master track, radar carrier frequency 1.3GHz (L-band).
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Figure 2. Angular distances as a function of the normal-
ized phase error standard deviation.

In the reference scenario, the volume coherence has been
modelled according to the RVOG model (i.e. with ex-
ponential vertical profile), with no ground contribution,
ground height zp = Om, volume depth H = 20m, extinc-
tion 0 = 0.2dB/m, and look angle §# = 30° (near range).
For this analysis, we will consider N = 3. In Fig. 1
the profiles estimated with CT and ACT are plotted in
the reference scenario. The two profiles look very simi-
lar, although the difference in the respective functionals,
as pointed out in Section 3. Since the Legendre polyno-
mials constitute an orthogonal basis, in what follows the
robustness has been assessed for each method in terms of
the angular distance € between the error-free coefficient
vector a and the error corrupted one, namely a.. The
higher ¢, the lower the robustness level. In formulas:

T
€= cosl 2 Be (18)
lallllael

In a first experiment, we tested the robustness of CT and
ACT against phase miscalibration residuals. The mis-
calibrated coherence has been simulated as v, = v ©
exp’ 4md where d is a K —dimensional vector containing
the residual baseline positioning estimation errors, nor-
malized with respect to the wavelength A. Vector d has
been simulated as a Gaussian vector, whose elements are
statistically independent random variables with standard
deviation ¢ (in A units). For instance, 6 = 0.04 corre-
sponds to a phase error which is contained in the interval
[—30°,30°] with probability around 66%. The angular
distances averaged over 100 realizations of d are reported
in Fig. 2 as a function of §. It is apparent that CT is ex-
tremely sensitive to such errors, furnishing e = 30° al-
ready with 6 = 0.0025, a very low value. ACT is still
sensistive, but it shows a much higher degree of robust-
ness, with e approaching 30° with § around 0.04. It is
worth noting that for ACT the increase of € is due in er-
rors in the estimation of the coefficient signs, since d in-
troduces pure phase errors in the coherence. It has been
verified (again by simulation) that this residual sensitivity
of ACT can be mitigated by adding baselines to the input
data set, so that the degree of fitting in (12) is augmented
in the final step of the inversion.

The estimation robustness has been tested also for dif-
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Figure 4. Angular distances as a function of the volume
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ferent forest scenarios, i.e. by varying one per time the
RVOG parameters H and o. In Fig. 3, € is reported as a
function of H for different H errors [Fig. 3(a)] and for
different 2, errors [Fig. 3(b)], namely AH and Az, re-
spectively, assumed as deterministic quantities in these
experiments. We considered AH = 5% and AH =
15%. From Fig. 3(a), we observe that increasing levels
of AH turn out in increasing € for both CT and ACT. Re-
garding CT, e is steadily increasing at the increase of H
since the absolute height errors increases, and the most
critical case is for AH = 15%. On the contrary, ACT
shows its robustness, with € < 5° and very slowly in-
creasing at the increase of H also for AH = 15%. The
residual € is due to the errors that AH induces on the
computation of the functions f, (kv ). Concerning the
errors in the topography, we assumed Azg = 1m (which
is in the order of magnitude of the accuracy limit pre-
dicted by the Cramér-Rao lower bound) and Az, = 3m.
We recall that the topography error only induce phase
compensation errors in the coherences [see (10)]. From
Fig. 3(b), it is apparent that CT is very sensitive to the
presence of a non-null Az, even if for large volumes its
effect tends to reduce as Azy becomes negligible with re-
spect to H in (10). On the other hand, at least in the con-
sidered case studies, ACT inversion is independent from
Az, also with this very low number of baselines. In Fig.
4, e is reported as a function of the extinction o for both
methods in presence of volume depth and topography er-
rors. Again, we observe an increased robustness of ACT
with respect to CT, especially regarding in the case of not
well-known topography.

The final case study analyses how the robustness is de-
pendent on the look-angle 6 in the forest scenario of ref-
erence and given the same horizontal baselines. Recall-
ing (10), at the increase of § we expect the sensitivity to
AH and Az to reduce, as k. reduces. This analysis is
reported in Fig. 5, in which e is reported for a look angle
variation typical of an airborne acquisition from near to
far range. For the sake of simplicity, we hypothesized to
observe a flat terrain, without slope variations. The simu-
lations confirm the expectancies: H and zj errors impact
at a higher extent in near range, although ACT profile es-
timation is rather independent from their presence.

5. FIRST-CUT RESULTS WITH REAL DATA

A first analysis of the behaviour of ACT in presence of
height errors has been carried out also with real data. We
considered a DLR’s E-SAR dataset over the Traunstein
forest site in the south of Germany, next to the city Traun-
stein. The acquisition campaign was carried out in June
2008, with a time span of 1 hour. The dataset consist of 5
fully polarimetric SAR images in L-band, with nominal
uniform spaced baselines from 0 to 20m. The topogra-
phy varies from 530 — 650m amsl, with only few steep
slopes; forest heigth is in average higher than 20m. For
both topography and forest height LIDAR measurements
are available.

In our experiment, the reference profiles (viz. error-free)
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are those calculated by exploiting the LiDAR z; and H.
In Fig. 6 the ACT tomographic slice is reported in the
height-range plane for a fixed azimuth coordinate and HV
polarization; heights are relative to the flat-earth refer-
ence height. Vertical profiles are imaged between the zg
and H at each range coordinate where LiDAR measure-
ments are available. The imaged forest stands are rather
tall, in general taller than 20m, with a peak height around
40m between the range bins 400 and 600. The main scat-
tering constributions are located close to the canopy top,
as it is reasonable to expect from L-band data.

The robustness against topography and forest height er-
rors has been evaluated for both CT and ACT by adding
height errors to the LIDAR measurements. Errors have
been simulated as zero-mean Gaussian random variables
independent from range bin to range bin; the robustness
has been measured by calculating the average ¢ over 500
realizations. In Fig. 7(a), the average € is plotted with
H errors with standard deviation amounting to the 15%.
ACT demonstrates a much improved robustness to height
errors than CT, with average e in general lower than 20°,
with values consistent with those found in the simulated
analysis. Fig. 7(b) reports the average e with 2 errors
(standard deviation 1m). Again, the ACT performance
does not suffer from topography errors, at least at this az-
imuth coordinate.

ACT — HY - Az, 3850
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40

Figure 6. Vertical profiles estimated with ACT in the
height-range plane.

3

[
AT ——

Ang. distonce [deg]
TR

°

1400

(a) With errors in H

e ——
r AT ——

0 200 400 600 800 1000 1200 1400
Range bin

(b) With errors in zg

Figure 7. Angular distances as a function of the range
bin.

6. CONCLUSIONS

In this work, we proposed a CT-based inversion for the
derivation of the vertical structure of forests from multi-
baseline SAR data. The proposed technique, which has
been named Amplitude-based CT (ACT) has been de-
signed to be robust against errors in estimation of the
height boundaries in which the scattering occurs and
phase miscalibration residuals. The proposed ACT uses
the multibaseline complex coherences in two “incoherent
processing” steps. In a first step, the coherence ampli-
tudes are employed to estimate the absolute values of the
expansion coefficients of the vertical profile in the Leg-
endre polynomials basis; in the second step, the coher-
ence phases are used to estimate the coefficient signs.
It is worth noting that for the proposed inversion no
closed-form formulas are available in general. However,
if the first 3 coefficients are of interest (as in the case
of structure-based biomass estimation [2]), it has been
demonstrated that a fast and reliable iterative relaxation
procedure can be adopted. The robustness performance
of the proposed inversion has been measured by means
of simulated and real data in a variety of forest scenarios.
ACT has been shown to be more robust than the conven-
tional CT. Future work could regard further experiment-



ing the proposed method with real data.

APPENDIX

In this Appendix, closed-form formulas are given for the
iterative optimization of functional (16). As observed in
Section 3, we can employ a relaxation-based procedure,
in which each step has closed-form expression for the ot-
puts, noticeably reducing the computational load. Two
sub-problems must then be solved:

1. the estimation of |a| and |as| given as;

2. the estimation of ay given |aq| and |a3].

Estimation of |a; | and |a3]| given a

In this case, equation (15) can be rewritten as:

el? = [ fo(kvi)|? — a3| f2(kvii) P+

—2asy fo(kvk) f2(kvi) = a%\ﬁ(kv,k)\2+a§\f3(kv,k)|i~19

Define the following matrices and vectors:

e the (K, 2)—dimensional matrix Fy with column
elements [Folp1 = |fi(kvi)|? and [Folro =

| f3(kv,i)|%s

e the K —dimensional vector 4, with [], = |y&|? —
| fo(kve) |2 — a3| fo(kv,i) |2 = 2a2 fo(kv,i) f2 (kv,k)s

e the 2—dimensional vector a1 = [ |a1| |as| |T.

As a consequence, o1 can be estimated as:
o) = argmin J(a) =
(s3]
= argmin || Fyay — 4 ||* subjectto a; >0 (20)
oy

in which the non-negativity constraint on the unknowns
is needed since they are squared quantities, thus positive
by definition. In the light of this, two case must be con-
sidered. If the constraint is not binding, then the solution
to (20) is trivial and it is equal to

&y = (FTF)"1'FT5, (21)

and finally |a1| = /[é&1]1 and |as| = /[&1]2. On the

other hand, if the constraint is binding, then one or both
elements of &4 from (21) are negative. It is easy to rec-
ognize that functional (20) is a 2-D parabolic functional
in the unknowns, thus it is convex in ¢&; and admits a sin-
gle global minimum. It follows that if the constraint is
binding, then the minimum will lie on the axes a; = 0 or
a3 = 0. For this reason, we can proceed in 4 steps: (1)

suppose a; = 0 and find an estimate of a3, obtaining a
candidate solution &1 1; (2) suppose a3 = 0 and find an
estimate of a1, obtaining a candidate solution & 2; (3)
calculate J(é 1) and J (& 2); (4) determine the optimal
solution: &1 = d171 if J(dl,l) < J(dlyg), & = dLQ
vice versa. Concerning steps (1) and (2), the value of the
non-null parameter can be determined in closed fom. For
the sake of notation convenience, call x the unknown pa-
rameter to be estimated (|a1| or |as|), and f the related
column of F, (the first or the second, respectively). As
a consequence, the resulting J is a second degree equa-
tion whose solution is (taking into account also the non-
negativity constraint):

. Xo, if xo >0
= 22
X {o, if xo < 0 (22)
where .
¥ f
X0 = raa (23)
Moreover, it results:
30 6 ke B 48 3 P
J([x,0]) = AT C BX0=T0 29
77, if xo <0

Estimation of ay given |a1| and |as)|

In this case, by adopting the notation introduced in this
Appendix, and by introducing also the vectors f; and
f, with elements, respectively, [fi]x = |f2(kV, k)|? and
2] = 2fo(kvk)f2(kv,k), we can write the system of
equation of the kind of (19) for all the baselines as:

~ — Foay = a3fy + axfo. (25)

As a consequence, by posing ¥ = v’ — Foaip, as can be
estimated (with sign) as

@y = argmin J(as) =
as
= argmin || 7 — a2f; —axfz [|2. (26)
az

After simple but tedious algebraic manipulations, it re-
sults:

J(az) = cya3 + c3a3 + coal + craz + co, 27)
where ¢ = 375, 1 = —2f]5, o = £ £, — 2] 7,
c3 = 2f['f, and ¢4 = fL'f;. The minimum of J(az) is
found by calculating its derivative with respect to a2 and
by posing it equal to 0. Such derivative corresponds to a

third order polynomial whose zeros can be calculated in
closed-form [13].
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