HONOM 2011 in Trento
DG Methods for Aerodynamic Flows:
Higher Order, Error Estimation and Adaptive Mesh Refinement
Ralf Hartmann, Tobias Leicht
Institute of Aerodynamics and Flow Technology
DLR Braunschweig
11. April 2011

Research group

working on discontinuous Galerkin methods for aerodynamic flows at DLR

The current group members are:

- Dr. Ralf Hartmann
- Tobias Leicht (PhD student)
- Stefan Schoenawa (PhD student)
- Marcel Wallraff (PhD student)
former group member were:
- Dr. Joachim Held
- Florian Prill (PhD student)

Numerical results are based on:

- The DLR-PADGE code which is based on a modified version of deal.II.

Overview

- Higher-order discontinuous Galerkin methods
- Error estimation and adaptive mesh refinement for force coefficients
- Residual-based mesh refinement
- Numerical results for aerodynamic test cases
- considered in the EU-project ADIGMA
- turbulent flow around the 3-element L1T2 high-lift configuration
- turbulent flow around the DLR-F6 wing-body configuration
- considered in the EU-project IDIHOM
- subsonic turbulent flow around the VFE-2 delta wing configuration
- transonic turbulent flow around the VFE-2 delta wing configuration

DG discretization of the RANS $-k \omega$ equations

RANS and Wilcox $k-\omega$ turbulence model equations:

$$
\nabla \cdot\left(F^{c}(\mathbf{u})-F^{\vee}(\mathbf{u}, \nabla \mathbf{u})\right)=\mathbf{S}(\mathbf{u}, \nabla \mathbf{u})
$$

Discontinuous Galerkin discretization of order $p+1$: Find $\mathbf{u}_{h} \in \mathbf{V}_{h}^{p}$ such that

$$
\begin{array}{r}
\mathcal{R}\left(\mathbf{u}_{h}, \mathbf{v}_{h}\right) \equiv \int_{\Omega} \mathbf{R}\left(\mathbf{u}_{h}\right) \cdot \mathbf{v}_{h} \mathrm{~d} \mathbf{x}+\sum_{\kappa \in \mathcal{T}_{h}} \int_{\partial \kappa \backslash \Gamma} \mathbf{r}\left(\mathbf{u}_{h}\right) \cdot \mathbf{v}_{h}^{+}+\underline{\rho}\left(\mathbf{u}_{h}\right): \nabla \mathbf{v}_{h}^{+} \mathrm{d} s \\
\\
+\int_{\Gamma} \mathbf{r}_{\Gamma}\left(\mathbf{u}_{h}\right) \cdot \mathbf{v}_{h}^{+}+\underline{\rho}_{\Gamma}\left(\mathbf{u}_{h}\right): \nabla \mathbf{v}_{h}^{+} \mathrm{d} s=0 \quad \forall \mathbf{v}_{h} \in \mathbf{V}_{h}^{p},
\end{array}
$$

with the element residual,

$$
\mathbf{R}\left(\mathbf{u}_{h}\right)=\mathbf{S}\left(\mathbf{u}_{h}, \nabla \mathbf{u}_{h}\right)-\nabla \cdot F^{c}\left(\mathbf{u}_{h}\right)+\nabla \cdot F^{v}\left(\mathbf{u}_{h}, \nabla \mathbf{u}_{h}\right),
$$

and face and boundary residuals $\mathbf{r}\left(\mathbf{u}_{h}\right), \underline{\rho}\left(\mathbf{u}_{h}\right)$ and $\mathbf{r}_{\Gamma}\left(\mathbf{u}_{h}\right), \underline{\rho}_{\Gamma}\left(\mathbf{u}_{h}\right)$.

Error estimation with respect to target quantities

Target quantities $J(\mathbf{u})$ of interest are

- the drag, lift and moment coefficients
- pressure induced and viscous stress induced parts of the force coefficients

Error estimation with respect to target quantities

Target quantities $J(\mathbf{u})$ of interest are

- the drag, lift and moment coefficients
- pressure induced and viscous stress induced parts of the force coefficients

We want to quantity the error of the discrete function \mathbf{u}_{h} in terms of a target quantity $J(\cdot)$, i.e. we want to quantity the error

$$
J(\mathbf{u})-J\left(\mathbf{u}_{h}\right)
$$

Here,

- $J\left(\mathbf{u}_{h}\right)$ is the computed force coefficient, and
- $J(\mathbf{u})$ is the exact (but unknown) value of the force coefficient

Error estimation for single target quantities

Given a discretization: find $\mathbf{u}_{h} \in \mathbf{V}_{h, p}$ such that

$$
\mathcal{N}\left(\mathbf{u}_{h}, \mathbf{v}_{h}\right)=0 \quad \forall \mathbf{v}_{h} \in \mathbf{V}_{h, p} .
$$

and a target quantity J .
Using a duality argument we obtain an error representation wrt. $J(\cdot)$:

$$
\begin{aligned}
J(\mathbf{u})-J\left(\mathbf{u}_{h}\right) & =\mathcal{R}\left(\mathbf{u}_{h}, \mathbf{z}\right):=-\mathcal{N}\left(\mathbf{u}_{h}, \mathbf{z}\right) \\
& \approx \mathcal{R}\left(\mathbf{u}_{h}, \overline{\mathbf{z}}_{h}\right)=\sum_{\kappa} \bar{\eta}_{\kappa} .
\end{aligned}
$$

where $\overline{\mathbf{z}}_{h}$ is the solution to the discrete adjoint problem: find $\overline{\mathbf{z}}_{h} \in \overline{\mathbf{V}}_{h, p}$ such that

$$
\mathcal{N}^{\prime}\left[\mathbf{u}_{h}\right]\left(\mathbf{w}_{h}, \overline{\mathbf{z}}_{h}\right)=J^{\prime}\left[\mathbf{u}_{h}\right]\left(\mathbf{w}_{h}\right) \quad \forall \mathbf{w}_{h} \in \overline{\mathbf{V}}_{h, p},
$$

and $\bar{\eta}_{\kappa}$ are adjoint-based indicators which are particularly suited for the accurate and efficient approximation of the target quantity $J(\mathbf{u})$.

Residual-based mesh refinement

The DG discretization: Find $\mathbf{u}_{h} \in \mathbf{V}_{h}^{p}$ such that

$$
\begin{array}{r}
\mathcal{R}\left(\mathbf{u}_{h}, \mathbf{v}_{h}\right) \equiv \int_{\Omega} \mathbf{R}\left(\mathbf{u}_{h}\right) \cdot \mathbf{v}_{h} \mathrm{~d} \mathbf{x}+\sum_{\kappa \in \mathcal{T}_{h}} \int_{\partial \kappa \backslash \Gamma} \mathbf{r}\left(\mathbf{u}_{h}\right) \cdot \mathbf{v}_{h}^{+}+\underline{\rho}\left(\mathbf{u}_{h}\right): \nabla \mathbf{v}_{h}^{+} \mathrm{d} s \\
\\
+\int_{\Gamma} \mathbf{r}_{\Gamma}\left(\mathbf{u}_{h}\right) \cdot \mathbf{v}_{h}^{+}+\underline{\rho}_{\Gamma}\left(\mathbf{u}_{h}\right): \nabla \mathbf{v}_{h}^{+} \mathrm{d} s=0 \quad \forall \mathbf{v}_{h} \in \mathbf{V}_{h}^{p},
\end{array}
$$

Error representation:

$$
J(\mathbf{u})-J\left(\mathbf{u}_{h}\right)=\mathcal{R}\left(\mathbf{u}_{h}, \mathbf{z}\right)
$$

Residual-based indicators:

$$
\left|J(\mathbf{u})-J\left(\mathbf{u}_{h}\right)\right| \leq\left(\sum_{\kappa \in \mathcal{T}_{h}}\left(\eta_{\kappa}^{\mathrm{res}}\right)^{2}\right)^{1 / 2}
$$

$$
\begin{aligned}
& \eta_{\kappa}^{\mathrm{res}}=h_{\kappa}\left\|\mathbf{R}\left(\mathbf{u}_{h}\right)\right\|_{\kappa}+h_{\kappa}^{1 / 2}\left\|\mathbf{r}\left(\mathbf{u}_{h}\right)\right\|_{\partial \kappa \backslash \Gamma}+h_{\kappa}^{-1 / 2}\left\|\underline{\rho}\left(\mathbf{u}_{h}\right)\right\|_{\partial \kappa \backslash \Gamma} \\
&+h_{\kappa}^{1 / 2}\left\|\mathbf{r}_{\Gamma}\left(\mathbf{u}_{h}\right)\right\|_{\partial \kappa \cap \Gamma}+h_{\kappa}^{-1 / 2}\left\|\underline{\rho}_{\Gamma}\left(\mathbf{u}_{h}\right)\right\|_{\partial \kappa \cap \Gamma}
\end{aligned}
$$

hp-refinement with anisotropic element subdivision

hp-refinement: After having selected an element for refinement, e.g. by residual-based or adjoint-based refinement indicators, decide whether to

- split the element in subelements, i.e. use h-refinement, when the solution (or the adjoint solution) is smooth/regular
- increase the polynomial degree, i.e. use p-refinement, when the solution is non-smooth (shocks, sharp trailing edges, ...)

The decision is based on the decay of the Legendre series coefficients.

hp-refinement with anisotropic element subdivision

hp-refinement: After having selected an element for refinement, e.g. by residual-based or adjoint-based refinement indicators, decide whether to

- split the element in subelements, i.e. use h-refinement, when the solution (or the adjoint solution) is smooth/regular
- increase the polynomial degree, i.e. use p-refinement, when the solution is non-smooth (shocks, sharp trailing edges, ...)

The decision is based on the decay of the Legendre series coefficients.
Anisotropic element subdivision: After having selected an element for h-refinement decide upon the specific refinement case based on

- anisotropic error estimation or on
- an anisotropic jump indicator:
- the jump of the discrete solution over element faces is associated with the approximation quality orthogonal to the face

The L1T2 high lift configuration

full mesh

Coarse mesh of 4740 elements. Grid lines are given by polynomials of degree 4.

Turbulent flow around the L1T2 high lift configuration

Freestream conditions: $M=0.197, \alpha=20.18^{\circ}$ and $\operatorname{Re}=3.52 \times 10^{6}$

Mach number and streamlines

turbulent intensity

Turbulent flow around the L1T2 high lift configuration

Freestream conditions: $M=0.197, \alpha=20.18^{\circ}$ and $\operatorname{Re}=3.52 \times 10^{6}$

Turbulent flow around the L1T2 high lift configuration

Freestream conditions: $M=0.197, \alpha=20.18^{\circ}$ and $\operatorname{Re}=3.52 \times 10^{6}$

Turbulent flow around the L1T2 high lift configuration

Freestream conditions: $M=0.197, \alpha=20.18^{\circ}$ and $\operatorname{Re}=3.52 \times 10^{6}$

Turbulent flow around the L1T2 high lift configuration

$h p$-adaptive mesh

Tobias Leicht

Turbulent flow around the L1T2 high lift configuration

lift convergence

$h p$-adaptive mesh

Tobias Leicht

Turbulent flow around the L1T2 high lift configuration

lift convergence

$h p$-adaptive mesh

Tobias Leicht

Turbulent flow around the L1T2 high lift configuration

convergence: residual vs. nonlinear iterations

A suitable solution-adaptive mesh can improve the solver behavior.

The DLR-F6 wing-body configuration without fairing

- The original mesh of 3.24×10^{6} elements has been agglomerated twice.
- The elements of the coarse mesh of 50618 elements are curved based on additional points taken from the original mesh

curved mesh with lines given by polynomials of degree 4

Subsonic turbulent flow around the DLR-F6 wing-body

Modification of the DPW III test case:

- $M=0.5$ (instead
of $M=0.75$)
- $\alpha=-0.141$
(instead of target
lift $C_{1}=0.5$)
- $R e=5 \times 10^{6}$

DG solutions on coarse mesh of 50618 curved elements.

$3^{\text {rd }}$ order solution

$2^{\text {nd }}$ order solution

$4^{\text {th }}$ order solution

Subsonic turbulent flow around the DLR-F6 wing-body

TAU on original grid

$3^{\text {rd }}$ order solution
after one refinement of coarse mesh

Subsonic turbulent flow around the DLR-F6 wing-body

TAU on original grid

$3^{\text {rd }}$ order solution
after one refinement of coarse mesh

Subsonic turbulent flow around the DLR-F6 wing-body

Adjoint-based refinement for C_{d} :

Mesh after 2 adjoint-based refinement steps

Density adjoint

Subsonic turbulent flow around the DLR-F6 wing-body

Adjoint-based refinement for C_{d} :

Mesh after 2 adjoint-based refinement steps

Density adjoint

Convergence of C_{d}
(global mesh refinement):

Subsonic turbulent flow around the DLR-F6 wing-body

Adjoint-based refinement for C_{d} :

Mesh after 2 adjoint-based refinement steps

Density adjoint

Convergence of C_{d}
(global \& anisotropic h-refinement):

Subsonic turbulent flow around the DLR-F6 wing-body

Adjoint-based refinement for C_{d} :

Mesh after 2 adjoint-based refinement steps

Density adjoint

Convergence of C_{d}
(global, anisotropic $h-\& h p-r e f i n e m e n t): ~$

The VFE-2 delta wing with medium rounded leading edge

- The original mesh of 884224 elements has been agglomerated twice.
- The elements of the coarse mesh of 13816 elements are curved based on additional points taken from the original mesh

curved coarse mesh with lines given by polynomials of degree 4

Fully turbulent flow around the VFE-2 delta wing configuration

Underlying flow case U. $\mathbf{1}$ in the EU-project IDIHOM

The VFE-2 delta wing with medium rounded leading edge at two different flow conditions:

- U.1b: RANS- $k \omega$, subsonic flow at $M=0.4, \alpha=13.3^{\circ}$ and $R e=3 \times 10^{6}$
- U.1c: RANS-k ω, transonic flow at $M=0.8, \alpha=20.5^{\circ}$ and $R e=2 \times 10^{6}$

Subsonic flow around the VFE-2 delta wing

U.1b: Fully turbulent flow at $M=0.4, \alpha=13.3^{\circ}$ and $R e=3 \times 10^{6}$

Subsonic flow around the VFE-2 delta wing

U.1b: Fully turbulent flow at $M=0.4, \alpha=13.3^{\circ}$ and $R e=3 \times 10^{6}$

residual-based refined mesh with 84348 curved elements

$4^{\text {th }}$ order solution vs. experiment (PSP)

Subsonic flow around the VFE-2 delta wing

U.1b: Fully turbulent flow at $M=0.4, \alpha=13.3^{\circ}$ and $R e=3 \times 10^{6}$

$4^{\text {th }}$-order solution on residual-based refined mesh with 84348 curved elements

Subsonic flow around the VFE-2 delta wing

U.1b: Fully turbulent flow at $M=0.4, \alpha=13.3^{\circ}$ and $R e=3 \times 10^{6}$

$4^{\text {th }}$-order solution on residual-based refined mesh with 84348 curved elements

$2^{\text {nd }}$-order solution on residual-based refined mesh with 562892 curved elements

Fully turbulent flow around the VFE-2 delta wing configuration

Underlying flow case U. $\mathbf{1}$ in the EU-project IDIHOM

The VFE-2 delta wing with medium rounded leading edge at two different flow conditions:

- U.1b: RANS $k \omega$, subsonic flow at $M=0.4, \alpha=13.3^{\circ}$ and $R e=3 \times 10^{6}$
- U.1c: RANS-k ω, transonic flow at $M=0.8, \alpha=20.5^{\circ}$ and $R e=2 \times 10^{6}$ requires shock capturing

Shock-capturing based on artificial viscosity (1)

$$
\mathcal{N}_{s c}\left(\mathbf{u}_{h}, \mathbf{v}\right) \equiv \sum_{\kappa} \int_{\kappa} \varepsilon\left(\mathbf{u}_{h}\right) \nabla \mathbf{u}_{h}: \nabla \mathbf{v} d \mathbf{x} \equiv \sum_{\kappa} \int_{\kappa} \varepsilon_{k l m}\left(\mathbf{u}_{h}\right) \partial_{x_{l}} u_{h}^{m} \partial_{x_{k}} v^{m} d \mathbf{x},
$$

- For the compressible Navier-Stokes equations (2nd order DG discretization), ${ }^{1}$

$$
\begin{aligned}
\varepsilon_{k l m}\left(\mathbf{u}_{h}\right)= & C_{\varepsilon} \delta_{k l} h_{k}^{2-\beta} \mathcal{R}_{m}\left(\mathbf{u}_{h}\right), \quad k, I=1, \ldots, d, m=1, \ldots, n, \\
& \mathcal{R}_{m}\left(\mathbf{u}_{h}\right)=\sum_{q=1}^{n}\left|R_{q}\left(\mathbf{u}_{h}\right)\right|, \quad m=1, \ldots, n,
\end{aligned}
$$

where $\mathbf{R}\left(\mathbf{u}_{h}\right)=\left(R_{q}\left(\mathbf{u}_{h}\right), q=1, \ldots, n\right)$ is the residual of the PDE given by

$$
\mathbf{R}\left(\mathbf{u}_{h}\right)=-\nabla \cdot\left(\mathcal{F}^{c}\left(\mathbf{u}_{h}\right)-\mathcal{F}^{v}\left(\mathbf{u}_{h}, \nabla \mathbf{u}_{h}\right)\right) .
$$

[^0]
Shock-capturing based on artificial viscosity (2)

$$
\mathcal{N}_{s c}\left(\mathbf{u}_{h}, \mathbf{v}\right) \equiv \sum_{\kappa} \int_{\kappa} \varepsilon\left(\mathbf{u}_{h}\right) \nabla \mathbf{u}_{h}: \nabla \mathbf{v} d \mathbf{x} \equiv \sum_{\kappa} \int_{\kappa} \varepsilon_{k l m}\left(\mathbf{u}_{h}\right) \partial_{x_{1}} u_{h}^{m} \partial_{x_{k}} v^{m} d \mathbf{x},
$$

- For the RANS-k ω equations (2nd and higher order discretization), ${ }^{2}$

$$
\varepsilon_{k l m}\left(\mathbf{u}_{h}\right)=C_{\varepsilon} b_{k} b_{l} h_{\kappa}^{2} f_{p}\left(\mathbf{u}_{h}\right) \frac{\left|R_{p}\left(\mathbf{u}_{h}\right)\right|+\left|s_{p}\left(\mathbf{u}_{h}^{+}, \mathbf{u}_{h}^{-}\right)\right|}{p}, \quad \mathbf{b}=\frac{\nabla p}{|\nabla p|+\varepsilon^{\prime}}
$$

$$
R_{p}\left(\mathbf{u}_{h}\right)=\sum_{m=1}^{d+2} \frac{\partial p}{\partial u_{m}} R_{m}\left(\mathbf{u}_{h}\right), \quad s_{p}\left(\mathbf{u}_{h}^{+}, \mathbf{u}_{h}^{-}\right)=\sum_{m=1}^{d+2} \frac{\partial p}{\partial u_{m}} s_{m}\left(\mathbf{u}_{h}^{+}, \mathbf{u}_{h}^{-}\right)
$$

with

$$
\begin{aligned}
\mathbf{R}\left(\mathbf{u}_{h}\right) & =-\nabla \cdot \mathcal{F}^{c}\left(\mathbf{u}_{h}\right) \\
\int_{\kappa} s_{m}\left(\mathbf{u}_{h}^{+}, \mathbf{u}_{h}^{-}\right) \mathbf{v}_{h} d \mathbf{x} & =\int_{\partial \kappa}\left(\mathcal{H}\left(\mathbf{u}_{h}^{+}, \mathbf{u}_{h}^{-}, \mathbf{n}^{-}\right)-\mathcal{F}^{c}\left(\mathbf{u}_{h}^{+}\right) \cdot \mathbf{n}^{+}\right)_{m} \mathbf{v}_{h} d \mathbf{s}
\end{aligned}
$$

${ }^{2}$ F. Bassi et. al. Very high-order accurate Discontinuous Galerkin Computation of transonic turbulent flows on Aeronautical configurations, ADIGMA, NNFMMD 113, 2010.

Shock-capturing based on artificial viscosity (combines 1 and 2)

$$
\mathcal{N}_{s c}\left(\mathbf{u}_{h}, \mathbf{v}\right) \equiv \sum_{\kappa} \int_{\kappa} \varepsilon\left(\mathbf{u}_{h}\right) \nabla \mathbf{u}_{h}: \nabla \mathbf{v} d \mathbf{x} \equiv \sum_{\kappa} \int_{\kappa} \varepsilon_{k / m}\left(\mathbf{u}_{h}\right) \partial_{x_{l}} u_{h}^{m} \partial_{x_{k}} v^{m} d \mathbf{x},
$$

- For the RANS-k ω equations (2nd and higher order discretization)

$$
\begin{aligned}
& \varepsilon_{k l m}\left(\mathbf{u}_{h}\right)=C_{\varepsilon} \delta_{k l} \tilde{h}_{k}^{2} f_{p}\left(\mathbf{u}_{h}\right) \frac{\left|R_{p}\left(\mathbf{u}_{h}\right)\right|}{p}, \quad k, l=1, \ldots, d, m=1, \ldots, d+2, \\
& R_{p}\left(\mathbf{u}_{h}\right)=\sum_{m=1}^{d+2} \frac{\partial p}{\partial u_{m}} R_{m}\left(\mathbf{u}_{h}\right), \\
& \mathbf{R}\left(\mathbf{u}_{h}\right)=\mathbf{S}\left(\mathbf{u}_{h}, \nabla \mathbf{u}_{h}\right)-\nabla \cdot F^{c}\left(\mathbf{u}_{h}\right)+\nabla \cdot F^{\vee}\left(\mathbf{u}_{h}, \nabla \mathbf{u}_{h}\right) \\
& \tilde{h}_{i}=h_{i} /(\text { degree }+1)
\end{aligned}
$$

where h_{i} is the dimension of the element κ in the x_{i}-coordinate direction

Transonic flow around the VFE-2 delta wing

U.1c: Fully turbulent flow at $M=0.8, \alpha=20.5^{\circ}$ and $R e=2 \times 10^{6}$

refined mesh with
201259 curved elements

$4^{\text {th }}$ order solution vs. experiment (PSP)

Transonic flow around the VFE-2 delta wing

U.1c: Fully turbulent flow at $M=0.8, \alpha=20.5^{\circ}$ and $R e=2 \times 10^{6}$

$4^{\text {th }}$-order solution on residual-based refined mesh with 201259 curved elements

Transonic flow around the VFE-2 delta wing

U.1c: Fully turbulent flow at $M=0.8, \alpha=20.5^{\circ}$ and $R e=2 \times 10^{6}$

$4^{\text {th }}$-order solution on residual-based refined mesh with 201259 curved elements

Deutsches Zentrum
für Luft- und Raumfahrt e.V.

Transonic flow around the VFE-2 delta wing

U.1c: Fully turbulent flow at $M=0.8, \alpha=20.5^{\circ}$ and $R e=2 \times 10^{6}$

$4^{\text {th }}$-order solution on residual-based refined mesh with 201259 curved elements

Transonic flow around the VFE-2 delta wing

U.1c: Fully turbulent flow at $M=0.8, \alpha=20.5^{\circ}$ and $R e=2 \times 10^{6}$

$4^{\text {th }}$-order solution on residual-based refined mesh with 201259 curved elements

Transonic flow around the VFE-2 delta wing

U.1c: Fully turbulent flow at $M=0.8, \alpha=20.5^{\circ}$ and $\operatorname{Re}=2 \times 10^{6}$

Transonic flow around the VFE-2 delta wing

U.1c: Fully turbulent flow at $M=0.8, \alpha=20.5^{\circ}$ and $\operatorname{Re}=2 \times 10^{6}$

Transonic flow around the VFE-2 delta wing

U.1c: Fully turbulent flow at $M=0.8, \alpha=20.5^{\circ}$ and $R e=2 \times 10^{6}$

Summary

- Higher-order discontinuous Galerkin methods
- Error estimation and adaptive mesh refinement for force coefficients
- Residual-based mesh refinement
- Numerical results for aerodynamic flows around
- the 3-element L1T2 high-lift configuration
- the DLR-F6 wing-body configuration
- the VFE-2 delta wing configuration (subsonic and transonic)

Computations have been performed with the DLR-PADGE code

Thank you

[^0]: ${ }^{1}$ R. Hartmann. Adaptive discontinuous Galerkin methods with shock-capturing for the compressible Navier-Stokes equations. Int. J. Numer. Meth. Fluids, 51(9-10):1131-1156, 2006.

