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Research group

working on discontinuous Galerkin methods for aerodynamic flows at DLR

The current group members are:

I Dr. Ralf Hartmann

I Tobias Leicht (PhD student)

I Stefan Schoenawa (PhD student)

I Marcel Wallraff (PhD student)

former group member were:

I Dr. Joachim Held

I Florian Prill (PhD student)

Numerical results are based on:

I The DLR-PADGE code which is based on a modified version of deal.II.
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Overview

I Higher-order discontinuous Galerkin methods

I Error estimation and adaptive mesh refinement for force coefficients

I Residual-based mesh refinement

I Numerical results for aerodynamic test cases
I considered in the EU-project ADIGMA

I turbulent flow around the 3-element L1T2 high-lift configuration
I turbulent flow around the DLR-F6 wing-body configuration

I considered in the EU-project IDIHOM
I subsonic turbulent flow around the VFE-2 delta wing configuration
I transonic turbulent flow around the VFE-2 delta wing configuration
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DG discretization of the RANS-kω equations

RANS and Wilcox k-ω turbulence model equations:

∇ ·
(
F c(u)− F v (u,∇u)

)
= S(u,∇u)

Discontinuous Galerkin discretization of order p + 1: Find uh ∈ Vp
h such that

R(uh, vh) ≡
∫

Ω

R(uh) · vh dx +
∑
κ∈Th

∫
∂κ\Γ

r(uh) · v+
h + ρ(uh) : ∇v+

h ds

+

∫
Γ

rΓ(uh) · v+
h + ρ

Γ
(uh) : ∇v+

h ds = 0 ∀vh ∈ Vp
h ,

with the element residual,

R(uh) = S(uh,∇uh)−∇ · F c(uh) +∇ · F v (uh,∇uh),

and face and boundary residuals r(uh), ρ(uh) and rΓ(uh), ρ
Γ
(uh).
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Error estimation with respect to target quantities

Target quantities J(u) of interest are

I the drag, lift and moment coefficients

I pressure induced and viscous stress induced parts of the force coefficients

We want to quantity the error of the discrete function uh in terms of a target
quantity J(·), i.e. we want to quantity the error

J(u)− J(uh)

Here,

I J(uh) is the computed force coefficient, and

I J(u) is the exact (but unknown) value of the force coefficient
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Error estimation for single target quantities

Given a discretization: find uh ∈ Vh,p such that

N (uh, vh) = 0 ∀vh ∈ Vh,p.

and a target quantity J.
Using a duality argument we obtain an error representation wrt. J(·):

J(u)− J(uh) = R(uh, z) := −N (uh, z)

≈ R(uh, z̄h) =
∑

κ

η̄κ.

where z̄h is the solution to the discrete adjoint problem: find z̄h ∈ V̄h,p such that

N ′[uh](wh, z̄h) = J ′[uh](wh) ∀wh ∈ V̄h,p,

and η̄κ are adjoint-based indicators which are particularly suited for the accurate
and efficient approximation of the target quantity J(u).
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Residual-based mesh refinement
The DG discretization: Find uh ∈ Vp

h such that

R(uh, vh) ≡
∫

Ω

R(uh) · vh dx +
∑
κ∈Th

∫
∂κ\Γ

r(uh) · v+
h + ρ(uh) : ∇v+

h ds

+

∫
Γ

rΓ(uh) · v+
h + ρ

Γ
(uh) : ∇v+

h ds = 0 ∀vh ∈ Vp
h ,

Error representation:
J(u)− J(uh) = R(uh, z)

Residual-based indicators:

|J(u)− J(uh)| ≤

(∑
κ∈Th

(ηres
κ )2

)1/2

ηres
κ = hκ‖R(uh)‖κ + h1/2

κ ‖r(uh)‖∂κ\Γ + h−1/2
κ ‖ρ(uh)‖∂κ\Γ

+ h1/2
κ ‖rΓ(uh)‖∂κ∩Γ + h−1/2

κ ‖ρ
Γ
(uh)‖∂κ∩Γ
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hp-refinement with anisotropic element subdivision

hp-refinement: After having selected an element for refinement, e.g. by
residual-based or adjoint-based refinement indicators, decide whether to

I split the element in subelements, i.e. use h-refinement,
when the solution (or the adjoint solution) is smooth/regular

I increase the polynomial degree, i.e. use p-refinement,
when the solution is non-smooth (shocks, sharp trailing edges, . . . )

The decision is based on the decay of the Legendre series coefficients.

Anisotropic element subdivision: After having selected an element for
h-refinement decide upon the specific refinement case based on

I anisotropic error estimation or on

I an anisotropic jump indicator:
I the jump of the discrete solution over element faces is associated with the

approximation quality orthogonal to the face
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The L1T2 high lift configuration

full mesh zoom of mesh

Coarse mesh of 4740 elements. Grid lines are given by polynomials of degree 4.
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Turbulent flow around the L1T2 high lift configuration

Freestream conditions: M = 0.197, α = 20.18◦ and Re = 3.52× 106

Mach number and streamlines turbulent intensity
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Turbulent flow around the L1T2 high lift configuration

Freestream conditions: M = 0.197, α = 20.18◦ and Re = 3.52× 106

11 / 35DG methods for aerodynamic flows

Ralf Hartmann, Tobias Leicht



Turbulent flow around the L1T2 high lift configuration

Freestream conditions: M = 0.197, α = 20.18◦ and Re = 3.52× 106
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Turbulent flow around the L1T2 high lift configuration

Freestream conditions: M = 0.197, α = 20.18◦ and Re = 3.52× 106
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Turbulent flow around the L1T2 high lift configuration
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Turbulent flow around the L1T2 high lift configuration
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Turbulent flow around the L1T2 high lift configuration
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Turbulent flow around the L1T2 high lift configuration
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The DLR-F6 wing-body configuration without fairing

I The original mesh of 3.24× 106 elements
has been agglomerated twice.

I The elements of the coarse mesh of 50618
elements are curved based on additional
points taken from the original mesh geometry

curved mesh with lines given by polynomials of degree 4
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Subsonic turbulent flow around the DLR-F6 wing-body

Modification of the
DPW III test case:

I M = 0.5 (instead
of M = 0.75)

I α = −0.141
(instead of target
lift Cl = 0.5)

I Re = 5× 106

DG solutions
on coarse mesh
of 50618 curved
elements.

coarse mesh 2nd order solution

3rd order solution 4th order solution
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Subsonic turbulent flow around the DLR-F6 wing-body

TAU on original grid 3rd order solution

after one refinement of coarse mesh
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Subsonic turbulent flow around the DLR-F6 wing-body

TAU on original grid 3rd order solution

after one refinement of coarse mesh
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Subsonic turbulent flow around the DLR-F6 wing-body

Adjoint-based refinement for Cd:

Mesh after 2 adjoint-based refinement steps

Density adjoint
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Subsonic turbulent flow around the DLR-F6 wing-body

Adjoint-based refinement for Cd:

Mesh after 2 adjoint-based refinement steps

Density adjoint

Convergence of Cd

(global mesh refinement):
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Subsonic turbulent flow around the DLR-F6 wing-body

Adjoint-based refinement for Cd:

Mesh after 2 adjoint-based refinement steps

Density adjoint

Convergence of Cd

(global & anisotropic h-refinement):
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Subsonic turbulent flow around the DLR-F6 wing-body

Adjoint-based refinement for Cd:

Mesh after 2 adjoint-based refinement steps

Density adjoint

Convergence of Cd

(global, anisotropic h- & hp-refinement):
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The VFE-2 delta wing with medium rounded leading edge

I The original mesh of 884 224 elements has
been agglomerated twice.

I The elements of the coarse mesh of 13 816
elements are curved based on additional
points taken from the original mesh

geometry

original mesh curved coarse mesh with lines

with straight lines given by polynomials of degree 4
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Fully turbulent flow around the VFE-2 delta wing configuration

Underlying flow case U.1 in the EU-project IDIHOM

The VFE-2 delta wing with medium rounded leading edge
at two different flow conditions:

I U.1b: RANS-kω, subsonic flow at M = 0.4, α = 13.3◦ and Re = 3× 106

I U.1c: RANS-kω, transonic flow at M = 0.8, α = 20.5◦ and Re = 2× 106
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Subsonic flow around the VFE-2 delta wing

U.1b: Fully turbulent flow at M = 0.4, α = 13.3◦ and Re = 3× 106

coarse mesh with

13 816 curved elements

cp distribution

5th order solution vs. experiment (PSP)
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Subsonic flow around the VFE-2 delta wing

U.1b: Fully turbulent flow at M = 0.4, α = 13.3◦ and Re = 3× 106

residual-based refined mesh with

84 348 curved elements

cp distribution

4th order solution vs. experiment (PSP)
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Subsonic flow around the VFE-2 delta wing

U.1b: Fully turbulent flow at M = 0.4, α = 13.3◦ and Re = 3× 106

4th-order solution on residual-based refined mesh with 84 348 curved elements

2nd-order solution on residual-based refined mesh with 562 892 curved elements
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Subsonic flow around the VFE-2 delta wing
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Fully turbulent flow around the VFE-2 delta wing configuration

Underlying flow case U.1 in the EU-project IDIHOM

The VFE-2 delta wing with medium rounded leading edge
at two different flow conditions:

I U.1b: RANS-kω, subsonic flow at M = 0.4, α = 13.3◦ and Re = 3× 106

I U.1c: RANS-kω, transonic flow at M = 0.8, α = 20.5◦ and Re = 2× 106

requires shock capturing
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Shock-capturing based on artificial viscosity (1)

Nsc(uh, v) ≡
∑

κ

∫
κ

ε(uh)∇uh : ∇vdx ≡
∑

κ

∫
κ

εklm(uh)∂xl
um

h ∂xk
vm dx,

I For the compressible Navier-Stokes equations (2nd order DG discretization), 1

εklm(uh) = Cε δklh
2−β
k Rm(uh), k, l = 1, . . . , d ,m = 1, . . . , n,

Rm(uh) =
n∑

q=1

|Rq(uh)|, m = 1, . . . , n,

where R(uh) = (Rq(uh), q = 1, . . . , n) is the residual of the PDE given by

R(uh) = −∇ · (Fc(uh)−Fv (uh,∇uh)) .

1 R. Hartmann. Adaptive discontinuous Galerkin methods with shock-capturing for the

compressible Navier-Stokes equations. Int. J. Numer. Meth. Fluids, 51(9–10):1131–1156, 2006.
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Shock-capturing based on artificial viscosity (2)

Nsc(uh, v) ≡
∑

κ

∫
κ

ε(uh)∇uh : ∇vdx ≡
∑

κ

∫
κ

εklm(uh)∂xl
um

h ∂xk
vm dx,

I For the RANS-kω equations (2nd and higher order discretization),2

εklm(uh) = Cε bkblh
2
κ fp(uh)

|Rp(uh)|+ |sp(u
+
h , u−h )|

p
, b =

∇p

|∇p|+ ε′

Rp(uh) =
d+2X
m=1

∂p

∂um
Rm(uh), sp(u

+
h , u−h ) =

d+2X
m=1

∂p

∂um
sm(u+

h , u−h ),

with R(uh) = −∇ · F c(uh),Z
κ

sm(u+
h , u−h ) vh dx =

Z
∂κ

`
H(u+

h , u−h , n−)−F c(u+
h ) · n+´

m
vh ds

2 F. Bassi et. al. Very high-order accurate Discontinuous Galerkin Computation of transonic

turbulent flows on Aeronautical configurations, ADIGMA, NNFMMD 113, 2010.
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Shock-capturing based on artificial viscosity (combines 1 and 2)

Nsc(uh, v) ≡
∑

κ

∫
κ

ε(uh)∇uh : ∇vdx ≡
∑

κ

∫
κ

εklm(uh)∂xl
um

h ∂xk
vm dx,

I For the RANS-kω equations (2nd and higher order discretization)

εklm(uh) = Cε δkl h̃
2
k fp(uh)

|Rp(uh)|
p

, k, l = 1, . . . , d , m = 1, . . . , d + 2,

Rp(uh) =
d+2X
m=1

∂p

∂um
Rm(uh),

R(uh) = S(uh,∇uh)−∇ · F c(uh) +∇ · F v (uh,∇uh),

h̃i = hi/(degree + 1),

where hi is the dimension of the element κ in the xi -coordinate direction
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Transonic flow around the VFE-2 delta wing

U.1c: Fully turbulent flow at M = 0.8, α = 20.5◦ and Re = 2× 106

refined mesh with

201 259 curved elements

cp distribution

4th order solution vs. experiment (PSP)
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Transonic flow around the VFE-2 delta wing

U.1c: Fully turbulent flow at M = 0.8, α = 20.5◦ and Re = 2× 106

4th-order solution on residual-based refined mesh with 201 259 curved elements
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Transonic flow around the VFE-2 delta wing

U.1c: Fully turbulent flow at M = 0.8, α = 20.5◦ and Re = 2× 106

4th-order solution on residual-based refined mesh with 201 259 curved elements
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Transonic flow around the VFE-2 delta wing

U.1c: Fully turbulent flow at M = 0.8, α = 20.5◦ and Re = 2× 106

4th-order solution on residual-based refined mesh with 201 259 curved elements
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Transonic flow around the VFE-2 delta wing

U.1c: Fully turbulent flow at M = 0.8, α = 20.5◦ and Re = 2× 106

4th-order solution on residual-based refined mesh with 201 259 curved elements
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Transonic flow around the VFE-2 delta wing

U.1c: Fully turbulent flow at M = 0.8, α = 20.5◦ and Re = 2× 106

cp
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Transonic flow around the VFE-2 delta wing

U.1c: Fully turbulent flow at M = 0.8, α = 20.5◦ and Re = 2× 106

cp and M = 1 isosurface
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Transonic flow around the VFE-2 delta wing

U.1c: Fully turbulent flow at M = 0.8, α = 20.5◦ and Re = 2× 106

cp and M = 1 isosurface zoom of M = 1 isosurface
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Summary

I Higher-order discontinuous Galerkin methods

I Error estimation and adaptive mesh refinement for force coefficients

I Residual-based mesh refinement

I Numerical results for aerodynamic flows around
I the 3-element L1T2 high-lift configuration
I the DLR-F6 wing-body configuration
I the VFE-2 delta wing configuration (subsonic and transonic)

Computations have been performed with the DLR-PADGE code

Thank you

35 / 35DG methods for aerodynamic flows

Ralf Hartmann, Tobias Leicht


