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SUMMARY

In this paper we present a Discontinuous Galerkin (DG) method designed to improve the accuracy and efficiency of
laminar flow simulations at low Mach numbers using a fully implicit scheme. The algorithm is based on the flux
preconditioning approach, which modifies only the dissipative terms of the numerical flux. This formulation is quite simple to
implement in existing implicit DG codes, it overcomes the time-stepping restrictions of explicit multistage algorithms, is
consistent in time and thus applicable to unsteady flows. The performance of the method is demonstrated by solving a laminar
flow past a NACAO012 airfoil at different low Mach numbers using various degrees of polynomial approximations.
Computations with and without flux preconditioning are performed on different grid topologies to analyze the influence of the
spatial discretization on the accuracy of the DG solutions at low Mach numbers.

1. INTRODUCTION

Low Mach number flows or locally incompressible flows
typologies are manifold and of great practical interest: high-
speed flows with large embedded regions of low velocity, low-
speed flows that are compressible due to density changes
induced by heat sources, problems where compressible and
incompressible flow at varying Mach numbers occur side by
side. Typical industrial examples of compressible low speed
flows can be found in natural convection in gas or liquid
phase, subsonic combustion, heat engines or burners and heat
transfer, in heat exchangers, in rocket motor flows where the
Mach number is zero at the closed end and supersonic at the
divergent nozzle exit, in high speed flows with large
embedded recirculation zones, in flow over a wing at high
angle of attack and others.

Nevertheless, algorithms used for compressible flows suffer
from a lack of accuracy and slow convergence to solve low
Mach number flows in which the density is almost constant
[1]. The reason for the bad convergence is the large disparity
between acoustic and convective wave speeds that causes the
governing equations to be ill-conditioned (stiffness problem).
The decreasing accuracy results from a lack of artificial
dissipation for small Mach number, as addressed by Guillard
and Viozat [2] for upwind schemes with their asymptotic
analysis for the Euler equations. The most general approach to
overcome the stiffness problem is based on the
preconditioning strategy. This technique artificially modifies
the acoustic wave speeds of the governing equations
drastically reducing the condition number and improving the
convergence process. However, the time derivative

preconditioning destroys the time accuracy and it can be
applied to steady-state simulations only. Furthermore, the
accuracy for nearly incompressible inviscid and viscous flows
can be improved by preconditioning, modifying the inviscid
dissipation term of the numerical flux function. In particular,
the preconditioned governing equations preserve the accuracy
of numerical solutions. Some of the most recognized local
preconditioners for laminar flows were proposed by Choi and
Merkle [3], Turkel [4,5], Lee and van Leer [6] and Weiss and
Smith [7], respectively.

In this paper we extend the DG low Mach number
preconditioning technique already implemented by the authors
for Euler equations [8] to the viscous flows. The Bassi and
Rebay’s BR2 scheme is employed for the dicretization of the
diffusive terms [9]. The conservative Navier-Stokes equations
are written in terms of primitive variables, more suitable for
low Mach number computations, and iterated to the numerical
solution using an implicit scheme. According to [10], explicit
integration schemes suffer from severe time stepping
restrictions computing low speed flows, hence an implicit
scheme is more appropriate for this kind of computations. In
particular, we found [8] that preconditioning only needs to be
applied to the numerical flux function (flux preconditioning
technique) for guaranteeing accuracy and convergence rate
improvements. Furthermore, this formulation is consistent in
time and could directly be used to compute unsteady low
Mach number flows without resorting to dual time-stepping
techniques [7].

The aim of this paper is to assess the capability of the DG
method in solving laminar low Mach number flows. The
method yielding a minimal amount of dissipation is well
suited for the solution of the Navier-Stokes equations in the



low Mach number limit. The results show that accurate
solutions on relatively coarse quadrangular and triangular
meshes can be computed using a high-order representation of
the unknowns, highlighting the influence of the spatial
discretization on the lack of accuracy exhibit by the upwind
schemes at low Mach numbers. Furthermore, we demonstrate
that the flux preconditioning approach clearly improves both
the accuracy and efficiency of the viscous DG solver.

The outline of the paper is as follows. In section 2 we
present the compressible Navier Stokes equations in
conservative formulation and primitive variables. In Section 3
we present the DG BR2 discretization of the governing
equations, the boundary conditions and the preconditioned
numerical flux function. In Section 4 we give some detail on
the implicit time stepping schemes employed. The
performance of the numerical scheme is then demonstrated in
Section 5 by computing a viscous flow around a NACA0012
airfoil for different low Mach numbers, grid topologies and
degrees of polynomial approximation. Finally, a few
conclusions are drawn in Section 6.

2. GOVERNING EQUATIONS

The conservative variables are commonly used in
compressible flow computation because they are more
accurate to capture shocks. Nevertheless, as Mach number
tends to zero, the density becomes constant and the choice of
pressure p as a dependent variable proved to be more adequate
[11]. Moreover, for viscous flow, temperature gradients have
to be computed for the thermal diffusion terms, so it is also
more convenient to work with temperature. Therefore we
express the compressible Navier-Stokes equations in
conservative form based on the set of primitive variables
q = [p,u,v,T]" as follows:

7]
r=;+V-F.(q)=V-F,(qVa), (1)

where F. = (f.,g.) and F, = (f,, g,) are the inviscid and
viscous flux vectors respectively, given by
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pis the fluid density, u and v are the components of the
velocity v, p is the pressure and E is the total internal energy
for unit mass. The total enthalpy for unit mass, H, is given by
H = E + p/p. The shear stress tensor components 7;; and the
heat flux vector components q;, of viscous flux vectors can be
calculated as

du v
Tyy = (Zya+/1v-v), Tyy = (Zu@+/1v-v),

du OJdv
Txy = Tyx =ﬂ(@+a),

aT aT
q, = —ka, qy = —ka .

The transformation matrix I' from conservative to primitive
variables is given by

I[ Pp 0 0 Pr ]I
u 0 u
T = | pp p Pt I’ (2)
[ PpV 0 »p prv J
ppH—1 pu pv prH+pC,
with
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In order to close the system of equations, the Navier-Stokes
equations must be augmented by algebraic expressions which
relate the internal energy E, the pressure p, the dynamic
viscosity u, the second viscosity coefficient A and the
conductivity coefficient k to the thermodynamic state of the
fluid. For an ideal gas, assuming that the fluid satisfies the
equation of state of perfect gas, the pressure is given by

2 2
p=ply—1[E - %], where v is the ratio of specific heats

of the fluid, given by y=2—p. The dynamic viscosity

coefficient p© can be approximated using the Sutherland
3
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formula u—t = TOT (T—O)z, with Ty, py and C depending on the
gas. Finally we have p, = %and pr =— ?.

3. DG DISCRETIZATION

The BR2 scheme [9] for the DG discretization of the
Navier-Stokes equations can be obtained introducing the
auxiliary variable z = Vq and reformulating Eq. (1) as a
system of two first order equations,

z=Vq,
dq
FE+ V.-F.(q) =V-F,(q,2),

equipped with suitable initial and boundary conditions. To
discretize in space, we define V, to be the space of
discontinuous vector-valued polynomials of degree n, on a
subdivision 7, of the domain Q into non-overlapping elements
such that Q0 = Uke,, K. Thus, the solution and test functions
space is defined by

Vh = {‘Uh € LZ(Qh):Uth € Pn(K) VK € Th},

where P, (K) is the space of polynomial functions of degree at
most n. By approximating the unknown zandq with the
discrete versions z, €V, andgq, € V,, considering the
discrete test functions u, €V, andwv, € V,, and finally
applying the techniques described in [9], it is possible to
express the auxiliary variable z,, as sum of two contributions:

zplo, = Van + R([q.]o),
Zhll"h = th + neRe([[qh]]),



where (), is the discrete approximation of the domain, 3, the
boundary, I} the set of internal edges and T, =T}’ U 3Q,.
R, ([q,]) and R([q,],) are, respectively, the local and global
lifting operators, defined as

k
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with

_( Iq4] on TP
lanlo = {(qhh— q,) on a;;‘h’
[q,] = (@, )" + (g, n)~,

and {(:)} denoting the average between left (-)~ and right
state (-)*, see Fig. 1.

Fig. 1 Two neighboring elements K" and K" sharing edge E.

Each local lifting operator is not null only on the one or two
element K tand K~ adjacent to the generic edge E. 1, is called
“penalty” parameter and its lower bound is estabilished as the
number of neighbours of the generic element K, to guarantee
the stability of the method.

In this way it is possible to evaluate F,(qy, z;,) as

F,(qn zp)la, = F,(Vq, + R([q,10)).
F,(qn zp)Ir, = F,(Vq, +n.R.([q,])).

Therefore, the BR2 formulation of the system (1) is given
by,
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where H(q,",q,~,n) and H(q,",q,", n) are the numerical
flux functions at the interior and boundary faces, respectively,
and n is the unit outward normal vector.

We underline that T is only the transformation matrix from
conservative to primitive variables and it isn’t involved in the
preconditioning. In this way the numerical scheme maintains
the temporal consistency and can be used for non-stationary
problems.

The spatial DG discretization of Eq. (4) results in the
following global system of equations:

M2 +R=0, (5)

where Q and R are the global vectors of degrees of freedom
(dofs) and residuals, respectively, and My stands for the
discretization of the first integral of Eq. (4).

3.1 Boundary Conditions

In the case of the Navier-Stokes equations boundary
conditions must be imposed on the boundary data and on their
gradients, for the computations of viscous terms. At far-field
we employ the non-preconditioned boundary condition [12],
because the flux preconditioning technique does not alter the
time dependence of the equations. At the wall boundary we
impose the no slip condition (on velocity components) plus the
adiabatic condition (on heat flux). We underline that, as shown
by Bassi and Rebay [13], high order DG methods are highly
sensitive to geometry representation. Thus it is necessary to
adopt a high order representation of the domain boundary. To
this aim, in this work, the geometry is represented using a
nodal Lagrange basis according to [14].

3.2 Numerical Flux Function

In this work we employ the Roe’s approximate Riemann
solver [15] to evaluate the numerical flux function at the
interface between elements.

The standard formulation of the numerical flux, for the
primitive variables q is

1
H(@"q W) =5(F.(q") n+F.(q) n
_D(q+, q_,n)AQ),

where the dissipative term D(q*, q~, ) can be evaluated as,

+ - — -1y — -1 (9Fc
D(q*,q~m) = T(TIAIT) =1 (52 n) .

A =diag{v-n,v-n,v-n+c,v-n—c} is the diagonal
matrix of eigenvalues and T is the modal matrix that
diagonalizes I'"1 (aa—Fqc . n). The dissipation matrix is computed

using Roe’s average [16].

It was demonstrated in [2] that at low Mach number this
numerical flux function produces an incorrect physical
behaviour. In particular, the pressure fluctuations, that in the
continuous case scale with squared Mach number, in the
discrete case scale in order of Mach. To extend the validity of
the Roe’s numerical flux function at the incompressible limit,
we use the low Mach number preconditioning technique
originally proposed by Weiss & Smith in [7] for FV schemes,



and latter extended to DG scheme, for inviscid flows by the
authors [8]. To this purpose the transformation matrix I' from
conservative to primitive variables is replaced by the
preconditioning matrix T as follows

_ _ _(F
D(q*q, =rr—1( c. )
(q*,q7,n) | aq"|

The Weiss and Smith preconditioning matrix T is obtained
from (2), replacing p,, with 6:

0 0 0 pr
- Ou p 0 pru
|1 Ov 0 »p prv ’

OH -1 pu pv prH+ pC,

1
o=(—-LC).
Uz pGC,
Here, U, is a reference velocity which, for an ideal gas, is
defined as

where 0 is given by

&c if lv-n|<ec
U, = |v-n| if ec<|v-mn|<c,
c iflv.n|>c

c is the acustic speed and € is a small number included to
prevent singularities at stagnation points. € is chosen as O (M)
according to [8].

Weiss and Smith proposed for viscous computation to limit
the reference velocity such that it does not become smaller
than the local diffusion velocity [7]. Colin Y et al. proposed a
more accurate limitation based on isentropic Mach number
[17]. Nevertheless, DG computations showed that it is better
not introducing the viscous limitation for aerodynamic
simulations, like observed by Unrau and Zingg [18] for the
finite volume discretization.

4. TIME DISCRETIZATION OF NAVIER STOKES
EQUATIONS

As demonstrated in [10] by Birken and Meister the low Mach
number preconditioning approach combined with an explicit
time integration scheme suffers from stability problems if the
time step does not satisfy the requirement to be 0(M?) as the
Mach number tends to zero. In order to overcome this severe
disadvantage implicit method are usually employed. In this
work we use the implicit backward Euler scheme:

& E n__— _Rpnh
2] A = R, ©6)

n
where AQ" = Q"1 — QP ‘ZLQ is the Jacobian matrix of the

n
DG space discretization and [I‘Z_tr_l_%] denotes the global
n
system matrix. The matrix [1:[—: + ‘ZLQ can be regarded as an
Ni X N block sparse matrix where Ny is the number of

elements in 7, and the rank of each block is m X N ¢, where

NJys is the number of dof for each of the m primitive
variables in the generic element K. The Jacobian matrix of the
DG discretization has been computed analytically (except for
the computation of the dissipative part of the numerical flux
that has been computed numerically) without any
approximation and, using very large time steps, the method
can therefore achieve quadratic convergence in the
computation of steady state solutions. For the backward Euler
scheme and in the limit At - oo Eq. (6) is in fact identical to
one iteration of the Newton method applied to the steady
discrete problem. To solve Eq. (6) we have used the restarted
GMRES algotithm with ILU(0) available in the PETSc [19]
library.

5. NUMERICAL RESULTS

In order to demonstrate the capability of the DG method in
solving laminar low Mach number flows we consider the flow
past a NACAO0012 airfoil at zero angle of attack and at a
Reynolds number = 500. The simulations have been
performed with and without the flux preconditioning approach
at several Mach numbers, M =107, M =1072 and M =
1073, using linear (P;), quadratic (P,) and cubic elements
(P;). Two grid topologies (quadrangular and triangular) are
used in order to investigate the behaviour of both the standard
and the preconditioned DG method for different element
shapes. The C-type quadrangular mesh contains 1792
elements. The triangular mesh contains 3584 elements
resulting from the triangulation of the quadrangular one (Fig.
2).

The computational results are organized in two sections, one
focusing on the convergence of the residuals and the other on
the accuracy of the converged solutions. As regards the
convergence of the residuals we present plots of the
normalized L, norm of residuals versus number of iterations
and versus CPU time. As regards the accuracy of the
converged solutions, the normalized pressure fields are
presented for a qualitative comparison.

Fig. 2 Computational Grids.

5.1 Convergence

The convergence histories are shown only for the
quadrangular grid as similar histories are obtained on the
triangular one. The results are presented for fixed GMRES
parameters (number of Krylov subspace vectors = 120,
number of restarts = 1 and relative tolerance to stop iterative
solution = 107%). Fig 3 compares the history of residuals
versus the number of implicit iteration steps of the backward



Euler scheme with and without flux preconditioning. The plots
show a deterioration in the convergence rate without
preconditioning as the Mach number gets smaller whilst the
preconditioned  scheme always produces quadratic
convergence. The effect is appreciable at M = 1072 and more
evident at M =10"3 At M =10"! both the non-
preconditioned and preconditioned DG schemes converge at
about the same convergence rate independently of the
polynomial degree. Furthermore the corresponding non-
preconditioned and preconditioned residual histories decrease
about the same order of magnitude. In particular, the residual
of velocity components are indistinguishable, whereas the
non-preconditioned residuals of pressure and temperature
present a slightly larger decrease than the corresponding
preconditioned one. This behaviour becomes more evident at
M = 1072, and at M = 10~3 for linear elements. The major
benefits of preconditioning technique are shown at M = 1073,
for quadratic and cubic elements, where the convergence of
the numerical solution is not reached without preconditioning.

We conclude that, with the chosen GMRES parameters, the
flux preconditioning improves the convergence rate of the
numerical solution. This is due to the effect of low Mach
number preconditioning on the linear system matrix, through
the Jacobian of the residuals. In particular the full convergence
of the residuals is reached quadratically in about 10 iterations,
independently of both Mach number and polynomial degree,
like for the inviscid case [8].
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Fig. 3 History of residuals versus number of iterations for the quadrangular grid. M = 10~ (left column), M = 10~2 (middle
column) and M = 1073 (right column). Linear (P, top row), quadratic (P, middle row) and cubic (P; bottom row) elements.
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Fig. 4 History of residuals versus CPU time for the quadrangular grid. M = 107 (left column), M = 10~2 (middle column) and
M = 1073 (right column). Linear (P, top row), quadratic (P, middle row) and cubic (P; bottom row) elements.

Fig. 4 compares the history of residuals versus CPU time
(seconds), computed on the quadrangular grid with and
without flux preconditioning. The plots show that, using the
non-preconditioned Roe’s flux, the overhead in terms of CPU
time increases as the Mach number gets smaller and the
polynomial degree increases, whilst it is almost independent of
the Mach number with flux preconditioning. We conclude that
the preconditioning improves the efficiency of the implicit
solver, reducing the overhead in terms of CPU time.

Fig.5 summarizes the performance of the GMRES solver
with (right column) and without (left column) low Mach
number preconditioning. The graphs show the results for the
P,, P, and P; solutions at M = 1072, Similar results hold also
for M = 1071 and M = 1073. The plots on the top row show
the number of GMRES iterations (open symbols) and the
logarithm of CFL number (solid symbols), while those on the
bottom row show the ratio between the L, norms of the last
and the first residual of the GMRES iterative solution. The
quantity on the x-axis is the number of non-linear iterations.
We can observe that increasing the CFL number the
computations performed without low Mach number
preconditioning rapidly use up the maximum number of
GMRES iterations (240) without satisfying the required six-

order drop of residuals. Instead the low Mach number
preconditioning improves the efficiency of GMRES solver so
that the preconditioned solutions require somewhat less than
240 GMRES iterations to solve the linear system within each
time step, even for the highest CFL numbers: this can be
explained with the improved conditioning of the linear system
matrix. We notice that in comparison to the inviscid case [8] a
higher number of Krylov subspace vectors was used (120
instead of 60), with the same number of restarts (1) and
relative tolerance (107°). Finally we mention that, at M =
1072, the cost to compute the analytical Jacobian relative to
the computational cost of a full time step using 240 GMRES
iterations is around 31%, 41% and 60% for the P;, P, and P,
solutions, respectively.
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Fig. 5 Behaviour of GMRES solver with (right column) and without (left column) low Mach number preconditioning for
M =102,

5.2 Accuracy

In the following we present the contour plots of the

. P~Pmi
normalized pressure, defined as py, -, = ———-—, computed
Pmax~Pmin

on the quadrangular and triangular grids. Fig. 6 shows the
isolines of normalized pressure at M = 10™2. We see that the
preconditioned solution is more accurate than the non-
preconditioned one. The loss of accuracy of the non-
preconditioned solution is less evident increasing the
polynomial degree. In particular we obtain an acceptable level
of accuracy without preconditioning only using P; elements.
Furthermore, for a given Mach number, the higher the
polynomial degree, the lower is the difference between the
preconditioned and the non-preconditioned solutions. In such
cases the preconditioning allows to significantly reduce the
computational effort. We note that for a given polynomial
degree the non-preconditioned solution worses as the Mach
number reduces.

In Fig. 7 we compare the contours of normalized pressure
without (top row) and with (middle row) preconditioning, near
the leading edge, computed on a quadrangular grid, at
M = 1073, for linear P, (left column), quadratic P, (central

column), and cubic P; (right column) elements. The non-
preconditioned contours at M = 0.4 (bottom row) are also
shown as reference. It is evident that approaching the
stagnation point the solution degrades and that this effect
reduces by increasing the degree of polynomial
approximation.

Fig. 8 shows the same local analysis of Fig. 7, for the
triangular grid. Overall, it is worth noting that also in the case
of the Navier-Stokes equations, the DG discretization on
triangular grid yields remarkably accurate solutions at low
Mach number even without preconditioning, like found for the
inviscid case [8]. In particular, the preconditioned and the non-
preconditioned contours of normalized pressure are almost
indistinguishable using P; elements, whereas some small
differences can be seen in the P; and P, solutions. The marked
influence of the geometrical shape of the elements on the
accuracy of the Roe’s flux in the low Mach number limit
could be explained by the asymptotic analysis recently
performed by Rieper and Bader [20,21] for the first-order Roe
scheme. Our current work seems to indicate that low order DG
schemes face the same problems as the standard finite volume
upwind schemes: at low Mach number they only work on
triangular elements.
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Fig. 6 Contours of normalized pressure with and without preconditioning for quadrangular grid. M = 1072, Linear (P, top row),
quadratic,( P, middle row) and cubic (P; bottom row) elements.
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Fig. 7 Quadrangular grid: contours of normalized pressure near the leading edge for M = 10~3, non-preconditioned (top row)
preconditioned (middle row) and non-preconditioned at M = 0.4 (bottom row). Linear P, (left column), quadratic P, (central

column), and cubic P; (right column) elements.
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Fig. 8 Triangular mesh: contours of normalized pressure near the leading edge for M = 1073, non-preconditioned (top row),
preconditioned (middle row) and non-preconditioned at M = 0.4 (bottom row). Linear P, (left column), quadratic P, (central

column), and cubic P; (right column) elements.

10




6. CONCLUSIONS

We have presented the application of a preconditioned DG
discretization and a fully implicit time integration method to
the numerical solution of the Navier-Stokes equations at low
Mach numbers. The algorithm employs the flux
preconditioning approach which modifies only the dissipative
terms of the numerical flux and thus preserves the time
consistency of the governing equations. The performance of
the method is demonstrated by considering a flow past a
NACAO0012 airfoil at different low Mach numbers. The
simulations have been performed using piecewise linear,
quadratic and cubic elements (corresponding to second-, third-
order and fourth-order accurate space discretizations) on
quadrangular and triangular grids. The system of equations has
been iterated to the steady-state using the backward Euler
scheme. In all the tests the implicit scheme turns out to be
efficient using just the modified numerical flux function.
Furthermore, as for the inviscid case, the laminar
computations show that the flux preconditioning approach is
mandatory to obtain accurate solutions on a relatively coarse
quadrangular grid. In contrast to that, the DG discretization on
the triangular grid yields remarkably accurate solutions even
without preconditioning.

NOMENCLATURE

c acustic speed [-]

C Sutherland's constant [-]

C,, specific heat at constant pressure [-]
C, specific heat at constant volume [-]

D dissipation matrix [-]

E generic edge of the element [-]

E total internal energy for unit mass [-]

f ¢ x-component of inviscid flux vector [-]
F . inviscid flux vector [-]

f» x-component of viscous flux vector [-]
F,, viscous flux vector [-]

9. y-component of inviscid flux vector [-]
g, y-component of viscous flux vector [-]
H total enthalpy for unit mass [-]

H numerical flux function vector [-]

k conductivity coefficient [-]

K generic element of the domain [-]

m number of equations (m =4 in 2d) [-]
M Mach number [-]

M| mass matrix including I [-]

n time level [-]

n degree of polynomial [-]

1 unit outward normal vector [-]

Ny number of elements in 7, [-]

NK, ¢ number of dofs per equation and element [-]

p pressure [-]

Pmin Minimum pressure [-]

Pmax Maximum pressure [-]

Pnorm Normalized pressure [-]

P, space of polynomial functions of degree at most 7 [-]
qy heat flux vector component [-]

q primitive variables vector [-]

q;, discrete version of the primitive variables vector [-]
Q global vector of dofs [-]
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R global lifting operator [-]

R global vector of residuals [-]

R, local lifting operator [-]

t time [-]

T temperature [-]

T, reference temperature [-]

T modal matrix [-]

u x-velocity component [-]

u,, discrete test functions vector [-]

U, reference velocity [-]

v y-velocity component [-]

v velocity vector [-]

v,, discrete test functions vector [-]

V, space of discontinuous vector-valued polynomials of
degree n [-]

z auxiliar variables vector [-]

z,, discrete version of the auxiliar variables vector [-]

y ratio of specific heats of the fluid [-]

I} set of internal edges [-]

[}, set of internal and boundary edges [-]

I' transformation matrix from conservative to primitive
variables [-]

T preconditioning matrix [-]

€ preconditioning parameter [-]

1. penalty parameter [-]

6 preconditioning parameter [-]

A second viscosity coefficient [-]

A diagonal matrix of eigenvalues [-]

u dynamic viscosity [-]

U, reference viscosity at reference temperature [-]

p density [-]

pp partial derivative of density with respect to pressure at
constant temperature [-]

pr partial derivative of density with respect to temperature at
constant pressure [-]

T, subdivision of the domain [-]

7;; shear stress tensor component [-]

Q domain [-]

Q,, discrete approximation of the domain [-]

0Qpexternal boundary of Q, [-]

+ right state [-]
- left state [-]
b boundary state [-]
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SOMMARIO

In questo lavoro estendiamo il metodo di elevato ordine agli elementi finiti discontinui di Galerkin (DG) all’analisi di flussi laminari a basso
numero di Mach, impiegando uno schema implicito per la discretizzazione temporale delle equazioni. L’algoritmo ¢ basato su di una tecnica di
precondizionamento che modifica esclusivamente il termine dissipativo della funzione di flusso numerico. Questa formulazione ¢ piuttosto
semplice da implementare in un qualsiasi codice DG, supera le restrizioni sul time-step tipiche degli schemi espliciti multistadio, ¢ consistente nel
tempo e quindi applicabile a flussi non stazionari. Le prestazioni dello schema sono valutate risolvendo un flusso laminare attorno ad un profilo
NACAO0012 con angolo d’attacco nullo e per differenti numeri di Mach, utilizzando approssimazioni polinomiali della soluzione di diverso grado.
Le simulazioni sono condotte su differenti tipologie di griglia di calcolo, al fine di valutare I’influenza della discretizzazione spaziale sulla
accuratezza e la convergenza delle soluzioni DG a basso numero di Mach.
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