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ABSTRACT: 
 
The classification of hyperspectral images on heterogeneous environments without prior knowledge about the study area is a 
challenging task. Finding potential pure spectral signatures or endmembers (EM) of the various surface materials within an image is 
essential for obtaining accurate classification results. Automated endmember selection techniques, in many cases, return an 
unlabelled result without a relationship to a known material.  
 
This study demonstrates the potential of an automated spectral classification approach for hyperspectral imagery by using a 
comprehensive spectral library including a generalized class structure without the use of prior knowledge of the given scene. The 
classifier works by comparing every unknown image pixel to all labelled known spectra in the spectral library using a mixed measure 
similarity analysis of the spectral information divergence SID (Chang, 2000), the spectral angle mapper SAM (Kruse et. al., 1993) 
and the tangent trigonometric function (Du et. al., 2004). These similarity measures are the main criteria used to assign the class 
membership to a given pixel. In addition, a statistical analysis of the best ten scores identifies the statistical dominant material class 
from the similarity analysis. This statistical approach allows a pixel-related estimation of the classification reliability. 
 
The spectral library comparison classifier (SLC-Classifier) enables the classification of hyperspectral images on heterogeneous 
environments to be as complete as possible (depends on the input spectral library) with results containing both labelled potential pure 
spectra and spectra with low similarity agreement. Pixels with low similarity agreement are mixed pixels and pixels related to 
materials without good representative spectra in the comprehensive spectral library. We demonstrate that this classifier is suitable for 
the identification of surface materials using hyperspectral images were detailed knowledge about the environments does not exist.  
 
 

1. INTRODUCTION 

Many hyperspectral images contain both natural and anthropogenic surface materials. In most cases there is no in-situ knowledge 
about the different surface materials and their related spectral variability. Every supervised classification needs a representative and 
well-prepared training dataset for all important material classes within the image. The quality of the classification result depends on 
the quality of the image-related training dataset and the skill of the user, or expert, who determines the training datasets. Therefore, 
training datasets from different users will typically not produce comparable classification results.  
 
The challenge in developing a good classification method is including spectral characteristics of different material classes. From this 
it follows that comprehensive classification approaches should contain full knowledge about the spectral characteristics and 
absorption features of all relevant material classes. One possible solution to deliver spectral characteristics of known material classes 
to a classification approach is the use of a comprehensive spectral library of image spectra as a training database. Additionally, the 
spectral library of image spectra enables the requirement of the comparableness of several classification results for different test sites.  
 
Research objectives 
 
The objective of this study is to develop a classifier that is able to identify natural and anthropogenic surface materials without local 
spectral knowledge of the hyperspectral image of interest. The idea is to use a comprehensive and well structured hyperspectral 
library of image spectra containing a wide range of predominantly anthropogenic materials (in urban areas) and key representatives 
of the natural surfaces (being aware of the high spectral variability of vegetation). A suitable comparison measure must be chosen to 
compare each image pixel spectra to the known image spectra of the comprehensive spectral library. Finally, the combination of 
various information layers enables the identification of EMs that are subsequently used to derive an area-wide classification of a 
hyperspectral image and to assess the reliability of the classification results. Issues that must be addressed using this approach 
include the incompleteness of the spectral library and mixed pixels. 



 

2. DATA BASE 

2.1 Spectral library of image spectra 

In this study a comprehensive and well structured spectral library is used. The spectral library contains 5,890 spectra comprising 36 
different material classes. The spectra of the library are derived from HyMap imagery from four different test sites in Germany: 
Berlin, Potsdam, Dresden and Munich (Roessner et. al., 2011; Heldens et. al., 2008 and Heiden et. al., 2007). The requirement of 
consistent pre-processing and atmospheric correction for the compiled spectral library was ensured by using the process chain of the 
DLR (Bachmann et. al., 2007) and ATCOR (Richter, 2010). The spectral library includes predominantly a wide range of known 
anthropogenic materials and their within-class spectral variations. Natural materials in the spectral library are included using 
representative spectra, because of their high spectral variability. This study shows that we are able to deal with the low number of 
representative natural spectra and the incompleteness of the spectral library. The number of spectra for the different material classes 
should be uniformly distributed with the requirement that all thematic library classes form a consistent class hierarchy. Additionally, 
the number of meaningful spectra representing each class becomes an important issue as it is useful to describe every material class 
with all possible characteristics and related within-class spectral variability. However, the goal here is not to include every possible 
spectral variation, but only those that are necessary. A consistent and well-structured class hierarchy (Anderson et. al., 1976; Heiden 
et. al., 2007) of the spectral library is necessary to be comparable to other classification approaches or to be able to use different 
generalization levels for an application. Five different generalization levels are defined for the class hierarchy of the spectral library. 
The requirement of the class hierarchy is to be able to sum up every detailed material class to thematic main classes using different 
generalization levels. The main type stands for the highest generalization level (level 1) and the surface material instance (level 5) 
contains a number of instance spectra which represents the within-class variations of surface materials due to e.g. different coating or 
colours characterisations. The surface materials (level 4) are relevant for the interpretation and the visualization of the classification 
results of this paper.  
 

Generalization level Generalization name  Example 
Level 1  Main types  Anthropogenic / artificial surface 
Level 2 Land cover types Building / roofs 
Level 3 Material types Metallic materials 
Level 4 Surface materials Aluminium 
Level 5 Surface material instances Aluminium Instance No. 10 

 
Table 1: Basic class hierarchy structure of the input spectral library. 

 
 
2.2 Hyperspectral image data 

To demonstrate the reliability of the SLC-Classifier, a test site in France (Mende) was chosen, because of the differing material 
occurrences of special material classes (e.g. roof tile) between German cities (used for creating the spectral library) and the French 
town Mende (Fig. 5). The spatial resolution of the test site is 4 m × 4 m covering the reflective part of the electromagnetic spectrum 
in 125 channels (0.45 µm – 2.5 µm) of the HyMap airborne sensor. The size of the test site subset is 1,204 m × 1,204 m and was 
corrected for radiometric artefacts, atmospherically corrected with ATCOR (Richter, 2010) and geometrically corrected with 
ORTHO (Müller et. al., 2005). 
 

3. METHODS 

3.1 Spectral similarity analysis 

The SLC-Classifier uses a similarity analysis of each pixel spectrum of the image compared to all spectra in the spectral library. This 
analysis is based on the SID-SAM mixed measure (Du et. al., 2004), which is calculated by multiplying SID (Chang, 1999 and 
Chang, 2000) by the tangent of SAM (Kruse et. al., 1993) between the spectral pixel signature s and spectral library signature s’. 
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The effect of this combined measure of SID and SAM in Eq. (1) will be a better discriminability of the numerical similarity 
representation of SAM and SID. SAM is almost insensitive to the overall brightness and SID is an improved measure for spectral 
similarity between two spectral signatures using the probabilistic discrepancy (Chang, 2000). The SID(TAN) value of two similar 
spectra will be closer and of two dissimilar spectra will be more distinct (Du et. al., 2004). The SLC-Classifier ranks all the similarity 
values for each pixel and stores the best similarity value in an additional image (Fig. 4). For two identical spectra the SID(TAN) value 
will be zero. 
 
3.2 Best similarity value classification 

The SID(TAN) similarity measure is the main criterion to assign the class membership of the considered pixel. Therefore, every pixel 
in the image will be assigned to the material class with the highest similarity agreement. The target class is defined as the material 



 

class with the highest similarity agreement for the given pixel. For pixel-related reliability estimations an advanced system of rules is 
implemented for the SLC-Classifier: the weighted score occurrence, the statistical dominant material class and the albedo. The 
classification results for the best similarity value classification are shown in Fig. 3. 
 
3.3 Weighted score occurrence 

Using the pixel-related weighted score occurrence p(target class) of the target class an estimation of the statistical reliability can be 
conducted. The target class is defined as the material class of the best ranked similarity value for the given pixel. All different 
material classes which occur in the best ten ranked similarity values are called score classes for the given pixel. The target class is 
one of the score classes. The range of p(target class) is between zero and one hundred percent. Values near one hundred percent are a 
good indicator of a reliable classification. Low values show that one or more additional material classes were scored in the best ten 
ranked similarity values and the classification result for the given pixel could be inaccurate. 
 
The weighted score occurrence is the first reliability calculation of this study and is finally defined in Eq. (5). It uses a statistical 
analysis of the best ten scores of the similarity analysis for a given pixel. For this analysis the target class will be defined as the class 
related to the best similarity value using Eq. (1). The algorithm counts the number of times the target classes scores in the best ten 
similarity values stored in n(score class x = target class). The same will be done for all other score classes and stored in n(score class x). The 
reason for applying weights for the statistical analysis is based on the requirement that all material classes should have the same 
number of spectra in the spectral library. If a material class has more spectra than a spectrally similar, but thematic different class, 
then the classification probabilities will not be equal and the results not representative. For the calculation of the weights using Eq. 
(2) the material class from the best ten similarity values with the largest number of spectra in the spectral library will be used to store 
the related number of library spectra as the variable n(max). The pixel-related score class weights will be calculated for each pixel and 
for all scored classes. All other number of spectra of each scored classes n(score class x) will be scaled with a material class-related 
linear weight w(score class x) from n(score class x) up to n(max). 
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Based on Eq. (2) the pixel-related weighted score occurrence p(target class) of the target class Eq. (5) will be calculated in percentage as 
a statistical measure of the classification reliability of the given pixel. This is the ratio of the weighted number of scores of the target 
class n*(weighted number of score class = target class) and the sum of the weights multiplied with the related number of scores s*(weights of best ten scores) 

of the best ten scores of the similarity values. 
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The variable n*(weighted number of score class x = target class) is calculated by multiplying the number of target class scores n(score class x = target class) 
and the related weight of the target class w(score class x = target class) (Eq. 4). This calculation will be done for all score classes. The number 
of different scored material classes for the considered pixel is stored as k.  
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The pixel-related calculation Eq. (4) of s*(weights of best ten scores) is defined with summed multiplication of all counted scores of the 
different score classes n(score class x) and the class-related linear score class weight w(score class x). 
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An example of the pixel-related weighted score occurrence calculation is shown in Fig. 1. In this example an image pixel is classified 
as a “concrete” material based on the best similarity value (column 2). The column labelled “class relationship” contains the name of 
the scored class and which spectrum from the spectral library was referenced. The number of scores of the target class “concrete” is 
eight of ten. The spectral library comprises 120 “concrete” and 60 “asphalt” spectra with individual weights for the two classes 
calculated using Eq. (2).  
 



 

 
 

Figure 1: Calculation of the weighted score occurrence of a given pixel. 
 
 

3.4 Statistical dominant material class 

The weighted score occurrence Eq. (5) allows for the estimation of the statistical reliability for the best similarity value classification 
assignment of the given pixel. The statistical analysis of the ten best ranked similarity values can also be used for finding the 
statistical dominant material class if the weighted score occurrence value is under fifty percent. This special case usually occurs for 
noisy and mixed pixels where two different classes with nearly the same spectral characteristics look similar to the pixel. Another 
case could occur if a pixel spectrum is similar to two different material classes that are themselves spectrally similar. The calculation 
of the statistical dominant material class of the best ten ranked similarity values provides the second reliability calculation of the 
SLC-Classifier. It will be calculated with Eq. (5) by using the material class with the highest value of the weighted number of scores 
of the target class n*(weighted number of score class = target class) Eq. (3) analysing the best ten ranked similarity values. The statistical dominant 
material class in that case could differ from the best similarity value class. The results of the statistical dominant material class for the 
test site are represented in Fig. 3. 
  
3.5 Albedo 

The third reliability test calculates the ratio between the mean albedo of the reference spectrum and mean albedo of the pixel 
spectrum. For some material classes the overall albedo of the spectrum represents a key spectral characteristic that distinguishes that 
class. For example, the difference in albedo becomes the main criterion to differentiate two spectral similar materials. Therefore, it is 
useful to calculate for each classified pixel the albedo ratio a(s, s’) between the given mean albedo of the pixel spectrum s’ and mean 
albedo o the most similar library spectrum s. 
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If the result of Eq. (6) is >> 1 (much brighter) or <<1 (much darker) the classification reliability could be poor for the given 
materials. The albedo ratio can be used as a knowledge-based indicator of the quality of the classification results (Fig. 4). In the case 
of noisy pixels the albedo ratio value for a given pixel would be much brighter (Fig. 4 right: the white spatial cluster) then the 
reference spectrum of the spectral library.  
 
3.6 Incompleteness of the spectral library 

The SLC-Classifier has the ability to deal with the incompleteness of the spectral library. The similarity measure of Eq. (1) stores the 
best ranked similarity value with the related material class for each pixel. However, it is also possible to determine those spectra with 
the worst similarity measures. These spectra may potentially define important spectra that are missing from the original spectral 
library. Finding those spectra with the worst similarity measures requires a meaningful similarity threshold. Therefore, a statistical 
acceptance was chosen that one percent of the image pixels are considered incorrectly classified. The one percent threshold is based 
on the empirical experience that a comparable classification approach has a much lower accuracy than ninety-nine percent. The 
pixels which are included in the one percent poorly classified boundary will be used as a new training dataset of spectra stored in an 
additional spectral library. Underrating the one percent poorly classified number of pixels will be reasonable because of an additional 
similarity analysis Eq. (1) of the image using the new training dataset of the one percent containing pixels. Every image pixel has the 
opportunity being more similar to one spectrum of the new training dataset than to classification iteration with the spectral library. 
After this calculation the one percent training dataset will grow up to a multiple of the number of poorly classified pixels. The 
classification result will not change, but the calculation of the poorly classified pixel analysis results in an output mask of poorly 
classified pixels (Fig. 5) representing the mixed pixel problem.  



 

4. RESULTS AND DISCUSSION 

4.1 Distribution of the best similarity values of all pixels for the test site image 

 
Figure 2: This plot shows the distribution of the best similarity values for the test site (90,601 pixels). The vertical line (green)  

shows the similarity threshold which was used as an additional spectral library of poorly classified spectra. 
 
The distribution of the ranked similarity values calculated with Eq. (1) shows that a large number of pixels have a high similarity 
value. The border between high similarity values (“pure pixels” having a value near zero) and low similarity values (likely “mixed 
pixels”) is not separable numerically. The worst similarity values near 0.1547 shown in Fig. 2 represent noisy pixels. 
  
4.2 Classification result and statistical indicators for reliability estimation 

 
 

Figure 3: Classification results for the best similarity value (left) and the statistical dominant material class (right). 



 

The two classifications look almost same which stands for a good reliability of the results. Natural materials (e.g. vegetation) are 
good represented, although only representative spectra are included in the used spectral library. The artificial materials of the image 
are well-classified and sealed urban structures can be detected (e.g. polyethylene Fig. 3 arrow 1). 
 
Comparing the classification results for the best similarity value and the statistical dominant material class the greatest differences 
appear for the classes “water/shadow” (Fig. 3 arrow 2) and “dry vegetation/soil” (Fig. 3 arrow 3). “Water” and “shadow” often are 
confused in the classification image, which is expected as they both have very low albedo. “Dry vegetation” is also a challenge as it 
is often a mixed class containing “vegetation” and some degree of background “soil”. Therefore, the spectral signature of “dry 
vegetation” is similar to “vegetation” and “soil”, with differences only in small absorption features. From this it follows that the input 
spectral library does not represent the spectral variability within the test area and should be revised to improve classification results. 
 

 
 

Figure 4: The weighted score occurrence (left) and the albedo ratio (right) for the test site image. 
The albedo ratio values Eq. (6) are multiplied with one hundred to scale them to percentage. 

 
 

Weighted score occurrence  Albedo ratio 
Class range  Distribution Class range  Distribution 

0 % ≤ p < 20 % 14.5 % 0 % ≤ a < 25 % 4.0 % 
20 % ≤ p < 40 % 11.8 % 25 % ≤ a < 50 % 12.8 % 
40 % ≤ p < 60 % 9.3 % 50 % ≤ a < 75 % 24.7 % 
60 % ≤ p < 80 % 11.5 % 75 % ≤ a < 125 % 40.1 % 

80 % ≤ p ≤ 100 % 52.9 % 125 % ≤ a < 250 % 7.8 % 
 250 % ≤ a < 500 % 0.5 % 

500 % ≤ a ≤ 1500% 0.1 % 
 

Table 2: These tables show the percentage class distribution of both images of Fig. 4. 
 
 
To estimate the reliability of the classification the weighted score occurrence using Eq. (5) was calculated and is shown in Fig. 4. 
Table 2 shows that the majority of the pixels have a good statistical reliability of the weighted score occurrence. The lower the 
weighted score occurrence of a pixel (red in Fig. 4, 14.5 % of the image) the greater the probability of confusion between two or 
more similar material classes. Therefore, this measure is a good indicator for the statistical reliability of the classification result. A 
low weighted score occurrence could also be caused by the incompleteness of the spectral library. If the spectral library has not 
enough representative spectra of a material class then the weighted score occurrence value is not representative. A high value of the 
weighted score occurrence represents a good classification reliability (dark green in Fig. 4, 52.9 % of the image) if the best similarity 
value of the pixel is near the statistical minimum (Fig. 2).  
 
Using the albedo ratio as a reliability measure for the discrimination of spectrally similar material classes is meaningful. In some 
cases the albedo is the only distinguishing characteristic between two similar classes. A material-related albedo ratio threshold could 
be an opportunity to estimate the reliability of the classification result. For example, spectral similar material classes like “concrete” 
and “asphalt” which mainly can differentiate using the albedo. The black coloured class range (0 % ≤ a < 25 %) represents mainly 
shadowed pixels. The class range (500 % ≤ a ≤ 1500%) coloured in white shows pixels with specular reflectance characteristics. A 



 

large part (40.1 %) of the image pixels were classified using a reference spectrum with a low deviation of the albedo ratio, shown in 
Table 2.  
 
The two tables show that the used spectral library is well-prepared for classifying the majority of the images pixels for this test site 
and the reliability measures enables the validation of the classified pixels. 
 
4.3 Poorly classified pixel mask 

The poorly classified mask (Fig. 5, left) is the result of the one percent rule (Fig. 2) and an additional iteration of the similarity 
analysis Eq. (1). Using the one percent rule 906 pixels are retained as a training database with the additional iteration of the similarity 
analysis growing the mask to 17,485 pixels (representing 19.29 % of the test site). It shows spatial clusters of similar materials which 
are not well-represented in the spectral library. Mainly vegetation, soil and water pixels are included in the poorly classified pixel 
mask. The low number of urban pixels in the poorly classified pixel mask shows that the spectral library is well-prepared for 
anthropogenic materials. A manual analysis of the spatial clusters was done and examples of the resulting spectra from this manual 
analysis are shown in Fig. 6. 
 

 
 

Figure 5: The mask (left) shows the distribution of the pixels with the lowest similarity values using  
the one percent rule and the similarity analysis from Eq. (1). The RGB-Image (right) shows the true colour  

image of the test site. The locations of four different poorly classified pixels are marked and represented in Fig. 6. 
 

 
 

Figure 6: Spectral signatures of four different pixels derived from the poorly classified pixel mask. 



 

As expected a large number of mixed pixels are contained within the mask. However, new material classes occurring as spatial 
clusters, which are not included in the spectral library, are included in the mask (Fig. 6 cp. spectra 1). In addition, if the spectral 
variability of one material is not representative for the given test site, the mask will contain spatial clusters of the material class with 
a deviation relative to the spectral characteristics to the scored class spectrum (Fig. 6 cp. spectra 2, 3, 4). The main finding is that not 
only mixed pixels are included in the mask but also pure pixels representing material classes which are not included or 
underrepresented in the spectral library. Therefore, this mask forms the basis for improving of the spectral library, such that missing 
material classes or poor representatives of spectral class variability can be dealt with and the disadvantages of an incomplete spectral 
library of image spectra can be minimized. 
 

5. CONCLUSION 

The classification results demonstrate the potential of the SLC-Classifier to classify natural and anthropogenic surfaces. This is 
accomplished by using the similarity analysis of the SID-SAM mixed measure and additional reliability calculations. 
 
The biggest challenges of developing the SLC-Classifier were to deal with the incompleteness of the spectral library, to find criteria 
and indicators for the improvement of the spectral library and to develop a reliability analysis to estimate the classification results. 
The final result contains the classification, the reliability analysis and pixel-related statistical measures. This allows the SLC-
Classifier to consider pure and mixed pixels and within-class spectral variability of surface materials. Additionally, the poorly 
classified mask potentially can be used to improve the spectral library by highlighting missing material spectra and thus, subsequent 
classifications. The challenge for the user is to decide whether to include the new spectra in the spectral library or to use a spectral 
library of local image spectra to improve the current classification results. It is important that the spectral library includes only those 
spectra that are necessary, rather than trying to include every possible spectral variation. 
 
Because of the different reliability measures and the consistent class hierarchy of the spectral library, it is possible to compare the 
classification results of the SLC-Classifier with other classification results of different classifiers or to be integrated in an ensemble 
classification approach. The study shows that a comprehensive spectral library can be used as a quality training database for 
classifying unknown hyperspectral images of heterogeneous environments without prior knowledge about the test site. In addition, 
the use of the SLC-Classifier as an EM extraction technique is possible if the operator defines a decision tree of meaningful 
thresholds using all information layers. 
 

6. OUTLOOK 

The greatest potential of the improvement of the SLC-Classifier exists for the treatment of the incompleteness of the spectral library. 
The mask of potential poorly classified pixels can be used to estimate the incompleteness of the spectral library. The user can use this 
poorly classified mask to search for spectral and spatial clusters containing material classes which are currently not included in the 
spectral library. At this point the user has to decide whether a possibly missing spectrum should be included into the spectral library 
or not. A meaningful solution could be to distinguish both a spectral library containing a large number of comprehensive material 
classes and a spectral library of local image spectra which includes image-related spectra without representative spectral 
characteristics for improving the reliability of the current classification result. 
 
A major challenge with hyperspectral imagery is to identify pure pixels within the given scene. With the estimation algorithms and 
different statistical reliabilities, the SLC-Classifier could potentially allow it to be used for EM detection using hard thresholds for all 
information layers. For example, the potential for an EM is very high if the best similarity ranked class is equal to the statistical 
dominant material class and the weighted score occurrence (Fig. 4 cp. class range: 80 % ≤ p ≤ 100 %) is near one hundred percent. 
Additionally, the best similarity value should be near to the minimum value of the best ranked similarity values (Fig. 2) and deviation 
of the albedo ratio should be low (Fig. 4 cp. class range: 75 % ≤ a < 125 %). With threshold values set or a decision tree for the 
above factors it would be possible to generate a potential pure pixel mask that subsequently could be used to define EMs for 
unmixing.  
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