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ABSTRACT:

The classification of hyperspectral images on logieneous environments without prior knowledge alibet study area is a
challenging task. Finding potential pure spectighatures or endmembers (EM) of the various surfaaterials within an image is
essential for obtaining accurate classificationuitess Automated endmember selection techniquesmamy cases, return an
unlabelled result without a relationship to a knawaterial.

This study demonstrates the potential of an autethapectral classification approach for hyperspédmagery by using a
comprehensive spectral library including a geneealiclass structure without the use of prior kndgteof the given scene. The
classifier works by comparing every unknown imageipto all labelled known spectra in the spediitatary using a mixed measure
similarity analysis of the spectral information éligence SID (Chang, 2000), the spectral angle m&pabt (Kruse et. al., 1993)
and the tangent trigonometric function (Du et. 2004). These similarity measures are the maier@itused to assign the class
membership to a given pixel. In addition, a stetitanalysis of the best ten scores identifiesstiaéistical dominant material class
from the similarity analysis. This statistical apach allows a pixel-related estimation of the d¢fasgion reliability.

The spectral library comparison classifier (SLC-Eifar) enables the classification of hyperspectnahges on heterogeneous
environments to be as complete as possible (depanti®e input spectral library) with results contag both labelled potential pure
spectra and spectra with low similarity agreeméhxels with low similarity agreement are mixed péxand pixels related to

materials without good representative spectraénctmprehensive spectral library. We demonstratetths classifier is suitable for

the identification of surface materials using hgperctral images were detailed knowledge aboutriigaments does not exist.

1. INTRODUCTION

Many hyperspectral images contain both natural @amtiropogenic surface materials. In most casee fisemo in-situ knowledge
about the different surface materials and themtesl spectral variability. Every supervised clasaifon needs a representative and
well-prepared training dataset for all importanttenial classes within the image. The quality of thessification result depends on
the quality of the image-related training dataset the skill of the user, or expert, who determitiestraining datasets. Therefore,
training datasets from different users will typlgaiot produce comparable classification results.

The challenge in developing a good classificatiathad is including spectral characteristics ofat#ht material classes. From this
it follows that comprehensive classification apmtoes should contain full knowledge about the spéatharacteristics and
absorption features of all relevant material clas€ne possible solution to deliver spectral cltaratics of known material classes
to a classification approach is the use of a cohgmsive spectral library of image spectra as aitrgidatabase. Additionally, the
spectral library of image spectra enables the reént of the comparableness of several classditagsults for different test sites.

Resear ch objectives

The objective of this study is to develop a classithat is able to identify natural and anthroptdgesurface materials without local
spectral knowledge of the hyperspectral image tér@st. The idea is to use a comprehensive andstveittured hyperspectral
library of image spectra containing a wide rang@refdominantly anthropogenic materials (in urbaeag)y and key representatives
of the natural surfaces (being aware of the higicspl variability of vegetation). A suitable comigan measure must be chosen to
compare each image pixel spectra to the known inspgetra of the comprehensive spectral libraryaliinthe combination of
various information layers enables the identifisatof EMs that are subsequently used to deriveraa-aide classification of a
hyperspectral image and to assess the reliabifitthe classification results. Issues that must deéressed using this approach
include the incompleteness of the spectral libearg mixed pixels.



2. DATA BASE
2.1 Spectral library of image spectra

In this study a comprehensive and well structupgtsal library is used. The spectral library cameb,890 spectra comprising 36
different material classes. The spectra of theatyprare derived from HyMap imagery from four diffat test sites in Germany:
Berlin, Potsdam, Dresden and Munich (Roessner et2@l.1; Heldens et. al., 2008 and Heiden et. 80,72 The requirement of
consistent pre-processing and atmospheric corre@iothe compiled spectral library was ensuredibing the process chain of the
DLR (Bachmann et. al., 2007) and ATCOR (Richter, 20I0g spectral library includes predominantly a widage of known
anthropogenic materials and their within-class spéoariations. Natural materials in the specfibtary are included using
representative spectra, because of their high igpactriability. This study shows that we are atdedeal with the low number of
representative natural spectra and the incomplsseoiethe spectral library. The number of spedairate different material classes
should be uniformly distributed with the requirernémat all thematic library classes form a consistdass hierarchy. Additionally,
the number of meaningful spectra representing ekds becomes an important issue as it is usefiliésaribe every material class
with all possible characteristics and related witbliass spectral variability. However, the goalehisrnot to include every possible
spectral variation, but only those that are necgsgaconsistent and well-structured class hierar@nderson et. al., 1976; Heiden
et. al., 2007) of the spectral library is necessarpe comparable to other classification approsi@reto be able to use different
generalization levels for an application. Five @iént generalization levels are defined for theslierarchy of the spectral library.
The requirement of the class hierarchy is to be &blsum up every detailed material class to thiemadin classes using different
generalization levels. The main type stands forhigiest generalization level (level 1) and thefae material instance (level 5)
contains a number of instance spectra which repteske within-class variations of surface materéale to e.g. different coating or
colours characterisations. The surface materiail®(l4) are relevant for the interpretation andwisealization of the classification
results of this paper.

Generalization level | Generalization name Example

Level 1 Main types Anthropogenic / artificial fage
Level 2 Land cover types Building / roofs

Level 3 Material types Metallic materials

Level 4 Surface materials Aluminium

Level 5 Surface material instances Aluminium Ins&ahNo. 10

Table 1: Basic class hierarchy structure of the tispectral library.

2.2 Hyperspectral image data

To demonstrate the reliability of the SLC-Classifiartest site in France (Mende) was chosen, beaafudes differing material
occurrences of special material classes (e.g.ti@dfbetween German cities (used for creatinggbectral library) and the French
town Mende (Fig. 5). The spatial resolution of tast site is 4 m x 4 m covering the reflective mdrthe electromagnetic spectrum
in 125 channels (0.45 um — 2.5 um) of the HyMapaine sensor. The size of the test site subse®11m x 1,204 m and was
corrected for radiometric artefacts, atmospherscalbrrected with ATCOR (Richter, 2010) and geometijcabrrected with
ORTHO (Mller et. al., 2005).

3. METHODS
3.1 Spectral similarity analysis

The SLC-Classifier uses a similarity analysis ofrepixel spectrum of the image compared to all speotthe spectral library. This
analysis is based on the SID-SAM mixed measure €Dwal., 2004), which is calculated by multiplyi&dD (Chang, 1999 and
Chang, 2000) by the tangent of SAM (Kruse et. 8193) between thepectral pixel signature andspectral library signature s’

SID(TAN) = SID(s s') x tan(SAM (s ")) (1)

The effect of this combined measure SiD and SAM in Eq. (1) will be a better discriminability of @hnumerical similarity
representation of SAM and SID. SAM is almost ingres to the overall brightness and SID is an imya@® measure for spectral
similarity between two spectral signatures using piobabilistic discrepancy (Chang, 2000). BiB(TAN)value of two similar
spectra will be closer and of two dissimilar spaetill be more distinct (Du et. al., 2004). The SC@&ssifier ranks all the similarity
values for each pixel and stores the best simjladtue in an additional image (Fig. 4). For tweritical spectra th81D(TAN)value
will be zero.

3.2 Best similarity value classification

The SID(TAN)similarity measure is the main criterion to asdigm class membership of the considered pixel. &fbe, every pixel
in the image will be assigned to the material clagh the highest similarity agreement. The targass is defined as the material



class with the highest similarity agreement for gheen pixel. For pixel-related reliability estinmats an advanced system of rules is
implemented for the SLC-Classifier: the weightedrecoccurrence, the statistical dominant materia<land the albedo. The
classification results for the best similarity valciassification are shown in Fig. 3.

3.3 Weighted score occurrence

Using the pixel-relatedveighted score occurrenceRe: cass)Of the target classain estimation of the statistical reliability cae b
conducted. Thearget classis defined as the material class of the best hrdmilarity value for the given pixel. All differg
material classes which occur in the best ten raskedarity values are callesicore classefor the given pixel. The target class is
one of the score classes. The rang@@fe: cass)iS between zero and one hundred percent. Valugsomeahundred percent are a
good indicator of a reliable classification. Lowlwas show that one or more additional materialselasvere scored in the best ten
ranked similarity values and the classificatiorutefor the given pixel could be inaccurate.

The weighted score occurrence is the first religbdalculation of this study and is finally defohén Eq. (5). It uses a statistical
analysis of the best ten scores of the similaritgiysis for a given pixel. For this analysis thegéd class will be defined as the class
related to the best similarity value using Eq. M)e algorithm counts theumber of times the target classes scores in tsetba
similarity valuesstored iNNgcore class x = target class) I N€ same will be done for all othetore classeand stored iMgcore ciass ) The
reason for applying weights for the statistical lgsia is based on the requirement that all matel@dses should have the same
number of spectra in the spectral library. If aenial class has more spectra than a spectrallyiasintiut thematic different class,
then the classification probabilities will not bgual and the results not representative. For theiledion of the weights using Eq.
(2) the material class from the best ten similarajues with the largest number of spectra in trexsgal library will be used to store
the related number of library spectra as the viiaQ.,, The pixel-related score class weights will becgkited for each pixel and
for all scored classes. All otheumber of spectraf each scored class@gore ciass xWill be scaled with anaterial class-related

linear WeightW(score class xfrom n(score class x)UP to n(max)

n
— (max) 2
W(scormlassx) - ( )
n (scoreclassx)

Based on Eq. (2) the pixel-relategighted score occurren@Rage: class)Of the target clasgq. (5) will be calculated in percentage as
a statistical measure of the classification relighof the given pixel. This is the ratio of tiweeighted number afcores of theéarget
classn* eighted number of score class = target cla@d)d thesum of the weights multiplied with the related nunaifescores Sfiueignts of best ten scores)
of the best ten scores of the similarity values.

©)

* = X
n (weighted number ofscorelassx = targetclass) n (scorelassx = targetclass) w (scorelassx= targetclass)

The variablen* yeighted number of score class x = target cidSycalculated by multiplyinghe number of target class SCOregche ciass x = target class)
and the relatedeight of the target classfbre class x = target clas§EQ- 4). This calculation will be done for all sealasses. Theumber
of different scored material classks the considered pixel is storedlas

k
* = 4
S (weights of best tenscores) — z n (scorelassx) x W(scormlassx) ( )
x=1

The pixel-related calculation Eq. (4) 8fueights of best ten scored$ defined withsummed multiplication of alounted scores of the
different score classegsfye ciass xANd theclass-relatedinear score classveightWiscore class %)

*
— loox n (weighted number ofscorelass= targetclass) (5)

p(largel class) *
S (weights of best tenscores)

An example of the pixel-related weighted score oemce calculation is shown in Fig. 1. In this epéran image pixel is classified
as a “concrete” material based on the best siryiladlue (column 2). The column labelled “classati@inship” contains the name of
the scored class and which spectrum from the sgditirary was referenced. The number of scoretheftarget class “concrete” is
eight of ten. The spectral library comprises 126rrete” and 60 “asphalt” spectra with individuatights for the two classes
calculated using Eq. (2).



Image Pixel Best Similarity Value Ranking (Top 10) Weighted Score Occurrence

. Eq. (1) Ranking | SimilarityValue | Class Relationship —I—) Thetarget class is “concrete” (Ranking 7).
The score classes are “concrete” and “asphalt”
.n|><89|5[$§argure [ | DoTTTE Concrets (Spectrum 5) n(scoreclass = “concrefe®) = 8 (of 10 scores)
comparing 2 | 0.00008423 Concrete (Spectrum 9) n(score class ="asphall”) = 2 (of 10 scores)
toall spectra n(scoreclass = “asphalt”) = n(target class)
ofthe spectral 3 | 0.00006542 Asphalt (Spectrum 1) > n(number of “asphalt® spectrain library) = 60
library 4 | 000007458 Concrete (Spectrum 2) n{number of “concrete® spectrain library) = 120
nf{max) = n(number of “concrete” spectrain library)
5 | 0.00008743 Asphalt (Spectrum 39) Eq. (2
Spectral Libral q.(£)
P v 6 | 0.00009062 Concrete (Spectrum 3) w(score class = “asphalt®) = 120 /60 = 2
Concrete 7 | 0.00009132 Concrete (Spectrum 43) w(scoreclass = “concrete) =120 /120 = 1
(120 Spectra) Eq. (3):
Asphalt 8 | 0.00009477 Concrete (Spectrum 44) n*(weighted number of target class “corcrete?) = 8% 1=8
(60 Spectra) 9 | 0.00009598 Concrete (Spectrum 96) n*(weighted number of score class “asphalt) =2 2 =4
Eqg. (4):
10 | 0.00009754 Concrete (Spectrum 53) s*(weights of best ten scores) = 1% 8 + 2% 2 = 12
Eq. (5):

p(target ciass) = 100 % 8/ 12 = 66,67 %

Figure 1: Calculation of the weighted score occureenf a given pixel.

3.4 Statistical dominant material class

The weighted score occurrence Eq. (5) allows ferastimation of the statistical reliability for thest similarity value classification
assignment of the given pixel. The statistical wsial of the ten best ranked similarity values cto de used for finding the
statistical dominant material class if the weighsedre occurrence value is under fifty percentsHpuecial case usually occurs for
noisy and mixed pixels where two different classih nearly the same spectral characteristics Isiakilar to the pixel. Another
case could occur if a pixel spectrum is similatwo different material classes that are themsedpestrally similar. The calculation
of the statistical dominant material class of tlsthien ranked similarity values provides the sdaatiability calculation of the
SLC-Classifier. It will be calculated with Eq. (5Y bising the material class with the highest valtitheweighted number afcores
of thetarget classn’* yeighted number of score class = target cla&§l- (3) analysing the best ten ranked similaréjues. The statistical dominant
material class in that case could differ from tlesttsimilarity value class. The results of theistiaal dominant material class for the
test site are represented in Fig. 3.

3.5 Albedo

The third reliability test calculates the ratio ween the mean albedo of the reference spectrunmesah albedo of the pixel
spectrum. For some material classes the overadtallof the spectrum represents a key spectral deaistic that distinguishes that
class. For example, the difference in albedo besdime main criterion to differentiate two specsiahilar materials. Therefore, it is
useful to calculate for each classified pixel #teedoratio a(s, s’)between the givemean albedo of thgixel spectrum shndmean
albedo o the most similar library spectrum s

a(s,s)= % (6)

If the result of Eq. (6) is >> 1 (much brighter) ex1 (much darker) the classification reliabilitputd be poor for the given

materials. The albedo ratio can be used as a kdgetbased indicator of the quality of the clasatifn results (Fig. 4). In the case
of noisy pixels the albedo ratio value for a giyarel would be much brighter (Fig. 4 right: the wehipatial cluster) then the
reference spectrum of the spectral library.

3.6 Incompleteness of the spectral library

The SLC-Classifier has the ability to deal with theompleteness of the spectral library. The sirtilaneasure of Eq. (1) stores the
best ranked similarity value with the related miatariass for each pixel. However, it is also pbksio determine those spectra with
the worst similarity measures. These spectra magngially define important spectra that are missirggn the original spectral
library. Finding those spectra with the worst sarity measures requires a meaningful similarityeshiold. Therefore, a statistical
acceptance was chosen that one percent of the ipiegjs are considered incorrectly classified. Dne percent threshold is based
on the empirical experience that a comparable ifilzetion approach has a much lower accuracy thiaety-nine percent. The
pixels which are included in the one percent pooldgsified boundary will be used as a new trairmataset of spectra stored in an
additional spectral library. Underrating the onecpet poorly classified number of pixels will beasenable because of an additional
similarity analysis Eq. (1) of the image using tteav training dataset of the one percent contaipirgls. Every image pixel has the
opportunity being more similar to one spectrumhef hew training dataset than to classificatioratien with the spectral library.
After this calculation the one percent trainingasgat will grow up to a multiple of the number ofoply classified pixels. The
classification result will not change, but the cddtion of the poorly classified pixel analysisuks in an output mask of poorly
classified pixels (Fig. 5) representing the mixédpproblem.



4. RESULTSAND DISCUSSION

4.1 Distribution of the best similarity values of all pixelsfor thetest siteimage
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Figure 2: This plot shows the distribution of thesbsimilarity values for the test site (90,601ef8). The vertical line (green)
shows the similarity threshold which was used aadxtitional spectral library of poorly classifiguestra.

The distribution of the ranked similarity valuedccdated with Eq. (1) shows that a large numbepigéls have a high similarity
value. The border between high similarity valugsu¢é pixels” having a value near zero) and low lgirity values (likely “mixed
pixels”) is not separable numerically. The worstifarity values near 0.1547 shown in Fig. 2 repnésmisy pixels.

4.2 Classification result and statistical indicatorsfor reliability estimation

Clay tiles and bitumen . Polyvinylchlaride (PVC) . Concrete . Vegetation . Shadow
Other roofing material . Polyethylene (PE) . Asphalt . Dry vegetation

Aluminium l:] Plexiglas Pavement . Soil

— . . —

Figure 3: Classification results for the best sinitjyavalue (left) and the statistical dominant miatkclass (right).




The two classifications look almost same which @dsafor a good reliability of the results. Naturahterials (e.g. vegetation) are
good represented, although only representativetrspace included in the used spectral library. &tdicial materials of the image
are well-classified and sealed urban structuresbeatetected (e.g. polyethylene Fig. 3 arrow 1).

Comparing the classification results for the bestilarity value and the statistical dominant mateciass the greatest differences
appear for the classes “water/shadow” (Fig. 3 arepwand “dry vegetation/soil” (Fig. 3 arrow 3). “\fé&’ and “shadow” often are
confused in the classification image, which is etpé as they both have very low albedo. “Dry vetimta is also a challenge as it
is often a mixed class containing “vegetation” amine degree of background “soil”. Therefore, thectpl signature of “dry
vegetation” is similar to “vegetation” and “soilfith differences only in small absorption featurésom this it follows that the input
spectral library does not represent the spectralbidity within the test area and should be redis® improve classification results.

0%<a<25%

25%<a< 50%

0%<p<20%

D wosspeaon

50%<a< 75%
75%<a< 125%

40%<p< 60%

Figure 4: The weighted score occurrence (left) thedalbedo ratio (right) for the test site image.
The albedo ratio values Eq. (6) are multiplied vatie hundred to scale them to percentage.

125%<a<250%

250% <a< 500 %

500% <a< 1500 %

Weighted scor e occurrence Albedoratio
Class range Distribution Class range Distribution
0 %<p <20 %) 14.5 % 0%<a<25% 4.0 %
20 %< p <40 % 11.8 % 25 %<a<50% 12.8 %
40 %<p <60 % 9.3 % 50 %<a<75% 24.7 %
60 %< p < 80 % 11.5% 75 %<a<125% 40.1 %
80 %< p=<100% 52.9% 125 %< a < 250 % 7.8 %
250 %< a <500 % 0.5%
500 %< a< 1500% 0.1%

Table 2: These tables show the percentage clas#bdi®n of both images of Fig. 4.

To estimate the reliability of the classificatidmetweighted score occurrence using Eq. (5) waslledér and is shown in Fig. 4.
Table 2 shows that the majority of the pixels havgood statistical reliability of the weighted searccurrence. The lower the
weighted score occurrence of a pixel (red in Figl4.5 % of the image) the greater the probabditgonfusion between two or
more similar material classes. Therefore, this meas a good indicator for the statistical relidgpiof the classification result. A
low weighted score occurrence could also be cabgethe incompleteness of the spectral libraryhd spectral library has not
enough representative spectra of a material dressthe weighted score occurrence value is noeseptative. A high value of the
weighted score occurrence represents a good atasigih reliability (dark green in Fig. 4, 52.9 %the image) if the best similarity
value of the pixel is near the statistical minim(fig. 2).

Using the albedo ratio as a reliability measuretf@r discrimination of spectrally similar mater@hsses is meaningful. In some
cases the albedo is the only distinguishing chartic between two similar classes. A materiadtied albedo ratio threshold could
be an opportunity to estimate the reliability o ttiassification result. For example, spectral lsimhaterial classes like “concrete”
and “asphalt” which mainly can differentiate usithg albedo. The black coloured class range @ &< 25 %) represents mainly
shadowed pixels. The class range (50& %< 1500%) coloured in white shows pixels with specuédlectance characteristics. A



large part (40.1 %) of the image pixels were cfassiusing a reference spectrum with a low deviatbthe albedo ratio, shown in
Table 2.

The two tables show that the used spectral libisawyell-prepared for classifying the majority oetimages pixels for this test site
and the reliability measures enables the validatfaihe classified pixels.

4.3 Poorly classified pixel mask

The poorly classified mask (Fig. 5, left) is thesul of the one percent rule (Fig. 2) and an adddl iteration of the similarity
analysis Eq. (1). Using the one percent rule 9@6lIpiare retained as a training database withdt#ianal iteration of the similarity
analysis growing the mask to 17,485 pixels (repriasg 19.29 % of the test site). It shows spatiasers of similar materials which
are not well-represented in the spectral libranaiMy vegetation, soil and water pixels are incliide the poorly classified pixel
mask. The low number of urban pixels in the poallyssified pixel mask shows that the spectral fipia well-prepared for

anthropogenienaterials. A manual analysis of the spatial clssteas done and examples of the resulting specna tihis manual

analysis are shown in Fig. 6.

Figure 5: The mask (left) shows the distributionthe pixels with the lowest similarity values using
the one percent rule and the similarity analysisffiEq. (1). The RGB-Image (right) shows the true@upl
image of the test site. The locations of four défg poorly classified pixels are marked and regmméed in Fig. 6.
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Figure 6: Spectral signatures of four differentgiéxderived from the poorly classified pixel mask.



As expected a large number of mixed pixels areapatl within the mask. However, new material classecurring as spatial
clusters, which are not included in the specttalaliy, are included in the mask (Fig. 6 cp. spetjrdn addition, if the spectral
variability of one material is not representative the given test site, the mask will contain sgatiusters of the material class with
a deviation relative to the spectral charactessticthe scored class spectrum (Fig. 6 cp. sp2ca4). The main finding is that not
only mixed pixels are included in the mask but afmare pixels representing material classes whiah reot included or
underrepresented in the spectral library. Therefiliie mask forms the basis for improving of theapal library, such that missing
material classes or poor representatives of spatass variability can be dealt with and the disadages of an incomplete spectral
library of image spectra can be minimized.

5. CONCLUSION

The classification results demonstrate the potenfidhe SLC-Classifier to classify natural and aotiogenic surfaces. This is
accomplished by using the similarity analysis @& 8iD-SAM mixed measure and additional reliabidifculations.

The biggest challenges of developing the SLC-Clizssifere to deal with the incompleteness of thespklibrary, to find criteria
and indicators for the improvement of the spedibabry and to develop a reliability analysis tdieste the classification results.
The final result contains the classification, thediability analysis and pixel-related statisticabasures. This allows the SLC-
Classifier to consider pure and mixed pixels anchiwitlass spectral variability of surface materigdslditionally, the poorly
classified mask potentially can be used to imprinespectral library by highlighting missing masé¢spectra and thus, subsequent
classifications. The challenge for the user isdoide whether to include the new spectra in thetspdibrary or to use a spectral
library of local image spectra to improve the cotrelassification results. It is important that $gectral library includes only those
spectra that are necessary, rather than tryingclade every possible spectral variation.

Because of the different reliability measures arel dbnsistent class hierarchy of the spectral §briaris possible to compare the
classification results of the SLC-Classifier withhet classification results of different classifiersto be integrated in an ensemble
classification approach. The study shows that aptehensive spectral library can be used as a guaditning database for
classifying unknown hyperspectral images of hetenegus environments without prior knowledge abbattest site. In addition,
the use of the SLC-Classifier as an EM extractiomnipe is possible if the operator defines a dewisree of meaningful
thresholds using all information layers.

6. OUTLOOK

The greatest potential of the improvement of th€&llassifier exists for the treatment of the incostghess of the spectral library.
The mask of potential poorly classified pixels t@nused to estimate the incompleteness of thergpéibtary. The user can use this
poorly classified mask to search for spectral guatial clusters containing material classes whighcarrently not included in the
spectral library. At this point the user has toideavhether a possibly missing spectrum shoulchblrided into the spectral library
or not. A meaningful solution could be to distingluiboth a spectral library containing a large nunddecomprehensive material
classes and a spectral library of local image saeuwthich includes image-related spectra withoutresgntative spectral
characteristics for improving the reliability ofetlturrent classification result.

A major challenge with hyperspectral imagery isdentify pure pixels within the given scene. Wittetestimation algorithms and
different statistical reliabilities, the SLC-Classifcould potentially allow it to be used for EMtéetion using hard thresholds for all
information layers. For example, the potential &or EM is very high if the best similarity rankedss is equal to the statistical
dominant material class and the weighted scoreroaace (Fig. 4 cp. class range: 80<9 < 100 %) is near one hundred percent.
Additionally, the best similarity value should bean to the minimum value of the best ranked siitylaalues (Fig. 2) and deviation
of the albedo ratio should be low (Fig. 4 cp. clemsge: 75 %< a < 125 %). With threshold values set or a degisiee for the
above factors it would be possible to generate terpial pure pixel mask that subsequently couldubed to define EMs for
unmixing.
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