

Institute of Technical Thermodynamics

The solution precursor plasma spraying process for making zirconia based electrolytes

C. Christenn, S. A. Ansar, A. Haug, S. Wolf, J. Arnold

<u>Aim</u>

Developing of zirconia based electrolyte layers for solid oxide fuel cells by solution precursor plasma spraying (SPPS)

Advantages of SPPS

- Nitrates of metal precursors (zirconyl nitrate and scandium nitrate hydrate) dissolved in water or ethanol can be used
- Fast and easy formation of new precursor compositions
- Formation of nano-particles in-flight

Development steps needed

- Developing of an atomization nozzle for SPPS
- Identification of the plasma parameters for metal precursor solutions by use of TriplexPro200 dc plasma torch (Sulzer Metco, Wohlen, Switzerland)
- Identification of intermediate products (e.g. partially-pyrolized or unpyrolized droplets) deposited in the coatings according to the plasma parameters
- Identification of the influence of different solvent types on coating microstructure

Results for water-based metal precursor solution (Sc/Zr-H₂O) (14.3 wt. %)

top: surface view; bottom: cross section, (x 8000, SE images)

Structure of coating

Water-based precursor concentration leads to formation of

- Splats
- Unmelted nano- and micro-particles
- Ruptured bubbles ('cobwebbed areas')
- Porosity of coating: 33.25 +/- 3.84 %
- Structure of coating consists of larger dense zones interrupting the network of porosity by use of higher concentration of the precursor

Shadowgraphy of plasma jet without (1) and with (2) injection

Identification of Raman modes

SPPS coatings

- Band structure from 150 800 cm⁻¹: cubic stabilized zirconia phonon modes (150, 308, 551, 616 cm⁻¹)
- Dominant peak at 616 cm⁻¹ is characteristic for F_{2g} phase of cubic stabilized zirconia
- 150 cm⁻¹: Zr-O translations
- Tetragonal ZrO₂ is present: 308, 483 cm⁻¹

Nitrates

• NO₃⁻ modes present at: 388 (429), 576, 765, 1030 to 1048 cm⁻¹, only 429 cm⁻¹ is present in SPPS coating

Still to be identified

- 242, 388 cm⁻¹ present in scandium nitrate and in SPPS coating
- 478 cm⁻¹ present in both nitrates and in SPPS coating

Results for ethanol-based metal precursor solution (Sc/Zr-EtOH) (15.9 wt. %)

top: surface view; bottom: cross section, (x 8000, SE images)

Structure of coating

Ethanol-based precursor concentration leads to formation of

- Splats
- Enhanced microstructure caused by lower surface tension of solvent, lower boiling point and lower enthalpy of evaporation compared to water
- Unmelted nano-particles
- Low amount of ruptured bubbles ('cobwebbed areas')
- Reduced porosity, value: 23.58 +/- 5.01 %

Characterization of coatings by Raman spectroscopy

Summary

- Coatings deposited by use of solution precursors of metal salts have been prepared successfully
- Structure of coating consists of larger dense zones interrupting the network of porosity by use of higher concentration of precursor or by use of ethanol as solvent
- Characterization by Raman spectroscopy yields information about coating structure and intermediate products due to partially-pyrolized or unpyrolized droplets

Deutsches Zentrum

DLR für Luft- und Raumfahrt e.V.

German Aerospace Center