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A seamless prediction of convective precipitation for a continuous range of lead
times from 0–8 h requires the application of different approaches. Here, a nowcasting
method and a high-resolution numerical weather prediction ensemble are combined
to provide probabilistic precipitation forecasts. For the nowcast, an existing
deterministic extrapolation technique was modified by the local Lagrangian method
to calculate the probability of exceeding a threshold value in radar reflectivity.
Numerical forecasts were obtained from an experimental high-resolution ensemble
that provides 20 different deterministic forecasts of synthetic radar reflectivity.
Probabilistic information was calculated by different approaches from the ensemble
output. The probabilistic forecasts based on the ensemble were calibrated with
the reliability diagram statistics method. The skill of the probabilistic nowcasts and
forecasts was evaluated using three quality measures. Finally, a seamless probabilistic
forecast was generated as an additive combination of nowcast and forecast, using a
weighting function based on their relative skills. The skill of the seamless forecast
was greater than or equal to that of the nowcast or ensemble forecast in all quality
measures and at all lead times. Copyright c© 2011 Royal Meteorological Society
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1. Introduction

An accurate forecast of the future atmospheric state at
different forecast lead times is of great societal and economic
significance. Convective precipitation forecasts affect daily
life in various sectors including aviation, construction and
leisure, but their utility may be limited by uncertainty.
The quantification of forecast uncertainty in a probabilistic
forecast enables more precise decision-making, taking into
account each user’s needs.

To provide reliable methods to perform more accurate
short-term forecasts of convective precipitation is an

ongoing challenge in atmospheric research (Fritsch and
Carbone, 2004). The most commonly used forecast methods
are nowcasting and numerical weather prediction (NWP).
Both show different forecast skills depending on the forecast
lead time.

Nowcasts are short-term forecasts initialized with
observed patterns in remote-sensing data, for example
areas of high radar reflectivity. These patterns represent
convective elements with their own characteristic lifetimes.
Usually, the forecasts are spatio-temporal extrapolations
for a lead time of up to around 2 h. For very short lead
times compared with the mean lifetime of an observed
pattern, linear extrapolation shows very high forecast skill.
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However, since only advective transport is considered
in most nowcasting methods, the continuous temporal
evolution of the precipitation field cannot be taken into
account. Attempts to include life-cycle effects have shown
ambiguous results, and forecast errors typically increase
quite rapidly with forecast lead time (Pierce et al., 2004;
Wilson et al., 2004).

On the other hand, forecasts based on NWP models
simulate the temporal evolution of the precipitation
field. However, even with advanced data assimilation
techniques the initial humidity fields deviate from the
true state. Furthermore, the parametrized model physics
limits the predictive skill of the precipitation forecasts.
Most importantly, convective elements may develop during
the model integration from initially small-scale cells to
larger patterns. Their evolution and the turbulent character
of the flow limit predictability in the first few hours of
the integration. Nevertheless, the ability of the numerical
forecast to represent the evolution of the larger-scale
environment of convection allows NWP model forecast
skill to outperform nowcasting methods after some lead
time (about 6 h in the study of Lin et al., 2005).

The intrinsic uncertainty in both methods, as well as the
stochastic nature of convection, requires a probabilistic
approach to prediction. If the probabilities accurately
represent the uncertainty of the nowcast and numerical
forecast, they can be blended seamlessly to produce skilful
predictions across a wide range of lead times.

Traditional nowcasting methods provide deterministic
forecasts of objects defined by the respective observation
method (Wilson et al., 1998). The objects are identified
either in radar, satellite or lightning data by applying one
or a combination of several thresholds. Most nowcasting
methods are radar-based and rely on the assumption that
the evolution of the detected precipitation field is primarily
governed by advection, e.g. Dixon and Wiener (1993), Li
et al. (1995), Golding (1998), and Kober and Tafferner
(2009).

In contrast to deterministic forecasts, probabilistic
approaches predict the probability of exceeding a threshold
in the observed field. The most straightforward method
is to calculate a probability of precipitation based on
the fraction of precipitation pixels in a region around a
point of interest (Andersson and Ivarsson, 1991; Schmid
et al., 2000; Germann and Zawadzki, 2004). Germann and
Zawadzki (2004) introduced and compared four methods
of providing probabilistic forecasts based on continental
radar observations. They concluded that the most skilful
method was the local Lagrangian method, which has since
been adapted by others, e.g. Megenhardt et al. (2004). In
addition, uncertainty in nowcasts resulting from errors in
the observations can be quantified by creating ensembles
of precipitation fields (Germann et al., 2009). In this
method, stochastic ensemble members are the sum of
the observed deterministic radar precipitation field and
stochastic perturbations derived on basis of the radar error
covariance matrix. Radar ensembles are of great interest
for hydrological applications (Rossa et al., 2010). These
approaches do not incorporate precipitation forecasts from
NWP models.

A significant change in numerical prediction of cumulus
convection has occurred with the introduction of models
with kilometre resolution, which operate without the use
of cumulus parametrization. Initial experience suggests that

such models offer improved forecast skill in comparison
with coarser resolution models (Lean et al., 2008; Dixon
et al., 2009; Weusthoff et al., 2010). However, the skill
of the deterministic forecasts depends on many aspects
of the model configuration, including resolution and
parametrizations (Done et al., 2004; Gebhardt et al., 2011).
Furthermore, the representation of the initial fields and
their discrepancies from observations is influential, and
data assimilation methods have been found to have strong
impacts on the behaviour of high-resolution numerical
forecasts (Sokol and Rezacova, 2006; Stephan et al., 2008;
Dixon et al., 2009).

In order to quantify the uncertainty in NWP model
predictions, ensemble methods have been developed at
weather prediction centres and matured to a well-established
approach (see e.g. the review article of Lewis, 2005). Several
approaches exist to design ensembles. Perturbations of the
initial or boundary conditions or perturbations of the model
physics (Stensrud et al., 2000) in a linear or stochastic way
(Bright and Mullen, 2002) can be applied to create different
forecasts. Different forecast models (multimodel ensemble),
runs of the same forecast model starting at different
times (time-lagged ensemble, e.g. Mittermaier, 2007) and
combinations thereof can also be utilized (Roebber et al.,
2004).

Although ensemble prediction systems (EPS) have
matured to a standard technique for large and mesoscales,
only a few high-resolution, i.e. convection-permitting,
ensembles exist (e.g. Gebhardt et al., 2011). The design
of convection-permitting ensembles differs from that of
mesoscale ensembles with parametrized convection, because
of the different mechanisms of error growth at smaller scales
(Hohenegger and Schär, 2007). The experimental EPS of the
Deutscher Wetterdienst (DWD) is based on the Consortium
of Small-scale Modeling (COSMO) deterministic forecast
model with 2.8 km horizontal resolution. In the version of
COSMO-DE-EPS used in this study, boundary conditions
and physical parametrizations are varied with the aim of
maximizing the spread in precipitation forecasts at short
lead times (Gebhardt et al., 2011).

The skilful combination of nowcasting methods and
NWP models to forecast precipitation has the potential
to maintain the overall predictive skill for a continuous
range of lead times from 0 to more than 8 h. Most
of the published methods for combining nowcasts and
forecasts use a weighted sum of the two fields. The
weighting functions are determined by the skill of the
predictions derived from suitable quality measures. Several
studies have identified the forecast skill of nowcasting and
NWP models using deterministic (Golding, 1998; Kilambi
and Zawadzki, 2005) or probabilistic (Bowler et al., 2006)
quality measures. The evaluated quantity was either radar
reflectivity (Wilson and Xu, 2006), rainfall rate (Golding,
1998) or probability of precipitation (Pinto et al., 2006).
The combination has been performed by applying linear
(Wong et al., 2009) or exponential (Golding, 2000) weights.
Additionally, a scale-dependent stochastic approach to
calculate a probabilistic precipitation forecast was applied
by Bowler et al. (2006). Note that most of these studies
used coarse-resolution NWP models (larger 10 km) where
convection is parametrized.

The aim of this article is to develop a method for combin-
ing a probabilistic nowcast with a probabilistic numerical
forecast, in a way that preserves the skill of the individual
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methods. A key element of the work presented here is the use
of an ensemble of forecasts using a so-called cloud-resolving
or convection-permitting model with a resolution of a few
km. In addition to providing a better representation of the
physics of convection, it is anticipated that high-resolution
models may be more effectively combined with radar data,
since the resolution is comparable. The use of an ensemble
of forecasts allows various sources of forecast uncertainty to
be taken into account. In combining the two data sources,
care is taken to prepare the nowcast and numerical forecast
output in a similar way. Each is presented as a forecast of the
probability of reflectivity (observed or simulated) exceeding
a specified threshold at each point on a high-resolution grid.
The probabilities are then combined using a time-varying
weighting function, based on the measured performance
of the nowcast and numerical ensemble forecast. The result
is a probabilistic forecast that transitions smoothly from
one data source to the other and reflects the increasing
uncertainty in the prediction with increasing lead time. By
combining probabilities, we avoid inconsistencies associated
with differences in how the probability distributions are
represented in the two forecasting systems. If the nowcasting
system used an ensemble to represent uncertainty, as is
the case for the numerical modelling system, it would also
be possible to construct a probabilistic forecast from the
combined ensemble of nowcasts and forecasts, as was done
by Bowler et al. (2006).

In this work, probabilistic nowcasts are created by
extending the deterministic radar tracker Radar TRAcking
and Monitoring (Rad-TRAM) and combining these with
probabilistic forecasts based on the output of COSMO-DE-
EPS. Section 2 describes the data and the methods used
to derive probabilistic forecasts from Rad-TRAM and from
COSMO-DE-EPS. The quality of the forecasts is evaluated
and compared with different probabilistic quality measures
in section 3. In section 4, the concept for the combination
of the two forecasting methods is introduced and results
of the blending procedure are presented. In section 5, the
findings of this study are interpreted and discussed. Finally,
in section 6 short conclusions are drawn.

2. Data and methods

This study will consider predictions of the probability
of radar reflectivity exceeding a specified threshold. It is
important that the same variable is used in both the nowcast
and the numerical forecast output that will be blended.
Reflectivity is a convenient variable, since no conversion
of the observations is required. For the model forecasts,
a forward operator is necessary to convert the variables
to reflectivity (e.g., Seifert and Beheng, 2006). In other
applications, the reflectivity threshold could be converted to
a precipitation threshold using a Z–R relationship, or to a
hazard threshold, for example in aviation.

2.1. Observations: European radar composite

The European radar composite is the data basis for
the nowcasting method Rad-TRAM and for the quality
evaluation of both forecasts. It is provided by the Deutscher
Wetterdienst (DWD) and encompasses an area of 1800 km
× 1800 km over Europe. In this study, a smaller subdomain
(about 650 km × 650 km) covering a large part of Germany
is selected for quality evaluation (Figure 1). The European

Figure 1. Observed radar reflectivity on 12 August 2007, 2315 UTC during
the passage of a cold front over western Germany that caused pre-frontal
convection. The domain for forecast quality evaluation is shown in black.
This figure is available in colour online at wileyonlinelibrary.com/journal/qj

radar composite provides radar reflectivities given in six
dBZ classes [7, 19, 28, 37, 46, 55 dBZ] on a horizontal grid
with a regular resolution of 2 km × 2 km. More details
about the creation of the composite, the underlying radar
measurements and the inherent errors are given by Kober
and Tafferner (2009).

2.2. Radar tracker Rad-TRAM and the new probabilistic
module

The deterministic tracking and nowcasting algorithm
Rad-TRAM (Radar TRAcking and Monitoring) has been
developed recently (Kober and Tafferner, 2009) and uses
the European radar composite. Rad-TRAM consists of
4 parts: (1) the extraction of the motion field by solving
the optical flow equation, (2) the detection of convective
cells, (3) the tracking of cells and (4) the nowcasting of these
cells for one hour. The motion field derived in part (1) is
obtained by an optical flow technique (Keil and Craig, 2007;
Zinner et al., 2008) of the box- or region-based matching
type (Barron et al., 1994), and is based on the pyramidal
method of Anandan (1989). In its original version, Rad-
TRAM identifies severe convective cells through a threshold
criterion of 37 dBZ. In this study, Rad-TRAM is upgraded
to calculate probabilistic precipitation forecasts of reaching
a lower threshold of 19 dBZ, indicating areas of rainfall.
In general, a range of thresholds will be of interest for
different applications, but since the purpose of this article is
to demonstrate the method, a single threshold will be used.
The lower value is chosen since events are more frequent than
for higher thresholds and thus statistical verification is easier.

To create a probabilistic nowcast, a method similar to the
local Lagrangian approach (Germann and Zawadzki, 2004)
is developed and implemented. Germann and Zawadzki
(2004) identify two main error sources in extrapolation
forecasts: incorrect displacements and thermodynamic
processes other than advection. The temporal evolution
of the precipitation field (onset, growth or decay) cannot
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be represented by extrapolation methods. Germann and
Zawadzki (2004) relate the overall errors to the spatial
variability of the precipitation field itself, without directly
quantifying specific error sources. Following this reasoning,
in our approach the probabilistic precipitation forecast is
based on first estimating the fraction of precipitation pixels
in a predefined area around each radar grid point with
values larger than 0 dBZ. This local approach is followed
by considering the movement of the precipitation field
(Lagrangian approach).

In Rad-TRAM, the calculation of probabilistic forecasts is
implemented as an optional module. To determine the
displacement of the precipitation probability field, the
module uses the scale-dependent displacement vector field
derived in the first part of Rad-TRAM. The identified
convective cells (part 2–4) are not considered in the
probabilistic module.

The probability PLL of exceeding a threshold L is defined
as

PLL(t0 + τ , x,L, k)

= Prob{ψ(t0, x − α + r) ≥ L|(x + r)∈ωk}, (1)

where ψ is the observed field of radar reflectivity, L the
threshold reflectivity (19 dBZ), ωk the search area centred
on the point of interest x, chosen to be a square of side
length k. The scale parameter k (side length of search area)
depends on the forecast lead time τ . The probability value
is extrapolated using the displacement vector α defined at
the point of interest x. It was not considered necessary to
implement a more complex algorithm that would allow
curved trajectories, since it is expected that extrapolation
errors will be smaller than errors associated with changes
in the structure and amplitude of the precipitation field
(Germann and Zawadzki, 2004).

Probabilities are computed and extrapolated at every grid
point with reflectivities larger than 0 dBZ in the evaluation
domain. Other grid points are omitted in order to save
computational costs. This has the effect that some low
probabilities in the area around a precipitation feature are
missed. Sensitivity tests (not shown) show that the quality
measures discussed in the next section are only slightly
affected by omitted regions of low probability. Finally,
a smoothing based on Delaunay triangulation (Sugihara

and Inagaki, 1995) is applied to the probability field
PLL to eliminate possible gaps resulting from divergent
displacement vectors. Since the spatial structure of the
probability field is relatively smooth to start with, this
procedure has little effect except to fill in the gaps. If instead
of probability, the reflectivity field itself was extrapolated,
the presence of gaps or the application of smoothing to
remove them would have a substantial effect on the resulting
probability field. Forecasts are provided up to 8 h lead time
in 15 min time steps.

The size of the search area ωk is chosen to depend on the
forecast lead time τ and increases with lead time in the first
4 forecast hours as the uncertainty of the temporal evolution
increases. Following Germann and Zawadzki (2004), the
side length of the search area is assumed to grow linearly at
a rate of 1 km per minute. From forecast hours 4–8, the size
of the search area is kept constant with a maximum side
length of 240 km. This value should represent the distance
over which convective cells share the same synoptic envi-
ronment, and is expected to be related to the Rossby radius
of deformation, which is the length over which significant
temperature gradients can be maintained by geostrophic
balance. Over larger areas the environment varies and the
frequency of occurrence across the entire area is no longer
representative of the probability at the point of interest.

Typical forecasts derived with this probability technique
are illustrated in Figure 2 for 12 August 2007, 2315 UTC for
different lead times. Additionally, the reflectivity fields that
are the basis for the respective forecasts are displayed in the
background. The 15 min forecast provided at 2300 UTC is
very sharp and reflects the low uncertainty for short lead
times (τ = 15 min, Figure 2(a)). The forecast calculated
on basis of the reflectivity observations one hour earlier
(τ = 60 min, Figure 2(b)) already shows increased uncer-
tainty, having a smoother PLL field with lower probability
maxima. The small-scale structure of the observed field can-
not be represented at this lead time. The comparison with the
corresponding observation field (cf. Figure 1) reveals that the
forecast still has skill concerning the position of the probabil-
ity field. The forecast based on observations two hours earlier
(τ = 120 min, Figure 2(c)) shows a further smoothed prob-
ability field. The position of the field in comparison with the
observations is still meaningful. However, as the probability
field covers a larger area there are some false alarms.

(a) (b) (c)

Figure 2. Probabilistic forecasts PLL of Rad-TRAM for 12 August 2007, 2315 UTC with (a) 15 min forecast from 2300 UTC, (b) 60 min forecast from
2215 UTC and (c) 120 min forecast from 2115 UTC, grey-shaded, and the reflectivity observations at the respective initial time colour-coded in the
background. This figure is available in colour online at wileyonlinelibrary.com/journal/qj
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Table I. List of parameter perturbations in COSMO-DE-EPS.

Parameter Description Perturbed Default

entr scv Entrainment rate of shallow convection 0.002 0.0003
clc diag Subscale cloud cover given grid-scale saturation in the turbulence scheme 0.5 0.75
rlam heat Scaling factor of the laminar sublayers for scalars 50.0 1.0
rlam heat Scaling factor of the laminar sublayers for scalars 0.1 1.0
tur len Asymptotic mixing length of turbulence scheme 150.0 500.0

2.3. COSMO-DE-EPS and the derivation of probabilistic
forecasts

COSMO-DE-EPS is currently under development at DWD
based on the COSMO-DE model (Gebhardt et al., 2011).
COSMO-DE (previously known as LM-K: Baldauf et al.,
2011) is a non-hydrostatic and convection-permitting
weather forecasting model. It has been developed for short-
range forecasts in the framework of the Consortium of
Small-scale Modeling (COSMO). The horizontal resolution
is 2.8 km and 50 vertical levels are used up to 30 hPa.
Precipitation processes are explicitly parametrized using
a bulk cloud microphysical scheme with five prognostic
hydrometeor types (rain, snow, cloud water, cloud ice and
graupel). Deep convection is explicitly resolved.

COSMO-DE-EPS consists of 20 members. The different
members are created by addressing two sources of uncer-
tainty. Firstly, uncertainties in model physics are considered
by changing five different parameters of the physics scheme
in a non-stochastic approach (Table I). These parameters are
chosen in order to maximize the variability of convective pre-
cipitation in the physical parametrizations (Gebhardt et al.,
2011). Secondly, uncertainties due to the lateral boundary
conditions are considered by nesting COSMO-DE into four
members of COSMO Short-Range Ensemble Prediction Sys-
tem (COSMO-SREPS, resolution 10 km). The four members
are driven by different global models (Marsigli et al., 2008).

From COSMO-DE-EPS, the fields of synthetic radar
reflectivity at the 850 hPa pressure surface are used to
calculate probabilistic forecasts PEPS(x,L) of exceeding the
threshold L = 19 dBZ. Synthetic reflectivities are calculated
with a forward operator using information from the
distribution of the hydrometeors rain, snow and graupel
at every grid point (Seifert and Beheng, 2006).

Probabilistic forecasts are derived from the ensemble by
means of three different approaches (cf. Schwartz et al.,
2010). Firstly, as traditionally applied to ensembles, the
fraction of members with values above the threshold
(here L = 19 dBZ) is determined at every grid point.
These probabilities depend on the number of ensemble
members. In the following, this method will be called the
fraction method. Secondly, every member is treated as a
deterministic solution and the fraction of precipitation pixels
(L ≥19 dBZ) in a predefined area (neighbourhood) around
each precipitating grid point is computed for each member
separately. This results in 20 different probabilistic forecasts
and is called the neighbourhood method. As a third approach,
the mean of these 20 different probability fields derived
with the neighbourhood method is calculated. In Schwartz
et al. (2010) this approach is referred to as neighbourhood
ensemble probability, here as the mean method.

A critical parameter of the neighbourhood method is the
size of the search area. Theis et al. (2005) and Schwartz et al.

(2010) varied this parameter systematically, but could not
identify an optimal size or shape of the neighbourhood. Here,
in contrast to the local Lagrangian method for observation-
based forecasts, the size of the neighbourhood is fixed for all
lead times as a square of side length 75 km. Sensitivity tests
were carried out but revealed no further improvement of
the skill scores for larger neighbourhood sizes (not shown).
Smaller search areas have been investigated as well and result
in sharper probabilities, but lower skill scores.

Altogether, 22 different probabilistic forecasts are
available at each forecast time. Both the generation of
COSMO-DE-EPS and our analysis consider three sources
of uncertainty: the spatial variability around each grid point
and, implicitly, timing errors, the imperfectness of model
physics and the variability of the lateral boundary conditions.
The method providing the mean of the neighbourhood
probabilities considers all of them.

Figure 3 illustrates examples of the three approaches
applied to COSMO-DE-EPS forecasts for 12 August 2007,
2315 UTC. For the neighbourhood method, only member 1
has been chosen as a typical representative of the ensemble.
All forecasts predict a probability of precipitation greater
than zero in the area where the front was observed
at 2315 UTC (Figure 1). The location and intensity of
the probability fields differs between the methods. The
fraction method predicts a large and broad probability
field. Embedded in this spatially coherent field are scattered
probability maxima. In contrast, the probability field of
member 1 covers small areas with isolated probability
maxima. Note that the gradients are sharp at some
locations, relative to the size of the search area, since only
the precipitating pixels are used in the computation. In
comparison with the fraction method and member 1, the
mean of the 20 neighbourhood probabilities is a smooth field
with low probability values. The variability in size and spatial
distribution of the probability fields in the different forecasts
covers a reasonable range given the meteorological situation.
The large areas with probabilities larger than zero given by
the fraction and mean methods reflect the high variability
among the ensemble members. The probabilistic forecasts of
the mean and fraction methods are very similar in location
and size, since both consider the variability of the entire
ensemble. In contrast the mean field is smoother, with lower
probability values, since the variability of the reflectivity field
around each grid point is additionally considered.

As the ensemble is experimental and still under
development, only one forecast period with the same
configurations in physical perturbations was available for
this study: 9 days from 8–16 August 2007. The model
runs started once each day at 0000 UTC and forecast
24 h. Instantaneous synthetic radar reflectivities are available
every 30 min starting at 0015 UTC. With a time period of
9 days, the size of the domain and the high temporal and
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(a) (b) (c)

Figure 3. Probabilistic COSMO-DE-EPS forecasts for 12 August 2007, 2315 UTC for (a) the fraction, (b) member 1 as representative for the 20
neighbourhood forecasts and (c) the mean of the ensemble (grey-shaded). In the background of member 1 the synthetic radar reflectivities are
colour-coded. This figure is available in colour online at wileyonlinelibrary.com/journal/qj

spatial resolution imply that a large set of data is available,
containing around 21 million data points of synthetic radar
reflectivity for every member.

The probabilities based on COSMO-DE-EPS forecasts are
calibrated with the reliability diagram statistics method (Zhu
et al., 1996). For the calibration, the available data are divided
into training and testing data sets. The reliability diagram
statistics method suggests that if the probability category i
(where i indexes 11 equal-sized categories between 0.0 and
1.0) is predicted in the testing subsample, the calibrated
probability is the frequency with which the event is observed
in the training subsample under the condition that the
sample forecast category i is predicted. The training period
comprises the period from 8–11 August (around 8 million
data points per member) and the testing set the period from
12–16 August (around 10 million data points). The first three
hours of each run are not included in the calibration, as the
spread among the ensemble members is small. This is done
for all three methods of deriving probabilistic forecasts from
COSMO-DE-EPS. For the calibration of the neighbourhood
probabilities, all members are calibrated together (around
365 million data points in total). The fraction method and
mean method probabilities cover 1/20 of the data points.
Consistent results for the calibration functions are obtained
if the testing and training periods are interchanged. Tests
with other definitions of the testing and training period
(not shown) revealed similar results, showing that to a first
approximation there is no dependence on the choice of
periods.

The reliability component of the decomposed Brier score
(Brier, 1950; Murphy, 1973) can be used as a measure
for a successful calibration (Atger, 2003). In this study,
only the domain reliability is calculated due to the limited
period of the forecasts. Table II shows the mean and the
standard deviation of the reliability component for all three
methods separately, over the entire period, with and without
calibration. The values reveal that the calibration is successful
since both the mean and the standard deviation of the
reliability component of the Brier score are reduced for
the neighbourhood probabilities, the fraction method and
the mean method by at least a factor of 2. In the following
sections, only the calibrated probabilities are used.

Table II. Reliability component of Brier score, mean and
standard deviation. All grid points are considered together.
For the neighbourhood method the total of all single

members is calculated.

Mean Standard
Method reliability deviation

Neighbourhood raw 5.8 × 10−1 6.6 × 10−1

Neighbourhood calibrated 2.4 × 10−1 3.2 × 10−1

Fraction raw 3.2 × 10−2 3.2 × 10−2

Fraction calibrated 0.9 × 10−2 1.1 × 10−2

Mean raw 1.9 × 10−2 2.3 × 10−2

Mean calibrated 0.9 × 10−2 1.1 × 10−2

3. Quality of the probabilistic forecasts

The most important aspects of quality for probabilistic
forecasts are reliability, resolution and sharpness (Murphy
and Winkler, 1987). The basis for a skilful combination of the
probabilistic forecasts from Rad-TRAM and COSMO-DE-
EPS will be knowledge of their individual forecast quality.
In particular, the evolution of quality measures with lead
time is important to define weighting functions to blend
the two methods. The quality of probabilistic forecasts
of discrete predictands is assessed here using standard
measures: the Brier score and its decomposition, together
with Relative Operating Characteristic (ROC) curves and
the area underneath them (Wilks, 2006). Additionally, a
simplified version of the conditional square root of ranked
probability score (CSRR) is calculated following Germann
and Zawadzki (2004). The CSRR is originally defined
for multicategory forecasts. Since only a single threshold
(19 dBZ) is used in this study, the CSRR simplifies to

CSRR(τ ) =
{

1

�̃t0+τ

∫
�

[P(t0 + τ , x)

− P̂(t0 + τ , x)]2 dx

}0.5

, (2)

where �̃t0+τ is the size of the observed rain domain (L >

0 dBZ), � the entire domain, P the probabilistic forecast and
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P̂ the observation. Due to weighting with the size of the rain
domain, the CSRR is independent of the observed frequency
of the event. Therefore, the magnitude of the score reflects
skill and is comparable even in different meteorological
situations. In contrast to the CSRR, the Brier score is
sensitive to correct negatives. In the case of rare events,
low values of the Brier score give the illusion of very good
performance.

In the following, the skill of the probabilistic Rad-TRAM
and COSMO-DE-EPS is evaluated individually in time series
over a selected time period. Subsequently, the evolution of
skill of both forecast methods with lead time over the entire
period is compared.

3.1. Performance of probabilistic Rad-TRAM

The Brier score, the CSRR and the area under the ROC
curve (ROC area) are presented to illustrate Rad-TRAM’s
forecast skill for the period 1200–2400 UTC, 12 August 2007
(Figure 4). On this day there was no convective activity
around noon, but in the afternoon a cold front from the
west propagated into the region and forced deep convection
ahead of it. The appearance of the front in the evaluation
domain changed the properties of the nowcasts, as actual
radar observations are included. This marks a regime
transition around 1400 UTC. Figure 4 shows the skill of
the probabilistic forecasts based on different lead times from
n = 1 (15 min) to n = 32 (8 h). The first forecast within each
hour is highlighted in black (15 min, 75 min, 135 min, . . . ).

The Brier score shows almost perfect skill, with very
low values for all lead times from 1200–1400 UTC, as radar
reflectivities of at least 19 dBZ almost never occurred. During
the course of the day, the skill of the Brier score decreases as
the observed frequency of the event increases. The number
of distinguishable lead times increases as well. This reflects
the fact that in the second part of the day forecasts are
only skilful to the extent that they correspond to radar
observations of pre-frontal convective precipitation inside
the domain. Forecasts based on earlier observations are very
similar to each other and not skilful, as no precipitation was
observed yet. During the latter part of the day, the Brier
score varies over a large range, with very small values for
short lead times and larger values for the forecasts based on
older observations.

At noon, the CSRR generally shows a similar behaviour to
the Brier score, with small values and low variability between
the lead times. In the afternoon, the differences between the
lead times increase and a larger number of forecasts can be
distinguished. In addition, the CSRR shows that the skill
of the forecasts increases within the respective lead times
during the day (e.g. for the 15 min forecast CSRR is 0.6 at
1400 UTC and 0.4 at 2200 UTC).

The values of the area under the ROC curve vary over
the entire range of possible values (0.5–1.0) with very high
skill in the first forecast hour to very low skill for longer
lead times. Again, the evolution of the ROC area over the
period reflects the meteorological regime with higher skill
in the advection-dominated frontal passage (e.g. for the
15 min forecast the ROC area is 0.92 at 1400 UTC and 0.98
at 2200 UTC).

In general, the three skill scores provide a consistent
judgement of the forecast quality. If the quality of forecasts
based on the different lead times is distinguishable, the scores
are ranked according to their lead time. Short lead times

(based on the latest observations) have significantly higher
skill than longer lead times. Hence, negatively oriented scores
(Brier score and CSRR) increase with lead time and the
positively oriented ROC area decreases. Differences between
the lead times become smaller with increasing lead time
(cf. the differences between the black lines in Figure 4). For
longer lead times the ranking is not clearly identifiable. The
ROC area extends the number of distinguishable forecast
hours by about one hour. After the regime change, the CSRR
and the ROC area reveal an increase in skill of the forecasts
within the respective lead times.

3.2. Performance of COSMO-DE-EPS

The calibrated probabilistic forecasts derived from COSMO-
DE-EPS output are evaluated over the same period as
Rad-TRAM on 12 August 2007, 1200–2400 UTC (Figure 5).
Here, the different lines denote the different methods
(fraction method, 20 members based on neighbourhood
method and mean of neighbourhood members) that were
applied to the COSMO-DE-EPS output.

Although Figure 5 depicts just a 12 h section of the entire
9 day period, the results reveal that the temporal variability
in the Brier score and the CSRR is larger than the variability
between the 22 different methods (spread). Only the area
under the ROC curve shows a variability within the different
methods that is significant in comparison to the temporal
variations. Generally, the values of the scores in this 12 h
period indicate low skill. For example, the area under the
ROC curve exceeds 0.7 only for three forecast hours and only
in two of the 22 solutions. This threshold value is sometimes
considered as an indicator for useful forecasts (Buizza et al.,
1999).

In the frontal regime, all three scores agree that the
fraction method and member 1 have more skill than the
other solutions (Figure 5). Their skill remains higher for
several forecast hours in this regime. The skill of the
mean method in all scores is within the range of the
skill of the neighbourhood members. The highest values
in ROC area of the neighbourhood members during
1800 UTC and 2100 UTC are found for those members
where the entrainment rate of shallow convection is
perturbed (Table I). In other meteorological regimes during
the 9 day period, the members are grouped with respect to
the boundary conditions of the global models (not shown).

3.3. Dependence of forecast quality on lead time

A second possibility to evaluate the performance of the
probabilistic forecasts from Rad-TRAM and calibrated
COSMO-DE-EPS is the evolution of skill with lead
time. Rad-TRAM forecasts are evaluated every two hours
beginning at 0200 UTC (0200, 0400, 0600, 0800, 1000, 1200,
1400, 1600 UTC) for 8 h lead time for every day. Due to
the smaller temporal resolution of COSMO-DE-EPS output
(30 min: hh15 and hh45), Rad-TRAM is analysed at the same
times. This means that probabilistic forecasts are analysed for
lead times of 15, 45, 75 min and so on up to 465 min. As the
model is started once a day, an actual lead time-dependent
evaluation of COSMO-DE-EPS is not possible.

The evaluation of the time series of all days (not shown
for the entire period but exemplified in Figure 5) revealed
that to a first approximation the skill of the forecasts does
not depend on lead time within a 24 h period. Within the 8 h
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Figure 4. Evolution of Brier score, CSRR and area under ROC curve for
Rad-TRAM forecasts on 12 August 2007 from 1200–2400 UTC. Black lines
denote the first forecast for each of the eight forecast hours (hh15), grey
lines the three other forecasts within each forecast hour.

time frames defined above for Rad-TRAM (0200–1000 UTC,
0400–1200 UTC, . . . , 1600–2400 UTC) for each of the nine
days, the mean model skill is calculated as a temporal average.
Finally, the mean and the standard deviation over the entire
period (8–16 August 2007) are derived for Rad-TRAM as
well as COSMO-DE-EPS forecasts (Figure 6).

Rad-TRAM’s mean skill (thick black solid line) decreases
with lead time for each score. In the first three hours the
decrease is faster than it is later (e.g. CSRR decreases after
3 h to 66% of the initial skill and after 8 h to 58%). The
standard deviation (thin black solid lines) as a measure for
the variability of the mean value is very large for the Brier
score at all lead times (80%). It is larger than the variability
or decrease of the mean values with lead time. The CSRR
and the area under the ROC curve have smaller standard
deviations (around 10 and 20% respectively).

Obviously, the mean values of the COSMO-DE-EPS
forecasts have smaller skill than the Rad-TRAM forecasts for
short lead times (Figure 6). As there is only one ensemble
run each day, the mean values cannot depend on lead time
and therefore they are constant. The spread and the ranking
among the methods applied to the COSMO-DE-EPS output

Figure 5. Evolution of Brier score, CSRR and area under ROC curve
for the calibrated COSMO-DE-EPS forecasts on 12 August 2007 from
1200–2400 UTC. Dotted line: fraction method; dashed: member 1;
solid grey: all other neighbourhood members; dot–dashed: mean of
neighbourhood probabilities.

varies in the different scores. Differences between the skill
of the methods are very small in the Brier Score. The CSRR
shows that the neighbourhood members have more skill
(lower values) than the mean method and the fraction
method. The area under the ROC curve shows the fraction
method slightly better than the mean method and the others
(Figure 6, right). As already seen in the time series for
the case study (Figure 5), the area under the ROC curve
is the only score that shows significant spread between the
different neighbourhood members. Their scores are grouped
according to the driving global models.

Each score shows a crossover point that identifies the
lead time after which a model method has more skill than
Rad-TRAM. Here, as several methods are applied to the
ensemble, a time frame is identified corresponding to the
interval in which the score of Rad-TRAM’s mean is worse
that the best ensemble method, but better than the worst
ensemble method. This time frame ranges between forecast
hours τ = 5, . . . , 6.75 h (Brier score), τ = 5.25, . . . , 6.75 h
(CSRR) and τ = 4, . . . , 6.75 h (ROC area). Importantly, all
three scores show similar crossover time frames. However,
the large standard deviations of Rad-TRAM and the
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Figure 6. Evolution of Brier score, CSRR and area under ROC curve with lead time for Rad-TRAM and calibrated COSMO-DE-EPS forecasts from
8–16 August 2007. Solid black thick: Rad-TRAM mean; solid black thin: Rad-TRAM standard deviation; dotted line: fraction method; dashed: member 1;
solid grey: all other neighbourhood members; dot–dashed: mean of neighbourhood probabilities. Error bars on the COSMO-DE-EPS based forecasts
indicate standard deviations.

model methods demonstrate that there is still considerable
variability in crossover points, especially for the Brier score.
To investigate the influence of the calibration over the entire
period, the mean and standard deviation of COSMO-DE-
EPS in Brier score, CSRR and area under the ROC curve
are displayed in Figure 7 for uncalibrated and calibrated
probabilities. The change of mean values from left to right
in Figure 7 shows the effect of calibration on the respective
method. The Brier score and the CSRR show a reduction
of spread and an increase of skill: the range of values in
the Brier score is reduced from [0.091, 0.111] to [0.0828,
0.0892] and in CSRR from [0.746, 0.835] to [0.709, 0.729].
The various methods are affected to different degrees by
calibration (e.g. CSRR of the fraction method shows a
reduction of mean value of 13%, compared with 5% for the
mean method). This results in a change in the order of the
methods in CSRR: the mean method has the lowest values
before calibration and the largest afterwards. For all scores,
the fraction method is mostly affected by calibration. In the
ROC area, the fraction method is the only method that is
changed. The standard deviations decrease clearly for CSRR
(fraction method: 17–9% of the mean value) but retain the
same magnitude in comparison with the mean values for
the Brier score (fraction method: 80%). For the area under
the ROC curve, no effect on standard deviation (10% before
and after calibration) can be identified.

4. Blending of Rad-TRAM and COSMO-DE-EPS
probabilities

4.1. Method

The basis for the combination of the probabilistic forecasts
provided by Rad-TRAM and the calibrated probabilities
derived from COSMO-DE-EPS output is knowledge of
the behaviour of their forecast quality with lead time. In
section 3.3, this behaviour was evaluated with the Brier score,
the CSRR and the area under the ROC curve (Figure 6). The
skill of Rad-TRAM forecasts as evaluated with the CSRR is
chosen to be the basis for the derivation of the weighting
functions for the combination. The weighting function for
Rad-TRAM, wr, is defined in an analogous manner to
Kilambi and Zawadzki (2005), with a dependence on lead
time τ given by

wr(τ ) = 2.11 − 1

1 − CSRR(τ )2.8
, (3)

and normalized to unity at the first available lead time
(τ = 15 min). The exponent 2.8 is chosen such that the
weight crosses 0.5 in the time interval between 5 and 6 h. As
the weights of both forecast methods should sum to unity,
the weight for all COSMO-DE-EPS based forecasts, wc, is

wc(τ ) = 1 − wr(τ ). (4)

Figure 7. Effect of calibration on mean skill of COSMO-DE-EPS probabilities in Brier score, CSRR and area under ROC curve (left: uncalibrated;
right: calibrated). Dotted line: fraction method; dashed: member 1; solid grey: all other neighbourhood members; dot–dashed: mean of neighbourhood
probabilities and error bars indicating the standard deviations.
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Figure 8. Weighting functions for Rad-TRAM and COSMO-DE-EPS
forecasts in the blending procedure.

The resulting weighting functions are displayed in Figure 8.
The crossover point is at 5.75 h. That means that after
5.75 h more weight is given to the model forecasts. Note
that the maximum weight for the model is 0.63, reflecting
the fact that Rad-TRAM forecasts with long lead times can
also have skill and the differences between Rad-TRAM and
COSMO-DE-EPS are smaller for long than for short lead
times.

The weighting functions are applied to the single forecasts
according to

Pblend,i = wr(τ )PLL(τ ) + wc(τ )PEPS,i. (5)

This combination of the probabilities based on Rad-TRAM
(PLL) and COSMO-DE-EPS (PEPS,i) at each time in the
respective 8 h interval results in blended probabilities Pblend,i,
with i being the 22 respective COSMO-DE-EPS forecasts. All
forecasts derived from COSMO-DE-EPS are treated with the
same weight wc, as differences between the methods turned
out to be small in the evaluation (Figure 6).

Figure 9 displays two examples of the components, PLL

and PEPS,i, and the resulting blended probability field Pblend,i

for two different lead times valid on 12 August 2007,
2315 UTC. The upper row (Figure 9(a)–(c)) represents
forecasts at a lead time τ = 1.25 h. At this lead time,
the Rad-TRAM forecast (Figure 9(a)) is multiplied by a
larger weight wr than the COSMO-DE-EPS forecast (fraction
method, Figure 9(b)). Therefore, the combined probability
field (Figure 9(c)) reflects the high probabilities from the
Rad-TRAM forecast. Nevertheless, the influence of the
forecast with the fraction method is visible in additional
small probabilities. The lower row (Figure 9(d)–(f)) displays
forecasts at a lead time τ = 7.25 h. The model forecast is
the same as in Figure 9(b), as only one model run per day
is available. At this lead time, the weight for the model
wc is larger than for Rad-TRAM. Therefore, the blended
probability field (Figure 9(f)) is dominated by the fraction
method forecast. The probabilities of both components
are low and therefore the combined probability is low as
well.

Comparing Figure 9(c) and (f), it is not possible to
deduce which component leads to which pattern in the
blended probability field. This illustrates that the blended
forecasts deliver a seamless combination of Rad-TRAM and
COSMO-DE-EPS based probabilistic forecasts.

4.2. Quality of blended probabilities

A quality evaluation based on the various scores is conducted
for the combined probabilities Pblend,i in the same way as in
section 3.3. The skill of the blended forecasts should be at
least as high as that of the respective best single forecast at
each lead time. The Brier score of the blended probabilistic
forecasts very well reflects the high skill of Rad-TRAM
forecasts at short lead times (Figure 10, left). The decrease
of skill with lead time for short lead times is comparable to
that of Rad-TRAM alone. For long lead times the rate of
decrease becomes smaller, as the COSMO-DE-EPS forecasts
have a larger weight. The variability in terms of the standard
deviation remains high for the combined probabilities. The
differences between the methods applied to COSMO-DE-
EPS are small with and without the combination. Therefore,
no ranking of the methods can be identified.

Likewise, the CSRR of the combined probabilities
reproduces the high skill of Rad-TRAM at short lead times
and the decrease with increasing lead time (Figure 10,
middle). For longer lead times, however, the blended
probabilities have higher skill than Rad-TRAM alone
(compare the middle panels of Figures 6 and 10). The
variability of the mean values is within the magnitude of
that for the single forecasts and smaller than the decrease of
the mean value with lead time.

The area under the ROC curve also shows a steady
decrease with lead time (Figure 10, right). There is a
large variability between the solutions based on different
COSMO-DE-EPS methods, starting at the second forecast
hour. The ranking of the methods is consistent with the
evaluation in Figure 6, where the fraction method and the
mean method outperform the neighbourhood members.
However, an increase in comparison to each component’s
skill alone can be seen for lead times around the crossover
time (compare the right panels of Figures 6 and 10). For
example, after four hours, Rad-TRAM only has 68% of its
initial skill, which is then the same as the fraction method’s,
but the blended probabilities based on the fraction method
still have 73%.

For all scores, Figure 6 showed that Rad-TRAM is superior
for short lead times and COSMO-DE-EPS for longer lead
times. At each lead time the blended forecasts perform at
least as well as the single forecasts. For lead times around the
crossover time, an improvement in the mean performance
through the blending procedure is seen for all methods in
all scores.

5. Discussion

As demonstrated in the previous section, the combination
of the probabilistic nowcasting method Rad-TRAM with
COSMO-DE-EPS facilitates a seamless prediction of
convective precipitation for lead times from 0–8 h. For
this purpose, Rad-TRAM has been extended to consider the
intrinsic uncertainty in extrapolation forecasts. The output
of COSMO-DE-EPS is post-processed with three different
methods to derive probabilistic forecasts. The quality of
the combined probabilistic forecasts is evaluated by means
of three different skill scores. The skilful blending of both
methods maintains the overall predictive skill for the entire
forecast range. Although developed in the context of a
particular nowcaster and EPS, this approach can be applied
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(a) (b) (c)

(d) (e) (f)

Figure 9. (a), (d) Components from Rad-TRAM and (b), (e) calibrated COSMO-DE-EPS fraction method and (c), (f) combined probabilities for
12 August 2315 UTC, for (a)–(c) τ = 1.25 h and (d)–(f) τ = 7.25 h, grey-shaded. Observations used to initialize the Rad-TRAM forecasts are shown in
colour in the background of panels (a) and (d). This figure is available in colour online at wileyonlinelibrary.com/journal/qj

Figure 10. Evolution of Brier score, CSRR and area under ROC curve with lead time for blended probabilities from 8–16 August 2007. Dotted line:
fraction; dashed: member 1; solid grey: all other neighbourhood members; dot–dashed: mean of neighbourhood probabilities and error bars indicating
the standard deviations.

for forecasts of events that require the combination of any
probabilistic extrapolation and NWP method.

For our study, we have chosen the probabilities
of exceeding a reflectivity threshold of 19 dBZ. This
corresponds to a precipitation rate of about 1 mm h−1, but
for the summertime period under consideration virtually
all precipitation is associated with convective storms. The
use of a higher threshold value would focus attention on
more intense convective cores, however sensitivity studies
applying a threshold of 37 dBZ resulted in far fewer events.
In this case, the statistical evaluation of the probabilistic

forecasts fails due to the limited amount of data. For other
meteorological situations (mesoscale convective systems) a
higher threshold might be appropriate. A lower threshold of
7 dBZ was not chosen, as observations from the European
radar composite often contain outliers at this value. It is
known that the choice of precipitation threshold influences
the forecast quality (Bowler et al., 2006), so it would be of
interest to explore other thresholds in future work.

The deterministic nowcast tool Rad-TRAM (Kober and
Tafferner, 2009) is extended by considering the variability in
the precipitation field around each grid point (Germann and
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Zawadzki, 2004). The fraction of precipitation pixels in a
predefined search area is extrapolated with the displacement
vectors. This fraction is highly dependent on the size of the
search area. In this study, the side length of the search area
is increased linearly during the first 4 h of the forecast (in
agreement with Germann and Zawadzki, 2004). After this
time, the search area is kept constant. This means that for
lead times from 4–8 h the difference between forecasts at
different lead times can only be due to the length of the
displacement vector (i.e. position of the probability field).

The choice of the growth rate of the search area is
certainly problem-dependent. As Rad-TRAM has higher
skill in situations in which the evolution of the precipitation
field is dominated by advective processes, the growth of
the search area could, for instance, be modified for frontal
situations. Here, the precipitation field is more coherent
and the search area could grow more slowly compared with
purely convective situations. This would result in higher
probabilities for longer lead times, as the temporal variability
of the precipitation field is smaller.

The calculation of the displacement vector field also
impacts the forecast quality. We apply the pyramidal image
matcher developed by Zinner et al. (2008). This implies that
reliable displacement vectors can only be calculated in a
neighbourhood of a grid point where precipitation actually
occurred. Therefore, our approach is not semi-Lagrangian
as in Germann and Zawadzki (2002), but we extrapolate
linearly with the vector defined at the point of interest
centred in the search area (called in Germann and Zawadzki
(2002) constant vector). Inclusion of rotational motion as
performed by Germann and Zawadzki (2004) would require
a change in the derivation of the displacement vectors. For
the domain of this study, which is significantly smaller than
the domain used by Germann and Zawadzki (2004), this
effect is likely to be small and thus has little influence on the
results. For the model forecasts, the search area appears in the
neighbourhood method (Theis et al., 2005) and implicitly in
the mean method. As discussed in section 2.3, the fraction
of precipitation pixels is computed for a square region of a
fixed side length of 75 km.

A distinct ranking of the different methods applied to
generate probabilistic forecasts from the COSMO-DE-EPS
output cannot be established, as differences in the overall
forecast quality among them are very small. This is in
contrast to the results of Schwartz et al. (2010), who found
that the neighbourhood method with different sizes of
neighbourhood outperformed their fraction method. The
results of our study suggest that the fraction method is
preferred, since the computational effort is significantly
smaller than for the neighbourhood and mean methods.

Interestingly, time series of the ROC area show some
persistent differences in the skill of neighbourhood forecasts
derived from individual ensemble members (Figure 5). If
such a ranking were found to occur reliably, and if the
meteorological regime were sufficiently steady, the best
members could be identified or the relative skill of different
members could be used in deriving forecast probabilities.
It must be emphasized, however, that a much larger data
base would be required to demonstrate a useful degree of
persistence in the relative skill of ensemble members.

An important feature of our approach is the calibration
of the NWP-derived probabilities. Calibrating a relatively
rare event in an inhomogeneous precipitation field is an
active field of research (Hamill et al., 2008). The calibration

here is conducted in a simple and straightforward way using
the reliability diagram statistics method (Zhu et al., 1996).
All neighbourhood members are calibrated with the same
calibration function. A larger amount of data would allow
the derivation of more refined calibration functions for each
member separately. Other more advanced approaches for
the definition of probability bins are possible as well. For
example, they could be defined in such a way that they
are equally populated to avoid ill-sampling (Atger, 2003).
However, this was not possible for this study as the data
were limited. It is not yet established that more advanced
approaches to calibration (e.g. Raftery et al., 2005; Hamill
et al., 2008) will result in significant improvements to the
skill of the probabilistic forecast.

Our calibration reduces the reliability component of the
Brier score (Table II) and the sharpness. With a single
calibration function, the spread of the neighbourhood
members is reduced. Furthermore, the various methods
differ marginally in their skills after calibration, as their
calibration functions are similar as well. Hence, the main
difference between the forecasts based on COSMO-DE-EPS
with calibration and COSMO-DE-EPS without calibration
is not the magnitude but the location of the probability
fields.

The weighting functions are the basis for the combination
of probabilistic forecasts. Here, we restricted ourselves to a
single function wr that is determined by the evolution of
Rad-TRAM’s forecast skill in CSRR. This score is chosen
because its general decrease of skill with lead time was
similar to the other scores but the standard deviations were
smaller (Figure 6). It would be desirable to have a similar
lead-time-dependent weighting function for the COSMO-
DE-EPS output. However, due to the set-up of the ensemble
runs, such a quantity was not available. We have shown that
COSMO-DE-EPS based forecasts in a first approximation
do not depend on lead time (section 3.2) for lead times larger
than 3 h. Several model runs starting every day (Kilambi and
Zawadzki, 2005), or a time-lagged ensemble, could provide
the model performance as a function of lead time. This is
planned in future work.

The application of the weighting functions results in
blended probabilistic forecasts. The evaluation of their
forecast skills with all of the quality measures used in
this study shows consistently at least the same skill as
the best respective single forecasts. In all scores, the skill
is even improved for lead times around the crossover
time. Nevertheless, the combination of Rad-TRAM and
COSMO-DE-EPS could be further advanced for special
meteorological regimes. For example, in advection-driven
situations one could assign a larger weight for longer lead
times to Rad-TRAM.

As a first attempt to construct a blending of probabilistic
nowcasts and high-resolution NWP ensemble forecasts,
the methods here have been chosen to be as simple as
possible. An important factor that has been neglected is the
dependence of forecast skill on weather regime. If this is
different for nowcasts and ensemble forecasts, it may be
possible to optimize the blending for different situations,
provided that a robust and objective method is available
to identify the relevant regimes. One parameter that has
considerable potential for this application is the convective
time-scale introduced by Done et al. (2006), which measures
the degree to which cumulus convection is controlled by
larger-scale dynamical processes. This parameter has been

Copyright c© 2011 Royal Meteorological Society Q. J. R. Meteorol. Soc. 138: 755–768 (2012)



Probabilistic Convective Precipitation Forecasts 767

shown to be a good predictor of certain aspects of forecast
performance in high-resolution numerical models, e.g. Craig
et al. (2011) and Zimmer et al. (2011). It could be used to
construct more optimal calibration and weighting functions
for short and long time-scale regimes.

In the long run, one might expect that blending of
nowcasts with numerical forecasts could be replaced by
direct assimilation of radar and other data into the numerical
model, and indeed modern data assimilation methods have
significantly improved precipitation forecasts within the first
few hours. However, a significant obstacle may be posed by
systematic errors in the model treatment of microphysical
and other cloud processes, which will lead to forecast
deficiencies even with perfect initial conditions. Another,
more practical, factor is the computation time required to
compute a numerical forecast. It may be some time before
any model forecast that could be provided within an hour of
the observation time exceeds the skill of a simple nowcasting
method. The blending of nowcasts and numerical forecasts
is likely to produce the best results for the foreseeable future.

6. Conclusion

In this study, the skill of a new probabilistic version of the
radar tracker Rad-TRAM is compared systematically with
probabilistic forecasts based on the high-resolution NWP
ensemble COSMO-DE-EPS. Three techniques are intro-
duced to derive probabilistic information from COSMO-
DE-EPS. After calibration, no significant difference between
the skill of the solutions is found. The probabilities based on
the two forecast methods, nowcasting and NWP, are com-
bined based on the lead-time-dependent evaluation of their
skill such that a meaningful seamless probabilistic forecast
is provided.

The results of this investigation are robust in terms of
the applied probabilistic quality measures. In addition, the
separate lead-time-dependent evaluation and evaluation of
the blended probabilities reveals the same qualitative results
for all three quality measures. Most importantly, the skill of
the blended forecast is equal to, or even exceeds, that of the
individual methods at all lead times.
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