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Due to the lack of an appropriate symmetry in the

acquisition geometry, general bistatic synthetic aperture

radar (SAR) cannot benefit from the two main properties of

low-to-moderate resolution monostatic SAR: azimuth-invariance

and topography-insensitivity. The precise accommodation of

azimuth-variance and topography is a real challenge for efficent

image formation algorithms working in the Fourier domain,

but can be quite naturally handled by time-domain approaches.

We present an efficient and practical implementation of a

generalised bistatic SAR image formation algorithm with an

accurate accommodation of these two effects. The algorithm

has a common structure with the monostatic fast-factorised

backprojection (FFBP), and is therefore based on subaperture

processing. The images computed over the different subapertures

are displayed in an advantageous elliptical coordinate system

capable of incorporating the topographic information of the

imaged scene in an analogous manner as topography-dependent

monostatic SAR algorithms do. Analytical expressions for the

Nyquist requirements using this coordinate system are derived.

The overall discussion includes practical implementation hints

and a realistic computational burden estimation. The algorithm

is tested with both simulated and actual bistatic SAR data. The

actual data correspond to the spaceborne-airborne experiment

between TerraSAR-X and F-SAR performed in 2007 and to the

DLR-ONERA airborne experiment carried out in 2003. The

presented approach proves its suitability for the precise SAR

focussing of the data acquired in general bistatic configurations.
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I. INTRODUCTION

Bistatic synthetic aperture radar (SAR) surveys

lack, in general, the advantageous symmetry most

monostatic SAR surveys have. As a consequence, the

bistatic SAR image formation task has a complexity

which in most cases has only been approximately

addressed. In an analogous manner to the progress

of monostatic SAR image formation algorithms,

improvements in precision and computational

efficiency have become available over time. Normal as

this evolution might seem, the accessible knowledge

in monostatic SAR processing has often been ignored

in new developments.

Most popular fast monostatic algorithms rely

on the assumptions of linear trajectories, constant

height and constant spatial sampling (velocity of the

platform divided by pulse repetition frequency) of

the system. For a ranging system such as a radar,

the previous assumptions impose in the acquisition

geometry a circular cylindrical symmetry essential

for understanding the existing focussing approaches:

targets placed on a given circular cylinder centred on

the trajectory of the radar share the same reference

range history, shifted proportionally to the along-track

position of the target. Two essential properties

emanate from this advantageous symmetry: a)

azimuth-invariance, and b) insensitivity to topography.

The former guarantees that the data can be focussed

efficiently in the Fourier-domain, since focussing

is achieved by range history correlation. The latter

allows a precise computation of range histories with

the sole knowledge of target delays, independently on

the three-dimensional (3D) position of the target with

respect to the radar. The conclusion is that precise

efficient focussing can be accomplished independently

of the imaged scene.

From the first days of digital SAR processing

[1, 2], most of the monostatic image formation

algorithms have been based on the previous

assumptions, usually showing a well-established

trade-off between accuracy and computational

efficiency [3—6]. Unfortunately, there is no such

thing as linear trajectories, neither for airborne nor

for spaceborne systems, only resolutions not high

enough so that the deviations from this ideal case

can be neglected. Depending on the particular case,

the imaging algorithms have been upgraded with

intermediate space-variant corrections to account for

the realistic nonlinear trajectories, namely motion

compensation [7—10] or varying effective velocities

[11—13] for airborne and spaceborne systems,

respectively. These corrections, initially developed

for low-to-moderate resolutions, are insufficient

in high-precision applications, such as airborne

repeat-pass interferometric or even high-resolution

systems. Whereas the azimuth-invariance of

monostatic SAR is conserved within moderately large
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scenes, the sensitivity to topographic changes is a real

issue in monostatic applications requiring high-quality

phase information [14—16].

Among bistatic SAR configurations, a

straightforward classification depending on their

geometric symmetry (and proximity to the ideal

monostatic case) can be established.

1) The constant equal velocities, same track and

along-track offset case shows exactly the same circular

cylindrical symmetry as the monostatic case. This

configuration shares the azimuth-invariance and the

topography-insensitivity of ideal monostatic SAR.

2) The constant equal velocities and parallel

tracks case has elliptical cylindrical symmetry. The

configuration is azimuth-invariant (for a flat constant

range line) and topography-sensitive, since the bistatic

range histories depend on the monostatic transmitter

and receiver slant ranges to the targets.

3) Any other bistatic configuration is, in general,

azimuth-variant and topography-sensitive.

In other words, even if the approximation of linear

trajectories is assumed, bistatic SAR focussing

algorithms need take into account the topographic

changes of the imaged scene.

The spatial-variance introduced by realistic

topography scenarios in the SAR system response

might be difficult to accommodate in efficient

implementations of Fourier-domain algorithms.

Accordingly, most of the bistatic SAR focussing

approaches assume a flat scene for exploiting the

remaining symmetries of the acquisition [17—47]. All

the previous references are based on a sufficiently

accurate match of the bistatic range history, at least

for a single target. In particular, references [19], [21],

[22], [25], [27], [28], [32], [33], [36], [37], [42],

[43], [46], [47] address the problem of matching the

azimuth-variance of different bistatic acquisitions

with different levels of accuracy. Among them, only

[25], [47] can be considered precise and suitable

for general bistatic configurations. However, [25]

is not a focussing approach in itself, but a method

to transform a general bistatic survey into a given

monostatic, which might pose problems in terms of

phase preservation and a significant increase of the

computational burden. Topography accommodation,

on the other hand, is only discussed or included in

[29], [32], [35], [36], [47]. The reference common

to the two subsets, [47], shows an implementation

of a fast Fourier-domain approach with space-variant

wideband phase corrections (i.e., efficiency-reducing)

to compensate for the geometrical approximations

of the algorithm. In general, the corrections required

in bistatic Fourier-domain SAR image formation

range from 1D azimuth blocks for azimuth-invariant

configurations (i.e., topography) to 2D range-azimuth

blocks in the case of general configurations (i.e.,

topography and azimuth-variance). As a consequence,

this space-variant postprocessing reduces the

efficiency of the focussing algorithms, increasing its

computational burden as performance increases (e.g.,

resolution, swath).

One natural solution to accommodate the

azimuth-variance and topography-sensitivity of

bistatic SAR is focussing in the time-domain using

the backprojection algorithm (BP) [48, 49]. Among

its classical advantages, BP focussing accuracy

does not depend on the carrier wavelength, the

desired resolution, the scene size or the imaging

configuration. Time-domain image formation offers

a further advantage particularly useful in the case of

bistatic systems: precise accommodation of irregular

sampling schemes. However, the real drawback that

prevents the generalised use of BP as a standard SAR

focussing algorithm is the large computational burden

it requires. Consequently, efficient implementations of

BP, known as fast backprojection techniques (FBP),

have been successfully applied in both monostatic

[50—56] and bistatic SAR [57, 58]. FBP techniques

applied to monostatic SAR were first presented in two

independent developments [50—52]. References [51]

and [52] are based on a two-step split of the synthetic

aperture. A similar (two-step) approach including

the derivation of the Nyquist requirements for the

linear track case was presented in [53]. Reference

[50], on the other hand, skipped the limitation of

the two-step approach and presented a quad-tree

based algorithm introducing the idea of splitting the

processing into multiple stages. A similar hierarchical

approach was used for tomography shortly afterwards.

All the developments of monostatic FBP techniques

converged to the fast-factorised backprojection (FFBP)

algorithm [55], an optimum approach benefiting from

the multi-step factorisation working in an efficient

geometry in terms of image sampling. Whereas the

structure of the bistatic algorithm remains reasonably

unchanged when compared with the monostatic

approaches, [57] focusses on the ability of bistatic

FBP to accomodate the bistatic range history in a

precise manner. The authors of [55] mention in [58]

to have successfully extended the FFBP algorithm to

the one-stationary bistatic configuration. However,

the practical implementation of a precise FBP

algorithm for realistic general bistatic acquisitions

of realistic scenes includes essential details, like the

image reference system and the Nyquist sampling

requirements, which are for the first time addressed

in the following pages.

This paper proposes an image formation algorithm

for general bistatic SAR based on the FFBP approach

[55]. Section II describes the new algorithm. Special

emphasis is put on the reference system on which

the images are computed, particularly advantageous

for accommodating both the bistatic acquisition

geometry and the topographic variations of the scene

in an accurate manner. Furthermore, the Nyquist
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sampling requirements for the reference image grid

are computed and discussed. Section III proves

the validity of the algorithm in realistic scenarios

with both simulated and real data of two DLR

bistatic experiments: the first TerraSAR-X/F-SAR

spaceborne-airborne experiment and the DLR-ONERA

joint airborne experiment. Section IV concludes the

paper with a short summary.

II. BISTATIC FAST-FACTORISED BACKPROJECTION

A. Direct versus Fast Backprojection

SAR image formation using direct backprojection

(DBP) [48] is based on a discrete implementation of

the BP integral. The image value at range-azimuth

time coordinates (r0, ta,0) is computed as follows

i(r0, ta,0) =

Z
T

dta ¢ exp
·
j ¢ 2¼
¸
¢ r(ta;P)

¸
¢ d
μ
r(ta;P)

c
, ta

¶
(1)

where T is the integration time, the integral is

computed along the interval [¡T=2,T=2], ta is the
azimuth time, ¸ is the radar wavelength, P is the target

to be mapped on image coordinate (r0, ta,0), r(ta;P)

is the bistatic range history of target P, c is the wave

propagation speed, and d are the range-compressed

data. As it is common in the development of far-field

pulsed SAR focussing algorithms, the stop & go

approximation is assumed to hold. Should this not

be the case (i.e., the length of the pulse is significant

compared with the pulse repetition frequency (PRF),

a further correction of the instantaneous Doppler

effect would be required [59]; as far as this correction

is performed accurately enough, the validity of the

results presented in the following pages remains

unaffected. The advantage of DBP is explicit in

(1): the result of the integral is independent of

r(ta;P), provided this range history be computed with

sufficient accuracy.1 Consequently, the precision of

the algorithm does not depend on any other kind of

geometric assumptions like Fourier-domain algorithms

do. DBP is performed entirely in the time-domain

and thus particularly suitable for real-time (or)

parallelised implementations. Unfortunately, its huge

computational load prevents its generalised use as a

standard SAR image formation algorithm, making

it only the preferred choice for high-demanding

applications.

The FBP algorithm overcomes this weakness

by dividing the synthetic aperture in subapertures

[53], i.e., the integral of (1) is then computed in the

1Clearly, only the value of the integral for the target placed at

(r0, ta,0) is independent of r(ta;P); depending on the range history

of the targets, the form of the SAR impulse response function may

change.

following manner

i(r0, ta,0) =

K¡1X
k=0

ik(r0, ta,0)

=

K¡1X
k=0

Z
T=K

dta ¢ exp
·
j ¢ 2¼
¸
¢ r(ta+¢ta[k];P)

¸

¢ d
μ
r(ta+¢ta[k];P)

c
, ta+¢ta[k]

¶
(2)

where k is an integer, the integrals are computed in

interval [¡T=2K,T=2K], and ¢ta[k] =¡(T=2 ¢K)
¢(K ¡ 2 ¢ k¡ 1). Since the cross-range resolution of
the images ik is roughly K times worse than the

full resolution achieved using the whole synthetic

aperture, the number of cross-range samples needed

for Nyquist sampling the ik can also be divided by

K with respect to i. Thus, the computational load

of FBP compared with DBP is also approximately

divided by K. This explanation is rather simplistic,

since it does not take into account the additional

burden involved in computing the contribution of the

subimages ik to the full-resolution image i. This step

often requires a two-dimensional interpolation which,

if not performed carefully, increases the computational

load to about the same amount of DBP. Essentially,

FBP achieves the computational speed-up through a

clever error-bounded interpolation of the ik.

Several implementations of FBP algorithms for

SAR are available in the literature [50—55] mostly

related to applications where the weaknesses of

Fourier-domain algorithms vividly arise. Due to

the advantages offered by the smart combination

of the subimages and the recursive split of the

synthetic aperture, we select reference [55] as

basis of our further development. This recursive

split of subapertures, included in the “divide and

conquer” paradigm, shows a clear analogy with the

well-known Cooley-Tukey fast Fourier transform

(FFT) algorithm, with which the algorithm shares

the asymptotic computational speed-up factor.

Analogously to the terminology used in [55], we

name the implementation of the algorithm for precise

image formation of any azimuth-variant bistatic

configuration bistatic fast-factorised backprojection

and will abbreviate it in the following by BFFBP.

B. Geometric Model

The geometric model of the analysed bistatic

configuration only assumes a transmitter and a

receiver. No linear, nor parallel, nor constant-speed

trajectories are needed to achieve precise focussing.

Similarly, it is not necessary to impose a constant

PRF during the acquisition. Due to the difficulty

of drawing a general intuitive picture, we use

Fig. 1 as an illustration of the geometric model.

Despite its lack of generality, we have chosen the
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Fig. 1. Bistatic spaceborne-airborne configuration used as

illustrative case of general bistatic SAR configuration.

geometry of a spaceborne-airborne bistatic SAR

configuration because it encompasses many of

the issues only BP algorithms can deal with in a

precise manner. Note that the algorithm is able

to handle bistatic data of any other configuration

(spaceborne-spaceborne, airborne-airborne,

one-stationary) up to any desired resolution within the

physical constraints of electromagnetic imaging. All

available information on the scene topography must

be included in the successive focussing stages, due

to the three-dimensional dependence of the bistatic

range histories. The lack of this information may force

to focussing on an image plane, as usually done in

conventional moderate-resolution monostatic SAR, but

results might not be accurate.

C. Definition of the Subimage Grid

A key point of FBP is an appropriate choice of

the grid where the subimages are computed. The

subimage grid must be necessarily two-dimensional

and sampled near Nyquist. In an analogous manner

to typical FBP implementations for the monostatic

SAR case, where the subimages are computed on

polar grids, we compute our subimages on elliptical

grids as the one depicted in Fig. 2. Fig. 2 results from

a zenithal view of the configuration shown in Fig. 1.

As can be seen in Fig. 1 the depicted vectors and lines

are not, in general, on the same plane. Transmitter

and receiver, denoted as Tx and Rx, respectively,

are placed at the foci of the isorange ellipses. The

target P is placed in a three-dimensional space.

Without loss of generality, the angular coordinate

is defined in Fig. 2 as the angle between the range

vector target-transmitter and the transmitter’s velocity

vector, but might likewise be defined analogously with

respect to the receiver. As shown in the upcoming

Fig. 2. Reference grid used in BFFBP. P is target whose

coordinates in elliptical grid are (rTx + rRx,®).

subsection, the preferred choice is the radar with

the higher angular velocity, i.e., the rate between

the effective velocity and the range to scene. The

transformation between the three-dimensional scene

into the two-dimensional image grid needs a precise

knowledge of the relative position of target P with

respect to Tx and Rx. The coordinates of P in the

subimage grid are (rTx + rRx,®). Comparing this

grid with the Cartesian one, the advantage is easily

recognisable. Consider the backprojected image

of a given scene computed after integration of one

single pulse. With respect to the geometry shown

in Fig. 2, the x-component of the Cartesian image

has a modulation, whereas the elliptical image is

constant in the angular dimension, i.e., the cross-range

bandwidth of the elliptical image is narrower than that

of the Cartesian image. A quantitative and detailed

discussion on this essential issue is given in the next

subsection. Furthermore, the proposed subimage grid

has the advantage of sharing the angular component

with the polar grid used in the monostatic case. Thus,

it will be sufficient to display the digital elevation

model (DEM) in the regular monostatic geometry

so that a precise focussing of the bistatic data set is

possible.

D. Nyquist Sampling Requirements

Consider two consecutive cross-range samples

of the image to be computed and the difference in

radar-target range between these two samples. Any

range difference higher than the carrier wavelength is

not unambiguously retrievable, i.e., is aliased. Along

the dimension where the synthetic aperture is built, the

Nyquist requirement can be expressed as a function of

the wavelength as

j¢rj · ¸
2

(3)

where ¢r represents the bistatic range difference

between consecutive samples. This range difference

depends on both the position of the radar and those

of the considered samples. In other words, ¢r does

not remain constant either within an image computed

with a given subaperture nor at the same samples of
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Fig. 3. Computation of bistatic range r0Tx + r
0
Rx of target

P(rTx + rRx,®), in relative along-track position ¡T.

images computed with consecutive subapertures, a

direct consequence of the azimuth- and spatial-variant

character of bistatic acquisitions. Hence, there is no

analytical expression matching a unique sampling

for all points of a scene and a given subaperture,

nor does the sampling requirement remain constant

for consecutive subimages. The only precise way of

computing the bistatic Nyquist requirements is to

do it in a numerical manner. However, under certain

assumptions, an operative analytical expression for

the Nyquist requirements can be derived. Such an

expression can be used (carefully) during processing

steps to avoid the need of performing other precise,

but slow, numerical computations.

In the derivation of the analytical Nyquist

sampling requirements, the following approximations

are made: 1) flat Earth geometry, 2) constant speed

vectors, and 3) constant heights of the platforms.

These approximations, valid in many practical

SAR scenarios, will only be used to simplify the

trajectories of transmitter and receiver to obtain

an operative analytical expression. The processing

is naturally done on realistic scenes without any

trajectory approximations. For the cases where the

previous approximations do not hold, a numerical

evaluation of the Nyquist requirements might be

necessary, or, as is common in the monostatic case,

an appropriate, and usually small, oversampling

factor might be used. The three-dimensional scene

is defined using a reference system whose origin is

placed in the nadir position of the transmitter (cf.

Fig. 2). The height of the transmitter over the target

P is zTx. The baseline vector in Cartesian coordinates,

denoted as ~b, is defined as (bx,by ,bz). Under these

assumptions, the Cartesian position of the target P

is (¡rTx ¢ cos®,
q
r2Tx ¢ sin2®¡ z2Tx,0). The transmitter

and receiver positions at the considered instant are

(0,0,zTx) and (bx,by,bz + zTx), respectively. Denoting

r = rTx + rRx, and accounting for the looking direction

of the acquisition, both monostatic slant ranges rTx,

rRx can be expressed as a (cumbersome) function of

the subimage coordinates (r,®) and the parameteres of

the reference grid ~b and zTx. The transmitter velocity

vector is defined as ~vTx = (vTx,0,0); the receiver

velocity vector is defined as ~vRx = (vRx,x,vRx,y ,0),

respectively. Without loss of generality, we assume

that the scene is placed in halfspace with positive y.

We further assume in the following computations that

transmitter and receiver contributions to ¢r are much

smaller than the respective monostatic slant ranges,

something common in the SAR case. The monostatic

slant ranges to target P at the radar position ¡T are
r0Tx(P) = (r

2
Tx + v

2
Tx ¢T2¡ 2 ¢ vTx ¢T ¢ rTx ¢ cos®)1=2 (4)

r0Rx(P) =
·
r2Rx + v

2
Rx ¢T2¡ 2 ¢T

¢
μ
vRx,x ¢ (bx+ rTx ¢ cos®)

+vRx,y ¢
μq

r2Tx ¢ sin2®¡ z2Tx¡by
¶¶¸1=2

:

(5)

The consecutive sample to P is denoted as P¢. A 2D

projection of the geometry used for the following

computations is depicted in Fig. 3.

1) The Cartesian Case: Consecutive samples

of the Cartesian grid are shifted ¢x from P, i.e.,

P¢(¡rTx ¢ cos®§¢x,
q
r2Tx ¢ sin2®¡ z2Tx,0). The

transmitter and receiver ranges to P¢ at radar position

¡T are
r0Tx(P¢) = (r

2
Tx +¢x

2¨ 2 ¢¢x ¢ rTx ¢ cos®+ v2Tx ¢T2

¡ 2 ¢ vTx ¢T ¢ (rTx ¢ cos®¨¢x))1=2 (6)

r0Rx(P¢) =
μ
r2Rx +¢x

2¨2 ¢¢x ¢ (rTx ¢ cos®+ bx)

+ v2Rx ¢T2¡ 2 ¢T

¢
μ
vRx,x ¢ (bx+ rTx ¢ cos®¨¢x)+ vRx,y

¢
μq

r2Tx ¢ sin2®¡ z2Tx¡ by
¶¶¶1=2

:

(7)
The range difference can be approximated as

¢r = r0Tx(P¢)¡ r0Tx(P)+ r0Rx(P¢)¡ r0Rx(P)

¼ 0:5 ¢¢x
2¨¢x ¢ (rTx ¢ cos®¡ vTx ¢T)

r0Tx(P)

+
0:5 ¢¢x2¨¢x ¢ (rTx ¢ cos®+ bx¡ vRx,x ¢T)

r0Rx(P)

=§¢x ¢T ¢
μ
vTx
r0Tx(P)

+
vRx,x

r0Rx(P)

¶
+¢½x(¢x;P):

(8)

The term ¢½x(¢x;P) increases with ¢x. The variation

of the first term is unclear, since T decreases for

increasing ¢x if Nyquist is fulfilled. Note that for
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increasing values of T, or longer apertures, ¢½x(¢x;P)

becomes negligible and the Nyquist condition derives

in the well-known formula for the synthetic resolution

[60], i.e.,

±x¼ ¸

T
¢
μ
vTx
r0,Tx

+
vRx,x

r0,Rx

¶¡1
(9)

where r0,Tx and r0,Rx are the monostatic zero-Doppler

ranges for transmitter and receiver, respectively.

Since BFFBP is based on a recursive splitting of the

synthetic aperture, the subapertures where DBP is

performed correspond to very low values of T. For

these cases, the range difference between two samples

has a percentually low component dependent on T

(thus on resolution gain). Computing nonaliased

low-resolution subimages on Cartesian grids thus

requires a much higher sampling factor than the actual

spatial resolution of the subimages and the expected

speed-up factor of BFFBP is neutralised.

As a matter of fact, a more precise analysis of the

Nyquist requirements in the Cartesian case should

include a possible variation in the relative height

of P¢ with respect to P. However, this complicates

the analysis (which in the rigorous case should be

done numerically anyway). In practical terms, a

moderate oversampling factor like in the presence of

platform motion errors suffices to avoid aliasing due

to topographic variations.

2) The Elliptical Case: In the elliptical grid, the

consecutive samples are shifted ¢® from P, hence at

coordinates (r,®§¢®) of the elliptical grid. Due to
the effect of topography, the actual position of P¢ can

be described asμ
¡rTx,§¢® ¢ cos(®§¢®),q
r2Tx,§¢® ¢ sin2(®§¢®)¡ z2Tx,§¢®,zTx,§¢®¡ zTx

¶
where rTx,§¢® denotes the reference monostatic
transmitter slant range of target P¢ and zTx,§¢®, the
relative transmitter height to target P¢. Analogously,

rRx,§¢® denotes the reference monostatic receiver slant
range to the same target. The transmitter and receiver

ranges to P¢ at radar position ¡T are
r0Tx(P¢) = (r

2
Tx,§¢®+ v

2
Tx ¢T2¡ 2 ¢ vTx ¢T ¢ rTx,§¢®

¢ cos(®§¢®))1=2 (10)

r0Rx(P¢) =

·
r2Rx,§¢®+ v

2
Rx ¢T2¡ 2 ¢T

¢
μ
vRx,x ¢ (bx+ rTx,§¢® ¢ cos(®§¢®)) + vRx,y

¢
μq

r2Tx,§¢® ¢ sin2(®§¢®)¡ z2Tx,§¢®¡ by
¶¶¸1=2

:

(11)

For this case, the range difference can be

approximated as

¢r ¼ 0:5 ¢ (r
2
Tx,§¢®¡ r2Tx)
r0Tx(P)

+
0:5 ¢ (r2Rx,§¢®¡ r2Rx)

r0Rx(P)

¡ vTx ¢T ¢
[rTx,§¢® ¢ cos(®§¢®)¡ rTx ¢ cos®]

r0Tx(P)

¡ vRx,x ¢T ¢
[rTx,§¢® ¢ cos(®§¢®)¡ rTx ¢ cos®]

r0Rx(P)

¡ vRx,y ¢T
r0Rx(P)

¢
·q

r2Tx,§¢® ¢ sin2(®§¢®)¡ z2Tx,§¢®

¡
q
r2Tx ¢ sin2(®)¡ z2Tx

¸
: (12)

The first two terms depend entirely on the topography

and do not necessarily increase for small subapertures

(small T). The last three terms increase linearly

with increasing T and encompass the gain in

angular resolution obtained by synthesising larger

subapertures: the first two account for the transmitter

along-track component of the range error; the last one

corresponds to the transmitter across-track component

of the range error.

Assuming rTx,§¢® ¼ rTx, rRx,§¢® ¼ rRx, and
zTx,§¢® ¼ zTx, a similar approximation as the one made
in the Cartesian case by setting the height of target P¢
equal to zero, and changing the sign of (12), ¢r can

be approximated as follows

¢r ¼ T ¢ rTx ¢
"μ

vTx
r0Tx

+
vRx,x

r0Rx

¶
¢¢(cos®) + vRx,y

r0Rx

¢
Ãs

sin2®¡ z
2
Tx

r2Tx
¡
s
sin2(®+¢®)¡ z

2
Tx

r2Tx

!#
(13)

where ¢(cos®) = cos(®§¢®)¡ cos®. The first
term in brackets describes the contribution of the

transmitter along-track motion components to the

synthetic resolution; the second term describes the

contribution to the range variation in the direction

of the across-track component of the transmitter. A

numerical evaluation of (13) to derive the angular

Nyquist requirements (cf. (3)) is valid for most bistatic

configurations and has a negligible impact in the

overall burden of the algorithm.2 Come to this point,

it becomes evident why the angle ® should be defined

with respect to the radar having the higher angular

velocity, since this minimises the contribution to ¢r of

the term proportional to vRx,y. In cases in which this

contribution is small, i.e., the term vRx,y ¢T ¢ rTx=rRx
is significantly smaller than the wavelength, a higher

2For special configurations where at least one of the radars has

a velocity component in the z-coordinate, a further component

proportional to !¢x,z needs be added in (10)—(13).
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bound to this range error can be expressed as

¢r · T ¢ rTx ¢
·μ
vTx
r0Tx

+
vRx,x

r0Rx

¶
¢¢(cos®) +

¯̄̄̄
vRx,y

r0Rx

¯̄̄̄¸
(14)

where from the safe bound for the angular Nyquist

requirement can be found

±(cos®)¸
¯̄̄̄
¸¡ j!Rx,yj ¢T ¢ rTx
T ¢ rTx ¢ (!Tx +!Rx,x)

¯̄̄̄
(15)

where !Tx is the transmitter’s instantaneous

angular velocity, and !Rx,x and !Rx,y are the x

and y components, respectively, of the receiver’s

intantaneous angular velocity. These instantaneous

angular velocities include the azimuth-variant

nature of bistatic SAR in (15). We remind that the

instantaneous angular velocity reaches its maximum

v=r0 at monostatic zero-Doppler time and decreases

to zero for high-squinted monostatic positions. The

numerical estimation of these instantaneous angular

velocities is easy to implement, but (15) can be again

bounded by including the maximum values of the

transmitter’s and the x component of the receiver’s

angular velocities. By setting !Rx,y = 0, we obtain

the compact expression of the angular Nyquist

requirement of bistatic general along-track acquisitions

±(cos®)¸ ¸

T ¢ rTx ¢ j!Tx +!Rxj
(16)

which reduces to the monostatic expression by setting

!Rx = !Tx. The influence of the !Rx,y is somewhat

more complex to quantify, since values of j!Rx,yj ¢T ¢
rTx close to the wavelength reduce the information

content of (15). Whenever this happens, we need to

step back to (13) or even to (12) to derive an estimate

of the angular sampling condition.

A second advantage of computing the subimages

in elliptical rather than Cartesian grids can be derived

even for larger subapertures. Let us assume (9) holds

and sampling the Cartesian subimage with this spatial

spacing yields no aliasing. Let us assume that the

transmitter is placed at the centre of a scene of length

Lx, which corresponds to a worst case. Then, the

angular length of the scene in cos® is

L® =
2 ¢Lxq
L2x +4 ¢ r2Tx

(17)

which yields a necessary number of samples below

N® =
L®

±(cos®)
· 2 ¢Lx ¢T ¢ rTx ¢ (!Tx +!Rx)
j¸¡ j!Rx,yj ¢T ¢ rTxj ¢

q
L2x +4 ¢ r2Tx

:

(18)

Consequently, we can use (18) matched for the

quasi-along-track bistatic configurations (!Rx,y ¢T ¢
rTx¿ ¸) to state the further benefit of using elliptical

Fig. 4. Block diagram of non-real-time recursive BFFBP

implementation. Acronym RC before data stands for range

compressed.

grids for backprojecting moderate-to-high resolution

subimages. Comparing N® with the number of samples

needed for the Cartesian subimage, noted Nx, we

obtain

N® =Nx ¢ ´

¼Nx ¢
!Tx +!Rx

max[!Tx]+max[!Rx]
¢ 1s

1+
L2x
4 ¢ r2Tx

(19)

a quite illustrative result, since the factor ´ is strictly

smaller than unity, especially for cases where the

length of the scene approaches or even exceeds the

slant ranges of the targets. As a result, we conclude

that focussing the bistatic subimages on the proposed

elliptical grid is a more efficient choice than doing

it on the corresponding Cartesian grid. Once all the

lower resolution subimages have been computed, the

full resolution bistatic image with no aliasing can be

interpolated at a last stage into the more convenient

visualisation Cartesian grid with small computational

cost.

E. Implementation

The block diagram of a non-real-time BFFBP

implementation is shown in Fig. 4. The first stage

must necessarily be the computation of the scene

topography in a convenient coordinate system. A

very advantageous solution is a regular monostatic

backgeocoding of the imaged scene, since the

elliptical grids only contain monostatic angular
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information. This backgeocoded DEM is used in the

computations of all the subimage grids involved in

BFFBP splitting stages, as well as in the computation

of the full-resolution Cartesian grid. After this, the

algorithm enters its recursive kernel, where a decision

must be made whether DBP on the input grid is

computed or splitting of the input data continues.

Every split of the input data requires a split of

the radar trajectories and a computation of new

lower resolution elliptical grids. The backgeocoded

DEM should however not be decimated if the best

topography accommodation (within the resolution of

the input DEM) is to be achieved. The computation

of DBP on the lowest resolution elliptical grid

outputs back to the previous stage of recursion,

where all the subimages are interpolated into the

higher resolution elliptical grids. This interpolation

is the main error source of BFFBP, provided that

all Nyquist requirements are fulfilled, and must be

carried out carefully. Unfortunately, it is also the

computational bottleneck of the algorithm. The good

news here is that high-quality interpolators are easy

to come by and easily parallelisable. As usual, the

quality of the output image is a trade-off between

accuracy and computational time. After interpolation

of two consecutive higher resolution subimages,

the algorithm goes back another stage and repeats.

Note that the interpolation of increasing resolution

polar grids is one of the highlights of [55], since it

minimises the number of required interpolations by

always computing subimages on the best possible

working grids. We keep this essential feature in our

implementation by always using elliptical grids for

the subimage computations. Moreover, since all

elliptical grids contain the topographic information

of the scene up to the required resolution, topography

accommodation is naturally achieved in the increasing

resolution subimages. If no external DEM is available,

processing over a flat scene is also possible but results

might not be accurate depending on the bistatic

configuration and the required resolutions. The last

step of the algorithm includes an interpolation of the

highest resolution subimages computed on the finest

elliptical grids to the input Cartesian grid (or to any

desired projection, e.g., UTM) for better visualisation

purposes.

For simplicity, we have only analysed an

unweighted spotlight implementation of BFFBP.

However, another strong advantage of BP with

respect to Fourier-domain techniques is the possibility

of precise range- and azimuth-variant antenna

filtering and weighting. In addition to the range

computations, attitude values of transmitter and

receiver for each pulse have to be computed in

this case. A two-dimensional weigthing (including

notches) has to be generated and assigned only at

the lowest resolution stage. Smartly implemented

antenna filtering usually reduces the computational

burden, since the subimage grids contain less samples.

Another strong advantage of FFBP over other

Fourier-domain algorithms is the small number of

points used in the subapertures. Usually, a slow-time

Fourier transform, which can only be performed

(unless efficiency-reducing azimuth block-processing

is used) once that the data are already recorded, is

included in the first stages of any Fourier-domain

focussing algorithm. FFBP can start backprojecting

low-resolution subimages during the acquisition,

during the time any other Fourier-domain algorithm

remains idle. Using analogous logic, the memory

requirements of the FFBP approach a factor 2 benefit

with respect to Fourier-domain techniques, since the

data used to backproject low-resolution subimages can

readily be discarded before grid interpolation. Last

but not least, the effect of working on a pulse-to-pulse

basis makes FFBP a good candidate for multithreaded

implementations benefitting from the multicore

technology used in almost any CPU/GPU produced

now.

F. Computational Burden and Memory Consumption

We assume that the backprojected scene has

dimensions Nr£Nx in range and azimuth, respectively.
A total of Na pulses are used in the integration.

Since we have assumed spotlight processing, a

pulse-to-pulse implementation of bistatic DBP requires

a number of operations proportional to

NDBP /Nr ¢Nx ¢Na /Nr ¢N2a : (20)

Considering the linear behaviour of the angular

Nyquist requirements presented before (cf.

Section IID), and assuming the split factor is 2,

subaperture splitting reduces the pure BP effort of the

algorithm by a factor 2. Assuming a maximum of K

splits of the aperture, the computational burden of the

BP part of BFFBP is expressed as

NBFFBP, BP =NDBP ¢2¡K (21)

which, considering Na = 2
N reduces to

NBFFBP, BP /Nr ¢Na ¢ 2N¡K: (22)

The computational burden of BFFBP has to be

completed by including the grid computations and

the grid interpolations. The computation of a grid is

proportional to the number of samples of the grid.

Let ¹grid be the proportionality burden factor of the

grid computation; the computational burden of the

grids generation throughout the several stages of the

algorithm is

NBFFBP, grid = ¹grid ¢Nr ¢Na ¢K: (23)

The interpolation of two grids into a new one is also

proportional to the number of samples of the new

grid. Analogously to the previous case, let ¹int be the

proportionality factor of the computational burden of

each interpolation, the total computational burden of
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the interpolation steps of BFFBP is

NBFFBP, int = 2 ¢¹int ¢Nr ¢Na ¢K (24)

where the factor 2 is caused by the use of two input
images to generate one output image in every step of
recursion. The speed-up factor of BFFBP with respect
to DBP can be expressed as a function of the number
of stages K

aBFFBP =
NDBP, BP

NBFFBP, BP +NBFFBP, grid +NBFFBP, int

=
2N

2N¡K +(¹grid +2 ¢¹int) ¢K
: (25)

The factors ¹grid, ¹int determine the speed-up factor of
BFFBP and depend strongly on the implementation.
A conservative estimate for the grid computation
proportionality factor is ¹grid = 1. The value of ¹int
depends on the interpolation method used during grid
interpolation. A systematic evaluation of the medium-
to high-quality interpolation kernels used in FFBP can
be found in [61]. As expected, the better the required
precision, the slower the grid interpolation and thus
the higher the value of ¹int, since any interpolated
sample is computed using a more or less cumbersome
combination of the surrounding samples. If a 2D
space-domain interpolator is used, a conservative
estimate for the interpolation proportionality factor
is ¹int =Mr ¢M®=10, where Mr and M® are the number
of neighbour samples used for the range and angle
interpolation, respectively. The advantage of this
kind of approache is that the ¹int does not increase
with increasing image sizes, like is the case if
interpolators requiring FFTs are used (e.g., Farrow
2D [62], data upsampling + low-order interpolator).
Fig. 5 shows the log2 of the speed-up factor for a
2D eight-point truncated sinc interpolation kernel
(dashed). The value of K coincides with N ¡ 1
and so 2-pulse subapertures feed the DBP kernel
of BFFBP. For increasing resolutions (increasing
Na), and a constant value of 2

N¡K , the only factor
increasing in the denominator of (25) is K, which
is increasing in log2Na. This marks the asymptotic
behaviour of the computational speed-up of BFFBP
for moderate-to-large apertures. In the figure, the
classical speed-up factor of conventional monostatic
FBP approaches using lower order interpolators
(negligible ¹grid and ¹int) is also depicted (solid).
For small apertures, (25) yields values smaller than
unity, and BFFBP spends more time computing and
interpolating grids than it takes DBP to compute the
full-resolution image. The conclusion is BFFBP does
not offer any acceleration for low resolutions when
compared with DBP (which is fast anyway), and starts
having an edge for moderate and high resolutions,
exactly in the same manner Fourier algorithms do.
In terms of memory consumption, a pulse-to-pulse
implementation of BFFBP retains the advantage of
FFBP over DBP of only needing the full-resolution

Fig. 5. BFFBP speed-up factor: aymptotic log2 speed-up factor

(solid), eight-point truncated sinc (dashed).

image at the final stage of the processing, allowing for
imaginative dynamic memory management strategies.

III. EXPERIMENTAL RESULTS

A. Simulated Data: The Old Point Targets

We propose a realistic acquisition over a realistic
scene for the simulated data set. We further assume
that both transmitter and receiver have exactly
the same master frequency and thus perfectly
synchronised bistatic data are acquired. A total of
four point targets distributed all over Barcelona
metropolitan area are generated using the translated
motion data of the DLR TerraSAR-X/F-SAR
spaceborne-airborne experiment [60]. The height
above sea level of F-SAR is lowered to 1167 m
to reduce the dimensions of the raw data matrix
at the required resolution. Setting the targets in
Barcelona has the advantage of having a modest
topographic profile which allows to test the ability
of the algorithm to accommodate the topographic
changes of a realistic scenario. The selected point
targets, positions, and heights are listed in Table I.
The heights of the considered targets do not include
the surrounding buildings. The satellite and the
airplane are aligned to reach the centre of the scene
at the same instant, though this has no impact on
the focussing capabilities of the algorithm. The
SAR acquisition parameters are listed in Table II.
The range compressed data matrix has dimensions
of 8192 samples in range and 32768 samples in
azimuth. The expected along-track resolutions for
all point targets are modest (significantly better
along-track resolutions were measured in [60]), but
they are sufficient for the exemplary purpose. The
expected resolutions can be found in Table III. The
characteristics of the acquisition are demanding,
but not pushing the limits. Instead of selecting
four-times larger scenes surveyed with a more
extreme bistatic configuration with ten-times stronger
topographic changes, and intending to achieve
resolutions of the order of the wavelength, we choose
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TABLE I

Point Targets Position in X-Band Barcelona Simulation

Ref. Place Latitude Longitude Height

P1. Mercat de Sant Antoni 45:81239± 43:0027± 12.9 m

P2. Camp Nou 45:8161± 42:6756± 37.5 m

P3. Pavelló Mies van der Rohe 45:80449± 42:9029± 36.7 m

P4. Observatori Fabra 45:85781± 42:6898± 409.8 m

TABLE II

Parameters used in Simulated Data Synthesis

Integration time [s] 3.2768

Pulse repetition frequency [kHz] 10

Ground range scene length [m] 6575

Azimuth scene length [m] 4400

Speed of light [m/s] 2:9979 ¢ 108
Wavelength [m] 0.031

Transmitted bandwidth [MHz] 300

Sampling frequency [MHz] 330

TerraSAR-X velocity [m/s] 7408

F-SAR velocity [m/s] 90

TerraSAR-X altitude [km] 514

F-SAR altitude [m] 1167

TABLE III

Resolutions of Reference Targets

Target Reference P1 P2 P3 P4

Along-track resolution [cm] 46.4 53.4 48.9 52.9

Ground-range resolution [cm] 55.3 55.2 55.1 55

the illustrative power of this rather conventional

bistatic acquisition over a rather conventional scene

of interest in order to compare the obtained results

with and without topography accommodation. For

this, a realistic DEM of Barcelona is used in the

processing steps. The version of BFFBP without

topographic accommodation consists of a similar

processing using a constant height model of 225 m.

BFFBP over this flat grid can be thought of as

a higher bound for any Fourier-domain bistatic

SAR processing algorithm willing to flee from

costly space-variant wide-bandwidth corrections,

since precise focussing for the assumed DEM is

achieved. The focussed responses with and without

topography accommodation are shown in Figs. 6 and

7, respectively. Significant defocussing, even for the

ordinary values of the simulation, is found in targets 1

and 3 (located at nearer range) in the case of BFFBP

over the flat grid. The four targets appear nicely

focussed for the complete version of BFFBP using

the DEM information of the scene and their resolution

matches the expected values. A 2D truncated sinc

interpolator has been used in the implementation of

BFFBP used in this section.

B. Real Data: DLR Bistatic SAR Experiments

After the test with simulated data, we proceed

to test the algorithm using two bistatic data sets

Fig. 6. Simulated point target responses using BFFBP with

topography accommodation (realistic external DEM).

Fig. 7. Simulated point target responses using BFFBP without

topography accommodation (flat DEM at 225 m height).

of the DLR bistatic SAR experiments: the first

TerraSAR-X/F-SAR spaceborne-airborne experiment,

and the DLR-ONERA joint airborne experiment.

The first one is used to test the capabilities of a

highly azimuth-variant spotlight acquisition, whereas

the second one is used to test the algorithm in an

azimuth-invariant stripmap acquisition. The effects

of the use of two separate master clocks have been

previously compensated for before feeding the bistatic

data to the BFFBP kernel.

1) TerraSAR-X/F-SAR Spaceborne-Airborne

Experiment: The data set was acquired during the

first TerraSAR-X/F-SAR bistatic spaceborne-airborne

experiment, performed in early November 2007

[60]. The experiment was the first one of this kind

in Europe, and the first one yielding high-resolution

bistatic imaging in a hybrid configuration. The

acquisition parameters are listed in Table IV.

Further details on image properties and performance
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Fig. 8. BFFBP-processed bistatic image of TerraSAR-X/F-SAR first spaceborne-airborne experiment. Radar illumination from top.

Bistatic image is shown on full-resolution elliptical grid, which causes slight curvature that can be observed. Low signal parts of image

correspond to “nulls” of integrated bistatic azimuth antenna pattern.

of the bistatic system can be found in [60]. The

acquisition geometry is a typical bistatic, spotlight

and azimuth-variant configuration, with almost

parallel tracks, at least in their nadir projections. No

modifications with respect to the BFFBP used for

the point targets simulation are needed for processing

the data. The focussed image is shown in Fig. 8. This

image is computed on a full-resolution elliptical grid,

as opposed to the usually preferred Cartesian grid for

illustration purposes. The use of this elliptical grid

can be noticed in the curvature of the airfield runway.

The image shows increasing bistatic range from top to
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TABLE IV

Acquisition Parameters of TerraSAR-X/F-SAR Experiment

Acquisition mode Spotlight

Integration time [s] 2.77

Pulse repetition frequency [Hz] 5920

Ground range scene length [m] 7680

Azimuth scene length [m] 2560

Wavelength [m] 0.031

Transmitted bandwidth [MHz] 100

Sampling frequency [MHz] 125

TerraSAR-X effective velocity [m/s] 7408

F-SAR nominal velocity [m/s] 90

TerraSAR-X altitude [km] 514

F-SAR altitude [m] 2180

bottom and increasing angular transmitter information

from left to right. No weighting has been introduced

in the computation of the BP integral and a wider

scene than the dimensions on-ground of the F-SAR

antenna pattern has been computed. The integrated

F-SAR azimuth antenna pattern can be well observed

in the amplitude modulation of the bistatic image, as

discussed in [60].

2) DLR-ONERA Airborne Experiment: The

second data set corresponds to an across-track

acquisition of the DLR-ONERA bistatic airborne

experiment [63]. Carried out in March 2003, the

experiment was the second of its kind in Europe

(performed a few days after [64]), and made

possible for the very first time the demonstration of

cross-platform bistatic SAR interferometry [65, 66].

The bistatic across-track configuration is shown

in Fig. 9. The main difference with respect to the

previous experiment is the acquisition mode. Whereas

the data of the bistatic spaceborne-airborne experiment

were acquired in spotlight mode, these are bistatic

stripmap data, i.e., antenna filtering is required. The

acquisition lasted 96 s, the mean value of the platform

velocities was 79:9 m/s and the equivalent Doppler

bandwidth synthesised was 200 Hz. Further details

on the bistatic configuration can be found in Table V.

Fig. 10 shows the focussed bistatic image computed

on the full-resolution slant-range/azimuth Cartesian

grid. The image shows increasing bistatic range from

top to bottom and increasing azimuth from left to

right. Again, the contributions to the BP integral have

not been weighted. A compensation of the bistatic

elevation pattern has been carried out after focussing

to improve visualisation. A null of the elevation

bistatic pattern can be seen in near range.

3) Phase Quality Analysis: To test the usability

of BFFBP as a high-precision processor for general

bistatic configurations, especially for interferometric

applications, we compare the results of Section IIIB1

with an image processed using DBP. For simplicity,

we crop the presented image in range and azimuth,

and stay within the mainlobe of the illuminated

scene, in an area placed between the runway and the

Fig. 9. DLR-ONERA bistatic airborne experiment: across-track

configuration.

TABLE V

Acquisition Parameters of DLR-ONERA Bistatic Configuration

Acquisition mode Stripmap

Doppler bandwidth [Hz] 200

Pulse repetition frequency [Hz] 2000

Slant range scene length [m] 5100

Azimuth scene length [m] 7670

Wavelength [m] 0.03125

Transmitted bandwidth [MHz] 100

Sampling frequency [MHz] 100

RAMSES nominal velocity [m/s] 79.9

E-SAR nominal velocity [m/s] 79.9

RAMSES altitude [m] 1067.7

E-SAR altitude [m] 1159.7

Across-track horizontal baseline [m] 2381.8

Along-track horizontal baseline [m] 127.1

forest. Fig. 11 shows the interferogram of these two

images computed over the same elliptical subgrid.

A 2D eight-point truncated sinc is used in the image

interpolation stages. The mean value of the residual

phase error is ¡0:013± and the standard deviation
is 0:89±.

IV. SUMMARY

The paper has presented the first efficient

approach to bistatic SAR image formation capable

of precisely accommodating azimuth-variance and

topography-dependence, the two main challenging

issues when compared with conventional monostatic

SAR image formation. The algorithm, based

on a subaperture approach, is also well suited

for parallelised and real-time implementations,

independent of radar wavelength, scene size, or

desired resolution. It follows the framework of the

monostatic FFBP algorithm, but extends its suitability

for general bistatic configurations by presenting an

advantageous image coordinate system. The use of

the presented elliptical coordinate system allows

the display of the topographic information of the

scene in monostatic radar coordinates, thus enabling
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Fig. 10. BFFBP-processed bistatic image of one across-track configuration of DLR-ONERA airborne experiment. Radar illumination

from top. Bistatic image is shown on highest resolution Cartesian grid. Increasing azimuth shown from left to right. Black stripe on top

of image corresponds to elevation null of bistatic antenna pattern.

Fig. 11. Residual phase error crop of BFFBP-processed image of

first TerraSAR-X/F-SAR bistatic experiment.

topography accommodation in a manner as it is

usually carried out in high-precision monostatic

SAR processors. The advantage over a more familiar

Cartesian coordinate system has been discussed

and operative analytical expressions for the Nyquist

requirements in the elliptical coordinate system

have been derived. The description of the algorithm

is complemented with discussions on practical

implementation and computational burden. Despite the

use of high-quality image interpolators and the need

of displaying the scene topography information for

every subaperture, the computational speed-up factor

of BFFBP is proportional to log2N. The algorithm

is tested using simulated data representing a realistic

bistatic acquisition over Barcelona, where the precise

3D focussing capabilities offered by BFFBP shows

a clear advantage over any other 2D processing

approach, even for the moderate requirements of the

simulation. Bistatic images processed with BFFBP of

two different DLR bistatic experiments have also been

presented, including phase quality plots using DBP as

a valid reference.
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