Extreme sandwich-lightweight design with high degree of functional integration

Michael Kriescher
Simon Brückmann

Institute of Vehicle Concepts

May 10th, 2012
Vehicles of the German Aerospace Center

Lunar rover

Aircraft for flight testing
Development of resource-efficient, innovative vehicle concepts

- Safe, light and cost-effective

- Adaptation to alternative drive train concepts
Lightweight & Hybrid Design Methods
Passive safety / crash simulation and testing
Motivation for lightweight design
Politics, Society / Environment und legislation

- Shortage of resources
- Climate change
- Population and mobility growth
- Decrease of consumption and emissions necessary
- Increasing demand for more efficient mobility

Source: Internet, Naisbitt
Importance of low vehicle mass

- 2/3 of the total fuel consumption are weight-dependent
- Secondary mass reduction of the drive train and energy storage is especially important with electric vehicles

Cost per weight reduction

<table>
<thead>
<tr>
<th>Type</th>
<th>EUR/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Combustion Engine</td>
<td>~3</td>
</tr>
<tr>
<td>Hybrid electric</td>
<td>5-14</td>
</tr>
<tr>
<td>Battery electric</td>
<td>18-20</td>
</tr>
</tbody>
</table>

Source: based on McKinsey Study „Lightweight materials and design - a perspective across key industries“, 2012
State of the art body in white construction

- Very low cost in large scale production
- Mass: around 180-250 kg for a 4-seater
- Hollow structures, joined with spot-welds,
- Relatively complex geometry, around 200-300 parts
- High stiffness but tendency for buckling under certain load conditions
Use of sandwich parts - examples

- High stiffness, even in simply shaped parts
- Shaping of the parts is difficult
- Cost for semi-finished parts relatively high
- Crash behaviour must be examined

Sources:
- H C Davies; M Bryant; M Hope; C Meiller: Design, development, and manufacture of an aluminium honeycomb sandwich panel monocoque chassis for Formula Student competition; Journal of Automobile Engineering 2011
- Metawell GmbH
- KTM Sportscar GmbH
Concept idea: Metal monocoque development

Targets:

- High crashworthiness, by use of sandwich-structures
- Low investment costs due to low number of parts
- Low initial requirements for production facilities
- Use of conventional materials (e.g. PU-foam, aluminium sheet metal)
- Construction method similar to a race car
- Weight of the body in white approx. 80 kg, for a two seater
A ring-like shaped structure with a foam core should lead to comparatively low strain values, distributed over a large portion of the structure.

Absorption of crash energy through elongation of material

Stabilisation of the cross section

Slight imperfections in the mode of deformation

FE-simulation
Ring-frame optimisation

Initial design

- Mass: 23.6 kg
- Deformation under frontal load: 271 mm
- Deformation under side load: 247 mm

Optimised design:

- Mass: 22.5 kg - 4.8%
- Deformation under frontal load: 175 mm - 35.3%
- Deformation under side load: 228 mm - 7.6%
Crash-Simulation - EURO-NCAP-pole-crash

- Good overall crash behaviour under highly concentrated loads (29 km/h, pole diameter 254 mm)
- Lower intrusion than with a conventional structure, no collapse
Components for a fuel cell drive train

1 Fuel cell stacks
2 Fuel cell control module
3 Cooling module
4 Air supply module
5 H₂-storage
6 Battery

- Mass of drive train components depends on vehicle mass
 → secondary effects of body weight reduction

- Energy storage difficult in alternative drive train concepts
 → high importance of secondary weight reduction
Crashbox for AZT-testing

- Testing formalities:
 - Velocity: 15 +1/-0 km/h
 - 40% overlap

- Comparison 100% and 40% overlap:
Vehicle front structure

- Novel sandwich architecture related to automotive front structures
- Static stability (sub-frame connection)
- High safety for passengers
- Good-natured failure mechanism of the front structure
- High degree of functional integration
 - suspension/ sub-frame
 - components
 - crash performance
- Closed structures (sandwich panels)
- Segmentation of the front structure (central crashbox and sidewise structures)
- Integrated inserts in fabrication process
- Little geometrical complexity
Vehicle front structure
Crash-Simulation - US-NCAP front crash

- 56 km/h
- Rigid barrier

- Damage tolerant crash-behaviour, even when overloaded, little tendency for catastrophic collapse
Summary and overview

- Implementation of an overall sandwich car body concept
- Low mass (80 kg)
- High degree of functional integration
- First successful execution of numeric simulation
 - US-NCAP frontal
 - Pole-crash
 - Component test
- Good-natured failure mechanism
Challenges

- Validation of assembly concept
- Validation of the suspension concept
- Crash testing on the dynamic component testing facility
- Validation of assumed framework conditions in simulation
 - Material behaviour
 - Numerical settings
- Manufacturing concept (prototype and small series)
Future prospects

- Design of the external shell
- Driveable demonstrator
- Crash testing (components and complete car body)
- Shape and topography optimization
- Aerodynamic investigation (with partners)
- Investigations of structures with high fatigue strength
- Investigations in additional crash scenarios
- Systematic examination of crash behaviour of sandwich structures
Thank you for your attention!