
Split-Proxy Concept for Application Layer Handover in Mobile
Communication Systems

Jens Kammann, Tim Blachnitzky
German Aerospace Center (DLR), Institute of Communications and Navigation

P.O. Box 1116, D-82230 Wessling, Germany
Jens.Kammann@dlr.de, Fax: +49 8153 281871

Abstract— This paper presents an HTTP based approach for han-
dover within and between heterogeneous communication systems.
Therefore a Split-Proxy-Concept has been developed, consisting of
client- and server side proxies. Communication between proxies takes
place using TCP connections, thus benefiting from existing IP mobility
approaches and virtual serial connections as provided by Bluetooth or
circuit switched access. The latter allows to forgo a full TCP/IP stack
allowing very light-weight implementations on resource limited client
devices such as smart phones. Furthermore, the protocol allows pay-
load data caching and retransmission in case of gaps of network cover-
age. Throughput measurements indicate that the signaling overhead for
the inter-proxy communication can be very well compensated by HTTP
header and optional payload compression.

I. INTRODUCTION

A growing number of mobile devices offer various types
of wireless network access. The range spans from mobile
phones with circuit switched or packet based network access
over Personal Digital Assistants (PDA) with Bluetooth[1]
to small notebooks with Wireless LAN (WLAN), Bluetooth
and other options (see Fig. 1).

Today, the user must configure each access method sepa-
rately and decide on his own when to use which device. This
decision is based on a multitude of factors from obvious
ones such as network coverage to application specific deci-
sions such as quality of service and throughput requirements
in consideration of the cost of usage. Independent on how the
initial access method is selected, it is highly desired to main-
tain network access despite varying network availability with
only minimum user interaction.

This paper examines the trade-offs in existing handover
approaches of the typical protocol stack and proposes as
a new option to perform all connection and handover re-
lated tasks on the application layer of a mobile device with-
out modification to the well established lower layers. To
keep the overview concise, we limit ourselves to Bluetooth
and Wireless LAN as short range communication systems
and GSM (GPRS) respectively UMTS in its current ongo-
ing implementation (”Release 99”) as public mobile com-
munication systems. Sample implementations will be on
smart phones with JAVA Mobile Information Device Profile
(MIDP)[2] support and PDAs, although the protocol itself
requires only operating system support for HTTP[3] and ac-
cess to the available network modules. Although HTTP will
be used for handover management, there is no need for a full-

blown TCP/IP protocol stack (important for resource limited
devices).

II. MOBILITY AND HANDOVER

A typical protocol stack seen at mobile device (see Fig. 2)
consists of RF, baseband and network layer for each radio
interface and the TCP/IP stack as a basis for applications
ranging from mobile Web/WAP access to E-Mail clients and
Personal Information Management (PIM).

The intra-system or horizontal handover usually happens
transparent to the TCP/IP stack and works well within the
existing public mobile networks such as GSM or GPRS pro-
viding administrative restrictions do not prevent it (e.g. miss-
ing roaming agreements). However, there is no current spec-
ification for horizontal handover in Bluetooth nor Wireless
LAN, barring a few proprietary implementations from hard-
ware manufacturers. Inter-system or vertical handover is
even more critical. Although there has been made efforts in
several standardization bodies to specify handover between
networks, few are likely to become implemented (why would
a mobile operator deploying UMTS want users to perform
handover to ISM-band operated Wireless LAN? ).

One way out of this is to perform handover at the TCP/IP
level. Mobile IP provides a working solution using two IP
addresses and a home agent. However, full functionality re-
quires IPv6 which result in significant increase of complex-
ity of the protocol stack. One layer up, TCP is known for
poor performance on wireless links and was therefore often
subject for suggestions of improvement[4]. M-TCP, I TCP
and TCP* - all exhibit improved performance in wireless
networks, some also provide partial support for vertical han-
dover. However, as with Mobile IP, significant changes to an
existing TCP/IP stack is required.

On the other hand, many mobile applications rely on
HTTP for data exchange at the application layer. Applica-
tions such as Web-Browser, HTTP-based file transfer, mobile
agents exchanging XML encoded messages[5] or even some
peer-to-peer file sharing programs may benefit from the pro-
posed Split-Proxy Concept.

III. SPLITPROXYCONCEPT

Usually an application running on a mobile device com-
municates directly with an server in the fixed network via



Message Data Source � Destination

HTTP � REQ
�

Client � Server
HTTP � RESPONSE

�
Server � Client

HTTP � ACK - Client � Server
STORE - Access Point � Server
STORE � ACK - Server � Access Point
RETRIEVE - Client � Server
RETRIEVE � NACK - Server � Client
UPDATE

�
Client � Server

UPDATE � ACK - Server � Client
GET � NEIGHBOR - Client � Server
NEIGHBOR � LIST

�
Server � Client

ARE � YOU � THERE - Client � Access Point
YES - Access Point � Client

TABLE I

MESSAGES BETWEEN PROXIES

the wireless infrastructure. The split-proxy concept as shown
in Fig. 4 introduces three proxies in between this link: The
first one resides at the mobile devices itself to intercept all
outgoing HTTP traffic. In case of an operating system envi-
ronment without support for server sockets (as in the current
implementation of the MIDP found on several smart phones),
modifications of existing applications may be required, oth-
erwise application can easily be instructed to use ’localhost’
as proxy.

The second proxy is located at the access point, accept-
ing connections from the first one and forwarding it to the
next proxy within the backbone, which finally forwards the
request to the destination server.

IV. OPTIMIZATIONS

At a first glance this may sound like a huge overhead, but
performance measurements with respect to overall through-

Satellite

PLMN

Hotspots

Fig. 1. Network Overlay

RFCOMM

PPP

IP

TCP

RFCOMM

PPP

PPP Networking

LAN/
WAN

IP

TCP

HTTP

LAN/
WAN

Bluetooth LAN Access Point ServerBluetooth Client

Baseband & Radio

Link Controller

Link Manager

Host Controller Interface

L2CAP

SDP

Baseband & Radio

Link Controller

Link Manager

Host Controller Interface

L2CAP

SDP

FTP ... HTTP FTP...

Fig. 2. Bluetooth Protocol Stack

RFCOMM

Proxy Layer

RFCOMM

Proxy Layer

LAN/
WAN

Proxy Layer

HTTP

LAN/
WAN

Access Point Proxy Server ProxyClient Proxy

Baseband & Radio

Link Controller

Link Manager

Host Controller Interface

L2CAP

SDP

Baseband & Radio

Link Controller

Link Manager

Host Controller Interface

L2CAP

SDP

FTP ...

IP

TCP

LAN/
WAN

Server

HTTP FTP...

TCP

IP

Fig. 3. Protocol Stack with Proxy Layer

put and delay have shown only minimal performance degra-
dation because of several options for improvement:

� Client- and access point proxy need not to communicate
in plain text (HTTP), a binary protocol shows performance
gains especially on wireless links with low bandwidth, such
as Bluetooth or circuit switched GSM links.

� HTTP Header caching at the client avoids repeated trans-
missions of the same, often very lengthy header information
over the wireless link.

� Mobile devices often still use HTTP/1.0 as transfer proto-
col. The access point proxy can easily rewrite a request into
HTTP/1.1, thus benefiting from several performance enhanc-
ing options from persistent connection over chunk transfer
to data compression.

� The server proxy could resize and re-encode images. Due
to the complexity and potential system load this hasn’t been
implemented yet.

� The server proxy could prioritize text based content
(HTML, Scripting Code) over graphics and multimedia. This
allows faster access to the actual content while design and
navigation loads in the background. Also within all graph-
ics (e.g. GIF, JPEG, PNG), an intelligent ordering could
cause navigation buttons (usually linking within the server)
to load before banner advertising (typically point to external
servers).

� There is no need for a full TCP/IP stack at the mobile de-
vice anymore (see Fig. 3): HTTP is a text-based protocol
and therefore only requires a transparent serial link as it is



Application Server
Access Point

Proxy
ClientProxy ServerProxy

User Data
Neigh-
bors

Client Device Access Network Backbone

HTTP HTTP
DB

Fig. 4. Split-Proxy Concept

provided by many communication systems. Especially if the
usual PPP link can be avoided (e.g. because the underlying
baseband and data link layers provide sufficient error detec-
tion and correction), overall system performance with respect
to data throughput and processor load increases. However,
one should note that TCP provides many other features, such
as multiple sessions on the same link. If they are required,
an implementation on a usually high level language such as
JAVA is more inefficient than using the native TCP/IP func-
tions provided by the operating system. Still, sidestepping
PPP and TCP/IP altogether remains a promising option, es-
pecially on smart phones where simultaneous usage of mul-
tiple programs or multiple windows of a web browser are
unlikely due to small screen sizes or other device limitations.

V. IMPLEMENTATION AND MEASUREMENTS

A sample implemetation of the proxies was written in
JAVA to allow easy porting to various platforms. Bluetooth
connectivity is still problematic as there exists a Bluetooth
JAVA API[6] for MIDP, but no devices which would sup-
port this specification are available on the market presently.
Therefore, the test setup consisted of two Laptops with Blue-
tooth interface cards: One acted as the client running client
proxy and user applications, the other one simulated the ac-
cess point running the access point proxy. The server proxy
and the databases were running on different machines in the
intranet.

Measurements took place in three steps with small, mixed
and large request sizes. First, all proxies were bypassed
to evaluate the maximum throughput of the link, then the
throughput was measured with all proxies turned on with
links established via Bluetooth LAN Access Profile using
Point-to-Point Protocol (PPP). Finally, these measurements
were compared with the throughput that can be archieved if
the link is established using the serial port profile without
PPP.

Measurements conducted at our lab show up to 50 %
degradation in the worst case scenario (small binary requests
with the mobile agent already using HTTP/1.1) to doubled

performance in case of large plain text requests. See ta-
ble II for details. The overall user experience for mobile
web-browsing remained roughly the same, as long the user
had only one active browser window open at a time, which
will be the case on our target devices with small displays.

VI. HANDOVER

The Split-Proxy Concept enables another important fea-
ture for mobile data access: Handover.

A mobile device may continuously monitor available net-
work connections and may establish provident links to al-
ternate access points. This is, where the user and content
database at the server proxy (see Fig. 4) comes into play:
Each client proxy registers with a server proxy its network
parameters (IP address, gateway etc.) and capabilities every
time a new link becomes available. As long the link remains
up, all requests from and to the mobile user passes the server
proxy without storing them. If the existing link fails for any
reason, the access point proxy (see Fig. 5) instructs the server
proxy (see Fig. 6) to store any outstanding data to its content
database (usually the responses to previous GET/POST re-
quests). This issue has proven most difficult in the actual
implementation as most Bluetooth and WLAN access point
provide no information about the current link quality. Often
a link just appears to be ”dead” with no data coming across.
To mitigate this problem, a time-out mechanism has been im-
plements. However, tuning the time-out value was important
to limit its impact on the handover performance in case of
small cell sizes.

We discern three points in time when a handover can takes
place (see Fig. 7):

� Proactive: The handover to the next cell is done before
the user leaves the coverage area of the first cell, i.e. both
cells overlap.

� Ideal: The cells do not necessarily overlap, but the signal-
ing for the handover is done in time so that the handover can
be completed without loosing connectivity

� Reactive: If the coverage of the cells do not overlap and
the requirement for a handover could not be detected while



Size of Requests
large small Mix

Throughput Overhead Throughput Overhead Throughput Overhead
[kbit/s] [%] [kbit/s] [%] [kbit/s] [%]

TCP over PPP (direct) 178.0 — 127.7 — 142.1 —
TCP over PPP (proxy) 177.9 0.07 62.6 5.90 78.1 4.06
virtual serial (proxy) 284.0 0.08 77.2 7.46 97.9 5.14

TABLE II

BLUETOOTH THROUGHPUT (MEASUREMENTS)

being still in the first cell, connectivity is lost. After entering
the coverage area of a new cell, lost data need to be retrans-
mitted.

If the handover was done proactively, the server proxy
forwards the response through another access proxy to the
client. Especially in Hot-spots areas, where Wireless LAN,
or Bluetooth is deployed without prior sumptuous cell plan-
ning, it is more likely the handover is reactive, i.e. there is
some dead time leaving the user without network access. In
this case the server proxy stores the content in its database
until the same user is able to establish a new link to another
access point.

The client proxy can only delay its output for some limited
time until a web browser times out with an error message to
the user. Warning messages generated by the client proxy
to the user usually distorts a graphical web-page, so a user
most likely has to reload the entire page which in case of
local data caching does not result in much overhead on the
wireless link. However, it is expected that the possibilities
of client side programming (e.g. MIDP) will result in new
applications replacing web browsers and being able to deal
smoothly with temporary network failures.

Best performance can be archived, if a short range link
such as Bluetooth uses a reliable back up, e.g. using GPRS.
Large amount of data may be transferred cost effective via
Bluetooth where as the packet based GRPS link is used in
case of missing Bluetooth coverage. This scenario usually
applies to the new smart phones with combined GPRS and
Bluetooth radios.

VII. CONCLUSIONS AND OUTLOOK TO ONGOING

RESEARCH

This paper advocates to handle mobility and handover at
the application level. Performance degradation can either be
compensated or outweigh the flexibility which is gained by
supporting multiple networks at a time without having the
networks know about each other. One outcome of the cur-
rent research is that overall performance mainly depends on
when and to which network a handover is performed. There-
fore, a cost function for each network need to be formulated
which allow the handover task to optimize the decision. Data

Prefetching[7] is a promising approach to bridge over cov-
erage breaches. Finally, a decentral picture of the network
structure is required which allows to manage a neighbor list
at each client. This will extend the functionality of the pro-
posed proxies from data caching and forwarding to network
management elements, one of which is maintaining the net-
work neighborhood list. Whereas public mobile phone net-
works usually have a central management, Hot-Spot infras-
tructure usually does not, except for access points belonging
to the same administration domain. In future enhancements,
the server proxy could solicit access points for their ”view of
the current network”, therefore coping with a dynamic net-
work environment. In fact, every user of a mobile device
equipped with the here proposed architecture could help to
create a map of the total wireless network by posting it to the
server proxy. This way, also the vertical handover between
systems becomes more efficient: A client proxy currently us-
ing a public mobile network may get instructed to change to
a more cost effective local network, even if the satisfactory
coverage of the public network would not necessarily call for
a handover.

This work has been done as part of the ”Heywow”-Project
[8], a research project on developing a m-commerce and
travel information platform for users of mobile and resource
limited devices.

REFERENCES

[1] Bluetooth Specification (Bluetooth SIG). http://www.bluetooth.com.
[2] JAVA MIDP Specification (Sun Microsystems Inc.).

http://java.sun.com/products/midp.
[3] R. Fielding, “Hypertext transfer protocol – http/1.1,” RFC 2616, June

1999.
[4] G. Xylomenos, G. Polyzos, P. Mähönen, M. Saaranen, “Tcp perfor-

mance issues over wireless links,” IEEE Communications Magazine,
Vol. 39 No. 4, 2001.

[5] T. Strang and M. Meyer, “Agent-environment for small mobile de-
vices,” in Proceedings of the 9th HP OpenView University Workshop
(HPOVUA), June, 2002, HP, 2002.

[6] “Java apis for bluetooth.” http://jcp.org/jsr/detail/082.jsp.
[7] M. Angermann, “Analysis of speculative prefetching,” ACM Mobile

Computing and Communications Review, vol. 6, April 2002.
[8] A. Steingass, M. Angermann, and P. Robertson, “Integration of naviga-

tion and communication services for personal travel assistance using a
jini and java based architecture,” in Proc. GNSS ’99, (Genova, Italy),
October 1999.



ARE_YOU_
THERE

GET_
NEIGHBOUR

RETRIEVE

HTTP_REQ

HTTP_
RESPONSE

HTTP_
RESPONSE

HTTP_ACK

YES

NEIGHBOUR
_

LIST

RETRIEVE_
NACK

HTTP_REQ

TimeOut

HTTP_ACK STORE

STORE_
ACK

RETRIEVE

RETRIEVE_
NACK

GET_
NEIGHBOUR

NEIGHBOUR
_

LIST

UPDATE

UPDATE_
ACK

UPDATE

UPDATE_
ACK

Idle

Idle

Fig. 5. Access Point State Diagram

UPDATE
GET_

NEIGHBOUR
RETRIEVE

Create
Neighbour

-List

Location
Update

Process
Request

Request

Response

Store in
Memory

HTTP_
RESPONSE

HTTP_ACK STORE

Store
HTTP_

RESPONSE

STORE_
ACK

UPDATE_
ACK

NEIGHBOUR_
LIST

Retrieve
HTTP_

RESPONSE

HTTP_
RESPONSE

RETRIEVE_
NACK

RETRIEVE_
NACK

HTTP_
RESPONSE

HTTP_ACK STORE

Delete
HTTP_

RESPONSE

STORE_
ACK

HTTP_REQ

Idle

Idle

Fig. 6. Server Proxy State Diagram

(a) Proactive

(b) Ideal

(c) Reactive

Fig. 7. Handover - Point in time


