

“Agent-Environment for Small Mobile Devices”

Thomas Strang and Melanie Meyer

{firstname.lastname}@dlr.de

German Aerospace Center (DLR), Site Oberpfaffenhofen

Institute of Communications and Navigation (KN-S)

Introduction

There is remarkable growth in the use of
mobile devices in which the agent technology
is predestined to play a significant role in the
realisation of new applications, which will
assist their users in a wide variety of ways.

Bringing the agent technology into the mobile
device has a lot of advantages, such as
providing services to the user known from the
World Wide Web in face of drastically
changing network conditions in a very
personalized way. Typical mobile devices like
PDA, cell phone or pagers are constrained
through their limited resources, such as
processing power and memory, userinterface
capabilities and network connectivity. Thus,
the agent technologies must anticipate and
accommodate disconnected wireless network
access and its complications. Furthermore, the
agent-environment must be capable of
operating on a variety of device platforms
independently as well as through fixed
networks.

A lot of work has been done on the area of
agent systems. Examples are IBM Aglets[6],
Mitsubishi Concordia[7] or the JADE/LEAP-
Platform[8]. Most of them omit the
implications of having resource limited mobile
devices as hosting platform for agents.

Usage Scenarios
In order to demonstrate the possible fields of
application one could imagine the following
scenarios.

Scenario A: The system on the mobile device
runs an agent which monitores the
environment for Bluetooth equipped fax
machines in the vicinity. When the user
receives a fax to his mailbox, the agent
provides the mailbox handler with the
phonenumber of the fax machine nearby, to
which the mailbox handler offers the user to
forward the fax.

Scenario B: A user is interested in information
regarding a movie in a cinema near to his
current location. He starts a related agent on
his mobile device and inputs the movie name
and preferred starting time. Rather than having
to "surf" or search for the information himself,
s/he may simply start the search agent and
forget it. The agent is able to autonomously
acquire the information required about the
user’s location and search for the nearest
cinema. If that information is not available
locally, the agent moves to a platform residing
in the fixed network next time the device is
connected using any carrier suitable (e.g.
established Bluetooth or GRPS link). There the
agent collects and evaluates relevant
information, and moves back to the mobile
device when connected again, carrying the
results of its task. Furthermore, it can even
suggest and acquire the tickets. Beside user
initiated agents, system initiated agents are
very usefull. For example, background
searches for information, which may be of the
user’s interest, based on his personal statistical
profile, or completing application forms, thus
saving the user the time and effort, are
adjuvant easements when using mobile
devices.

Principles in Agent Technology

There are a number of differing definitions for
agents. One describes an agent as “computer
program that acts autonomously in the interest
of the user and helps to perform some task” [1,
2]. Yet it is the properties of the Agent that
help us to classify them. The basic
characteristics of an agent are reactivity,
autonomy and communication. Additional
properties are mobility, cooperation and, to
some degree, intelligence. Any agent “lives” in
an environment (often called platform), which
provides a set of components to support the
agent’s work. It provides services and allows
communication between agent-agent, agent-
platform, agent-user, platform-platform and
platform-user.

Figure 1: Overview of Components of an Agent-
Environment

An overview of typical components of an
agent-environment is provided in figure 1. To
achieve a flexible architecture for usage on a
variety of devices and to keep the restrictions
by underlying hard- and middleware, these
components have to be well designed with
respect to the constraints given by the mobile
devices. Often an adaptation from the general
functionality to the abilities of the device or
the operating system on the device is required.

An example for this adaptation is the persistent
storage: Some mobile devices like PDAs have
a (limited) file system, whereas others have a
record based storage system instead. If an
agent wants to store some data on the device
(eg. an intermediary result), the platform has to
provide an interface to the device-dependent
storage facilities, even if both systems provide
the same abstraction level for programming
(eg. a Java Virtual Machine).

Stationary Agents on Mobile Devices
A good example for an useful stationary agent
is given in scenario A – it is an agent based
context sensor. The agent is sensing some
environmental condition like coming into the
receiption area of a bluetooth station in the
vicinity. This may be done actively by
periodically polling an accessible information
source like the bluetooth driver of the mobile
device, or passively by registering for a
specific event at a responsible event generator.

How the agent aquires the state change, and
how it should react to it, is part of the
specialized behaviour of an agent, and thus
encapsulated and hidden to any module using
this information.

To explain why stationary agents are suitable
especially for context sensing on mobile
devices, we want to make a short excurse.

Agent Platform

Persistant
Storage

Agent Pool

Agent

Agent

Migration

Communi-
cation

Agent

Agent Platform

Lifecycle

Service
Directory

Communi-
cation

Migration

Security

User-Interface

Control

Excurse: Context-aware Services

We rely here on the term context as defined
in [10], which is “any information that can
be used to characterize the situation of an
entity. An entity is a person, place, or object
that is considered relevant [..]”. Context
information is obtained by observing
relevant entities with context sensors. Each
context sensor is responsible for acquiring a
certain type of context information while
encapsulating how the information is
actually sensed. The output of a context
sensor (software or hardware) is a marking
on a symptom axis, which may be single,
range or group of values of a well-defined
taxonomy or identifier system.

Each symptom axis represents the state of a
specific context type against user- and
system-services, making them context aware
following a definition given in [10]. All
symptom axes served by the available
context sensors on a device span a situation
space, where a specific situation is
represented as a snapshot of the current
markings on each axis. Services may react to
changes of the current situation (e.g.
onEnterSituation, onLeaveSituation,…), or
pro-actively influence the environment due
to some situation.

As one can see, within the above definition a
context sensor is responsible for a very specific
task (sensing one type of context information).
It performs its action independently of any

other context sensor or service by reacting to
changes in its environment. The collaboration
of all context sensors enables a dynamic and
comprehensive mapping of the current real-
world situation to the device-internal
representation (as far as context sensors are
available). Those parallels to the key
characteristics of an agent (small specialized
task, reactivity, autonomy, collaboration)
clarify the motivation of using an agent system
as part of a mobile service environment for
sensing various types of context information.

Stationary agents on mobile devices can be
seen as individual, dynamic information
sources for other components of the agent
platform, or other agents – stationary or mobile
– as well.

Mobile Agents on Mobile Devices
Agents work with small, specialized tasks and
are able to coordinate their work depending on
their interpretation of the environment.
Intelligent agents will enhance the
functionality of applications and facilitate the
users effort. In order to utilise resources more
efficiently, a mobile agent can suspend the
work and move it to a platform in a fixed
network (migration), thus outsourcing
resource-expensive work, and eliminating the
need for a persistent connection. Network
limitations and disconnections are solved by
the autonomous work, the agent returns with a
result when the connection is restored (see
scenario B).

In that context it is interesting to have a look at
the different states an agent can reach during
his lifecycle (see figure 2), which is similar but
not equal to the FIPA specification [9]. An
agent is instantiated on its home platform
having the initiated state after setup with some
initial values (eg. input parameter, max. time
before entering a checkpoint etc.) for that
instance. When this agent instance is started by
the platform’s scheduler, the agent is as long in
the active state as the agent (active suspend) or
the platform (passive suspend) decide to enter
a checkpoint, leading to the suspended state. If
some termination criteria has been given and
reached during the agent’s work, the agent
enters the ready state. Each time a mobile
agent is in the suspended state, a decision can
be made wether the agent migrates to another
platform or remains on the same platform. If a

migration is performed, the agent instance
enters the transit state on the source platform
and the suspended or ready state on the
destination platform.

instance activation

A_INITIATED A_ACTIVE A_READY A_DELETED

agent.start()new Agent() work done,
waiting for

home delivery

remove agent
from

local platform

enter/leave
checkpoint

A_SUSPENDED

migration

A_TRANSIT

Figure 2: Agent LifeCycle

As long as the agent is in the suspended or
ready state, its (intermediary) results may be
accessed by the user through some platform
functionality, until the agent instance is finally
deleted.

Using Local Computing Power

Well-known agent systems like JADE/LEAP
[8] make use of mobile devices in the sense of
“thin clients”. Using the local processing
power offered by upcoming devices not only
for displaying an interface to the user, but also
performing part or all of the processing of the
task itself does make sense under certain
circumstances as well. This is a very
interesting option if wireless access to any
server infrastructure is currently not possible
(e.g. no bearer available), not allowed (e.g.
when using a mobile phone in an aeroplane),
or to expensive for the value of received
information, resulting in a (typically limited)
local processing fallback feature.

Using the local computing power means in the
sense of an agent system the ability to
instantiate, run and control agents on the
mobile device itself, making the mobile device
to a platform for stationary or mobile agents
equivalent to platforms of the same agent
system in the fixed network. But this
equivalence has its constraints in the ressource
limits of the the mobile device.

The maximum amount of agent instances
running on the mobile device at a time, as well
as the performance of each agent itself,
depends on the characteristics of the mobile
device, and is usually significantly worse than
if running the same agent on a platform in the
fixed network.

The performance characteristics of an agent
are mainly influenced by

 the internal implementation of the agent’s
task (algorithm)
 the external performance of the platform

itself

If the platform knows about the performance
characteristics of an agent, this information can
be used optimize the agent’s handling. As one
can see in figure 3, knowing about the break
even between local processing and remote
processing of an agent allows for instance to
estimate the best time for running into the next
checkpoint before migration starts.

Figure 3: Local and Remote Execution

For instance it would not be senseful to run
the mobile agent in this example locally
with an inter-checkpoint-width of more
than 66 algorithm steps, because it would
be faster to migrate, compute remote and
migrate back in that case.

Sample Implementation in J2ME
For testing purposes we implemented an agent
platform called Mobile Device Agent-
Environment (MDA) based on the Java2 Micro
Edition (J2ME), more precisely on the very
low end of Java programming, the Mobile
Information Device Profile (MIDP) on top of
the Connected Limited Device Configuration
(CLDC). Those J2ME libraries consist of a
small subset of J2SE, extended by some
libraries for the specific user interface (ITU-T
onehand-keyboard or touchscreen) and I/O
facilities (HTTP as the one and only network
protocol), targeting ressource limited devices
like PDAs or mobile phones.

One of the remarkable implications of this Java
version has came up in the area of agent
mobility. Due to the “closed” late binding
specified as part of the security concept of the
CLDC, any agent implementation (classfile)
intended to be used at runtime must be present
at installtime of the platform itself. Thus the

Migrator, responsible for serialization and
deserialization of agents, as well as sending
and receiving them to other platforms of the
agent system, can only implement the weak
migration, which is explained as “if the
program has to prepare its migration by
explicitly storing its state in some variables
and is started again at the new location, and if
the programmer has to provide explicit code to
read and re-establish the stored state” [5].

Closed late binding is a strong restriction not
only for mobile agents, but for stationary
agents as well. For instance for using
stationary agents as context sensors (see
scenario A) it is required to package any
required type of context sensor at installtime.
Adding a new context sensor or replacing a
context sensor by a newer version requires to
re-package and re-install the whole package
(containing all agents, the agent environment
and any service environment using the agent
environment) on the mobile device.

Benchmark: Calculation Prime Numbers local / remote

0
20
40
60
80

100
120
140
160

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

number

Ti
m

e/
s

local average remote average

On the other side having small uniform
exchangeable modules like agents for context
sensing and processing is also an advantage.
For gaining access to relevant sensor values
(e.g. GSM cell id) it is often necessary to use
vendor-specific functions, bypassing the Java
VM. Moreover, “relevance” relys on a very
personal interpretation, and thus the “relevant
entities” observed by context sensors vary
from user to user. Building a situation handler
on top of an agent system enables much
flexibility to provide context aware services on
personal mobile devices.

Our implementation showed that it is possible
to run multiple stationary and mobile agents on
a CLDC/MIDP equipped ressource limited
mobile device at the same time, even if the
performance of todays devices is not very
good. It showed also, that the agent technology
does make sense for specific tasks only, where
for instance autonomy and reactivity of a task
performed in the background without user
interaction is more important than
performance.

Conclusion and Outlook
For specific tasks it is very usefull to have an
agent platform on the mobile device itself. It
has been illustrated why especially context
sensing and processing can be done on the
mobile device very smart using the agent
technology. With the advantage of intelligent

mobile software the mobile agent technology
enables the development of new applications
against the background of location and context
awareness and will support the user with
distributed information retrieval and global
services.

References

[1] A. Lingnau, O. Drobnik, P. Dömel: A HTTP-
based Infrastructure for Mobile Agents, 1995,
http://www.w3.org/Conferences/WWW4/Paper
s/150/

[2] S. Franklin, A. Grasser: Is it an Agent or just a
Program?: A Taxonomy for Autonomous
Agents, Institute for Intelligent Systems
University of Memphis, 1996, http://
www.msci.memphis.edu/~franklin/AgentProg.
html

[3] Mobile Information Device Profile
Specification Final, Sun Microsystems, Inc.,
2000, http://java.sun.com/j2me/docs/

[4] http://kxml.enhydra.org/software

[5] S. Fünfrocken: Transparent Migration of Java-
based Mobile Agents, Technische Universität
Darmstadt, Fachgebiet Verteilte Systeme,
1998, http://www.informatik.tu-
darmstadt.de/VS/Mitarbeiter/Fuenfrocken/

[6] Java Aglet Application Programming Interface
White Paper, IBM Tokyo Research Laboratory,
1997, http://www.trl.ibm.com/aglets/JAAPI-
whitepaper.html

[7] Mobile Agent Computing, A White Paper,
Mitsubishi Electric ITA Horizon Systems
Laboratory, 1998,
http://www.concordiaagents.com/MobileAgent
sWhitePaper.html

[8] http://leap.crm-paris.com/

[9] FIPA agent Management Specification, 2001:
http://www.fipa.org/specs/fipa00023/

[10] A. K. Dey: Understanding and Using Context,
Personal and Ubiquitous Computing, Special
Issue on Situated Interaction and Ubiquitous
Computing, 2001

	Introduction
	Usage Scenarios
	Principles in Agent Technology
	Stationary Agents on Mobile Devices
	
	Excurse: Context-aware Services

	Mobile Agents on Mobile Devices
	Sample Implementation in J2ME
	Conclusion and Outlook

