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ABSTRACT 

 
Efficient estimation of the interferometric phase and 
complex correlation is fundamental for the full 
exploitation of SAR Interferometry capabilities [1]. 
Particularly when combining interferometric 
measures arising both from distributed and 
concentrated point targets, the interferometric phase 
has to be correctly extracted in order to preserve its 
physical meaning and respect the homogeneity 
hypothesis that we assume when performing a 
coherent averaging [2]. Recently, an amplitude-
based algorithm for the adaptive multilooking of 
InSAR stacks was proposed  [3],[4] where it was 
shown that a comparison of the backscatter 
amplitude statistics is a suitable way to adaptively 
group and average the pixels in order to preserve 
the phase signatures of natural structures in the 
observed area. 
 

Index Terms—Synthetic Aperture Radar (SAR), 
interferometry, radar backscatter statistics, coherence 
estimation, adaptive multilooking 
 

1. INTRODUCTION 
 
The amplitudes of the complex returns have been 
proven to be a suitable measure for distinguishing 
between different areas inside a SAR image [5], thus 
they can also be used to select a suitable set of pixels 
over which to average. The concept is to average a 
given pixel only with neighbors that present similar 
scattering properties. In this paper different methods 
to compare amplitude statistics will be presented, 
compared through simulations and applied to real 
data. Based on this, recommendations are made 
concerning which method to use in practice [6].  
 
 

Finally the physical meaning of the results and the 
possible applications will be discussed. 

 
 

     2. INTERFEROGRAMS  MULTILOOKING 
 
Suppose we have a stack of M complex SAR images 
co-registered to sub-pixel accuracy and calibrated 
for each resolution cell p. For each pixel we wish to 
determine which of the surrounding pixels present a 
similar statistical behavior. This is possible by 
noting that for each pixel we can extract M 
realizations of the process that generated the pixel 
amplitudes by sampling the stack temporally, 
naturally assuming that the process can be 
considered stationary over time. This set of M 
observations can then be used in order to check the 
degree of similarity between pixels. Statistically 
similar pixels can then be averaged together [2].   
 

 
3.  PIXEL   CLUSTERING AND 
PERFORMANCE 

 
Determining whether random processes follow the 
same distribution is a common problem in statistics, 
where it is usually referred to as goodness-of-fit 
testing, and many methods have been developed. In 
this paper different methods will be tested through 
simulations and the results compared. The problem 
is generally defined in a hypothesis testing 
framework as a test of the null hypothesis, H0:  Fp = 
Fq , that the two distributions  Fp and Fq are equal, 
versus the alternative, H1:  Fp ≠ Fq , that they are not. 
For the specific problem of adaptive multi-looking 
we have selected four typical goodness-of-fit testing 
criteria for discriminating between the different 
amplitude distributions: the Kullback-Leibler  
 



 

 
 
Figure 1. Detection rates for the Kullback-Leibler 
Divergence (dotted) , Kolmogorov-Smirnov 
(dashed), Anderson-Darling (solid) and GLRT 
(dashed/dot). The three cases are respectively, the 
Rayleigh-distributed case, the K-distributed case 
varying the scale and the K-distributed case varying 
the shape. The colors indicate the number of samples 
M. 
 
divergence [9], the Kolmogorov-Smirnov test [7], 
the Anderson-Darling test [8] and the GLRT 
(Generalized Likelihood Ratio Test) [7]. The stack 
size, M, will clearly play an important role in how 
well pixels can be classified since the power of the 
tests increases with sample size. Hence, in the 
following performance analysis the impact of M is 
always considered. For all simulations the test 
thresholds were set to maintain a false alarm rate of 
P{FA}= 5 % under the null hypothesis and the power 
of the test, PD, or the probability of correctly 
deciding that the datasets follow different 
distributions, was plotted as certain distributional 
parameters were varied. Finally, the number of 
Monte Carlo simulations used to evaluate the 
performance was always 10000. Two different 
amplitudes distributions scenarios have been taken 
in consideration, the Rayleigh distribution varying 
the scaling factor σ  and the so called K-distribution, 

[11],[12] varying  the scaling factor θ and the 
shaping factor k  Figure 1  [10], [13]. 
 

 
 
Figure 2. Comparison between  the incoherent mean 
(upper left) and the multi-looked interferometric 
phase obtained using an 8 x 25 boxcar kernel  
(upper right) and a 200 look adaptive kernel 
(below). The interferogram is an ERS 1-2 
interferogram with a temporal separation of 35 days 
and a normal baseline of 107 meters 
 
 
 
 
3.1. Clustering Algorithm 
 
According to the results achieved by the simulation 
we used the Anderson-Darling test as the kernel for 
the clustering algorithm [6]. The program proceeds 
sequentially analyzing the pixels and assigning them 
to the most similar neighboring class or generating a 
new class in case they do not fulfill the similarity 
requirements of the test, as shown in Figure 3. As 
the number of samples in a class increase, the test 
will be able to rely on a bigger subset of samples 
improving the resolution capabilities of the whole 
algorithm. An example of the results is shown in 
Figure 5. 
 



 
 
 
Figure 3. Flow chart diagram of the clustering 
algorithm above mentioned  
 
 
 
 

 
 
 
Figure 4. TerraSAR-X Stripmap image overlaid in 
the coherent areas with the relative adaptive multi-
looked interferometric phase. 
 
  

   
 
4. RESULTS AND DISCUSSION 
 
As expected, the adaptive algorithm is able to follow 
the features of the scene as soon as the contrast is 
sufficient. Therefore it is possible to obtain a very 
accurate clustering of the pixels in the area of 
interest Figure 4 and consequently an optimal 
estimation of the    interferometric phase with only a 
small loss in resolution compared to a standard 
boxcar average Figure 2. 
 
 

 
 
 
Figure 5.  Example of pixel clustering compared 
with the incoherent mean image. The colors indicate 
different pixel groups identified by the algorithm.  
 
 
 
From the simulations and experiments with InSAR 
stacks the following conclusions can be drawn: 
 

 Amplitudes statistics are a good indicator for 
distinguishing between different scattering 
phenomena in order to preserve the phase 
signature of natural structures. 



 Nonparametric methods are recommended 
when it is not possible to make assumptions 
about the statistical properties of the 
amplitudes. Of the three nonparametric tests, 
Anderson-Darling was the most powerful. In 
comparison to the parametric GLRT, it was 
also more powerful at detecting changes in 
the shape of a distribution. However, within 
scale families and especially with small 
stack sizes, the GLRT was significantly 
more powerful. 

 Different backscatter processes possess 
different interferometric phases that, even in 
the case of very low power, nevertheless 
contain good phase information which can 
be accurately recovered after sufficient 
averaging over homogeneous pixels. This 
points more to a deterministic rather than a 
stochastic relationship between the 
backscatter amplitude distribution and the 
location of the phase center within a 
resolution cell for distributed scattering 
processes in SAR, i.e. the phase centers of 
resolution cells over homogeneous regions 
are the same. 
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