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Abstract

Efficiently updating an SVD-based data representation while keeping accurate track of
the data mean when new observations are coming in is a common objective in many
practical application scenarios. In this paper, two different SVD update algorithms
capable of treating an arbitrary number of new observations are introduced follow-
ing the symmetric EVD philosophy. These methods are compared to an SVD update
method known from the literature. The comparison criterion of interest is the theoret-
ical computational complexity, it being understood that the dimension of the observa-
tion vectors is much larger than the number of observations. From this point of view,
a hierarchy of methods is derived, and the computational savings of the update strate-
gies pursuing the symmetric EVD approach are demonstrated. It is exposed, how the
compression level of the initial SVD model affects the performance of these algorithms
and the break point where one method becomes more efficent than the other is de-
termined. In addition, simple rules of thumb are derived for easing the choice of an
algorithm valid in most practical scenarios.



1 Introduction

Singular value decomposition (SVD) based reduced order models (ROMs) apply to a
large variety of scientific problems, ranging from data processing, pattern recognition
and image analysis to solving partial differential equations [1, 2, 5, 6, 9, 10, 11, 13]. The
method goes by different names in the various communities and is also referred to as
Proper Orthogonal Decomposition (POD), Principal Component Analysis (PCA) and
Karhunen-Loève Decomposition.
In many application scenarios, an existing SVD-based ROM, which has been built
based on a number of observation, needs to be updated by incorporating the infor-
mation provided by new snapshots of observations. In order to keep memory re-
quirements at a feasible low level, most often the initial observations cannot be stored
but only their compressed SVD-representation, so that computing an SVD of the aug-
mented set of snapshot observations from scratch becomes not only inefficient but im-
possible. This is the case for adaptively improving POD-based ROMs as applied for
example in aeronautical design and optimization, see [2] and references therein. While
this is the application that we have in mind, the methods presented in this paper are
presented in the general context of basic linear algebra.
Since in many applications the fluctuations around the mean are of interest, the snap-
shot data is centered by subtracting the mean vector over all snapshots before it is
decomposed and possibly compressed. Hence, the update methods presented here
keep accurate track of the mean of the observations.
We adopt the following terminology from the literature, see e.g. [9]. In an incremental
computation, an existing SVD-based ROM is updated using new snapshot observations;
in a batch computation all observations are used simultaneously to compute the SVD-
based ROM.
The main contributions of this report are the following: (1) two different incremental SVD
update algorithms capable of treating an arbitrary number of new observations are in-
troduced following the symmetric eigenvalue decomposition philosophy. In addition,
it is exposed how the method proposed in [3] applies to the scenario considered in this
report; (2) a comparison of the three major incremental SVD update strategies is con-
ducted w.r.t. computational complexity: Assuming that the dimension n of the snap-
shot data vectors exceeds by far the number of original snapshots m plus the number
of additional snapshots p, i.e. n ≫ m + p, it is shown theoretically that the EVD-based
update strategies are more efficient in practical application scenarios when compared
to the SVD-based approach of [3]. It turns out that the hierarchy of the EVD-based
methods depends on the compression level of the SVD representation. Therefore, (3)
precise threshold valuess are derived for the compression level, where one method
starts to become more effcient than the other and vice versa. Based on empirical re-

1



Introduction 2

sults, it is exposed that all methods share a comparable level of accuracy.
An additional advantages of the EVD-based incremental methods proposed in this
paper is that they can be parallelized in a straight-forward way, requiring only paral-
lelized matrix-vector and matrix-matrix products.
Related work: Efficiently updating the SVD has been investigated by several authors.
All methods have in common that updating the SVD of an n × m matrix by adding p

new columns is essentially reduced to solving an SVD (or EVD) problem of size m + p,
here termed the small update problem. In [4], update modifications for p = 1 are in-
vestigated. In this special setting, the matrix of the small update problem is highly
structured, such that pseudo-explicit formulae for the updated SVD data exist and [4]
is concerned with efficiently solving the resulting small-size EVD update problem. A
refinement of this method is derived in [8] and a recent work in line with these contri-
butions is presented in [12]. The new methods proposed in this report can be consid-
ered a generelization of the method introduced in [4, §4] to adding an arbitrary number
of update observations. From the point of view taken in this paper, solving the small
update problem is performed by a black box function, since for our applications of in-
terest, essentially only those parts of the update algorithms that scale in the snapshot
dimension n contribute to the overall computational costs.
The only references dealing with an arbitrary number of update observations known to
the author are [3] and [9]. While, at first glance, the scope of [9] looks slightly different,
both approaches share the main ingredient of updating the SVD by orthogonalizing
the incoming snapshots against the existing basis, which has to be achieved via Gram-
Schmidt’s or related methods. When transferred to the problems considered in this
work, the approaches [3] and [9] essentially coincide. For additional references, we
refer to the literature reviews given in [3, §5] and [9, §1].
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2 SVD-based reduced order models

Let Ym = (W 1, ..., W m) ∈ R
n×m. As customary in the context POD, the columns W i, i =

1, ..., m of Y will be referred to as snapshots.
Let 1m = (1, ..., 1)T ∈ R

m be the vector of dimension m with all entries equal to 1. The
snapshot mean vector is defined by Am := 1

m

∑m

j=1 W j and the centered snapshot matrix
is given by

Ȳm = Ym − Am1
T
m =

(

W 1 − Am, ..., W m − Am

)

=:
(

W̄ 1, ..., W̄ m
)

.

Note that rank(Ȳ ) ≤ m − 1, since Ȳ 1m = 0.
Let UΣVT = Ȳm be the thin SVD of the centered snapshot matrix Ȳm. The left hand
side singular vectors U i ∈ R

n, i = 1, ..., m are called POD eigenmodes or POD modes in
short. The relative information content (RIC) of the first r ≤ m POD modes is defined as

ric(r) = ric(r, Σ2) =

∑r

i=1 σ2
i

∑m

i=1 σ2
i

, (2.1)

where diag(σ1, ..., σm) = Σ ∈ R
m×m. Suppose that rm ≤ m − 1 has been determined

such that ric(rm) ≥ 1 − ǫ for a given ǫ ∈ (0, 1). An order-rm representation of Ȳm

is obtained by discarding the small singular values (σrm+1, ..., σm) and removing the
corresponding columns from the singular vector matrices U and V, arriving at

Ȳm ≈ UmΣmVT
m,

where Um = (U1, ..., U rm) ∈ R
n×rm , Vm = (V 1, ..., V rm) ∈ R

m×rm ,
and Σm = diag(σ1, ..., σrm

) ∈ R
rm×rm .

Definition 2.1 (Reduced Order Model, Compression Rate). The data set

(Um, Σm, Vm, Am, n, m, rm) , (2.2)

is called a reduced order model (ROM) of order rm of Ym. The ratio x = rm

m
is called the

compression rate.

The SVD basis update problem can now be formulated as follows:

Problem 2.1 (SVD basis update). Let Ym = (W 1, ..., W m) ∈ R
n×m and let

(Um, Σm, Vm, Am, n, m, rm) be an order-rm ROM of Ym. Suppose that p new snapshot obser-
vations (column vectors) (W m+1, ..., W m+p) have been provided in order to enhance the ROM
and let

Ym+p = (W 1, ..., W m, W m+1, ..., W m+p) ∈ R
n×(m+p).

3



2. SVD-based reduced order models 4

Objective: Compute a ROM

(Um+p, Σm+p, Vm+p, Am+p, n, m + p, rm+p)

of Ym+p, in particular, decompose

Ȳm+p = Ym+p − Am+p1
T
m+p ≈ Um+pΣm+pVT

m+p (2.3)

by only using the previous-stage ROM (Um, Σm, Vm, Am, n, m, rm) and the new snapshots
(W m+1, ..., W m+p) but not the previous-stage snapshot matrix Ym.

Remark 2.2. Alternatively, given a matrix Y , its thin singular value decomposition Y =
UΣV T can be obtained by solving the symmetric eigenvalue problem Y T Y = V ΛV T and
setting Σ :=

√
Λ and U = Y V diag( 1

σ1
, ..., 1

σr
), where r denotes the rank of the matrix Σ.

124-2011/3



3 SVD basis update strategies

In this section, we introduce three different approaches for tackling Problem 2.1. In
order to keep accurate track of the snapshot mean, all methods share the following
data preprocessing step.

3.1 Updating the snapshot mean vector

Suppose that the previous-stage snapshot mean Am and the new set of observations
W = (W m+1, ..., W m+p) ∈ R

n×p are given. As a first step, the new snapshots are shifted
to the previous-stage center W̄ m+i = W m+i−Am for i = 1, ..., p and the snapshot matrix
is augmented

(

Ȳm, W̄ m+1, ..., W̄ m+p
)

≈
(

UmΣmVT
m, W̄ m+1, ..., W̄ m+p

)

∈ R
n×(m+p).

The updated mean vector Am+p = 1
m+p

∑m+p

i=1 W i is computed as follows.

For i = 1, ..., m + p, it holds W i − Am+p = W i − Am + Am − Am+p = W̄ i + Tm+p, where

Tm+p := Am − Am+p =
1

m + p

(

pAm −
m+p
∑

i=m+1

W i

)

.

The updated mean value is thus Am+p = Am − Tm+p. Writing W̄ =
(

W̄ m+1, ..., W̄ m+p
)

the main objective (2.3) becomes

Decompose Ȳm+p =
(

UmΣmVT
m, W̄

)

+ Tm+p1
T
m+p ≈ Um+pΣm+pVT

m+p. (3.1)

3.2 An EVD-based two-steps update strategy

In this section, the updating is traced back to solving an (r + p)× (r + p) EVD problem.
This generalizes the rank-1 update approach introduced in [4, §4] to adding an arbi-
trary number of new observations. Contrary to the SVD-update technique presented
in [3] (see also Section 3.3) and the merging of eigenspaces proposed in [9], an expen-
sive computation of certain orthogonal complements via Gram-Schmidt’s, [7, §5.2.7],
or related methods can be avoided.
The EVD-based update algorithm relies on the following observation: Writing W̄ =
(

W̄ m+1, ..., W̄ m+p
)

∈ R
n×p, it holds

(

Ȳm, W̄
)T (

Ȳm, W̄
)

=

(

Ȳ T
m Ȳm Ȳ T

m W̄

W̄
T
Ȳm W̄

T
W̄

)

≈
(

VmΣ2
mVT

m VmΣmUT
mW̄

W̄
T

UmΣmVT
m W̄

T
W̄

)

5



3. SVD basis update strategies 6

=

(

Vm 0
0 Ip×p

)(

Σ2
m ΣmUT

mW̄

W̄
T

UmΣm W̄
T

W̄

)(

VT
m 0

0 Ip×p

)

Note that Ṽ :=

(

Vm 0
0 Ip×p

)

∈ R
(m+p)×(rm+p) is not square, yet it holds Ṽ T Ṽ =

I(rm+p)×(rm+p). Combining the above observation with Remark 2.2 and the rank-1 SVD-
shift proposed in [3, §3] leads to Algorithm 3.2.

Remark 3.1 (on Algorithm 3.2). Steps 11 to 14 are related to the shifting of the new found
SVD to the updated center, for details, see [3, §3].

3.3 An SVD-based two-steps update strategy

In this section, the update strategy proposed in [3] is being followed, which relies on
a rank-p SVD update. Introducing X =

(

Ȳm, 0n×p
)

∈ R
n×(m+p), BT = (0p×m, Ip×p) ∈

R
p×(m+p), it holds

(

Ȳ , W̄
)

= X + W̄BT .

Given the thin SVD Ȳm ≈ UmΣmVT
m, it holds

X ≈ UmΣm

(

VT
m, 0rm×p

)

=: UmΣmṼ T ,

with U ∈ R
n×rm , Σ ∈ R

rm×rm , Ṽ ∈ R
(m+p)×rm .

In Algorithm 3.3, it is stated precisely, how this approach applies to Problem 2.1. Note
that only steps 3 to 10 have to be adjusted when compared to Algorithm 3.2, while
steps 1,2 and 11-14 stay unchanged.
The function orth : R

n×p → R
n×p, P 7→ P⊥ in step 3 of Algorithm 3.3 denotes the

computation of an orthonormal basis spanning the column space of the input matrix.
This can be achieved via Gram-Schmidt orthogonalization or via a more robust SVD.
Note that essentially the same idea has already been used in [9, §3].
As pointed out in [7, 5.2.9] Gram-Schmidt ”should be used to compute orthonormal
bases only when the vectors to be orthogonalized are fairly independent”. While this
is most certainly the case for the random examples shown in section 4, in practical
application, where snapshots are e.g. given by solutions to PDEs at different parameter
conditions, they are expected to be much closer to being linearly dependent.

3.4 An EVD-based one-step update strategy

In this section, the approach introduced in section 3.2 is modified such that the recen-
tering is directly considered in setting up the small (m + p) × (m + p)-EVD problem.

Ȳ T
m+pȲm+p ≈

((

UmΣmVm, W̄
)

+ Tm+p1
T
m+p

)T ((

UmΣmVm, W̄
)

+ Tm+p1
T
m+p

)

=

(

VmΣ2
mVT

m VmΣmUT
mW̄

W̄ T UmΣmVT
m W̄ TW̄

)

+

(

VmΣmUT
m

W̄ T

)

Tm+p1
T
m+p

+1m+pTm+p

(

UmΣmVm, W̄
)

+ ‖Tm+p‖2
1m+p1

T
m+p

=: K ∈ R
(m+p)×(m+p). (3.2)

124-2011/3



3. SVD basis update strategies 7

Computing the large left-hand-side singular vectors from a decomposition of K =
QΛQT becomes more costly. The corresponding approach is detailed in Algorithm 3.4.

3.5 Pseudo batch method

Keeping in mind Remark 2.2, recomputing the updated SVD from scratch can be out-
lined as follows: (1) recompute Ȳ ≈ (UmΣmVm); (2) compute X = (Ȳ , W̄ )− Tm+p1

T
m+p;

(3) compute K = XTX , decompose K = Vm+pΛVT
m+p; (4) for j = 1, ..., rm+p compute

Uj
m+p = 1√

λj

XVj
m+p.

In Section 4 it is exposed under negligible prerequisites that this approach is actually
more costly than Algorithm 3.4.

124-2011/3



3. SVD basis update strategies 8

ALGORITHM 3.2: POD-ROM update algorithm via EVD and SVD

Input: previous-stage ROM (Um, Σm, Vm, Am, n, m, rm)
number of new snapshots p, new snapshots W m+1, ..., W m+p ∈ R

n

1: Compute average of augmented snapshot set and average shift vector

Tm+p :=
1

m + p

(

pAm −
m+p
∑

i=m+1

W i

)

, Am+p := Am − Tm+p

2: Compute W̄ := (W m+1 − Am, ..., W m+p − Am) ∈ Rn×p.
3: Compute M := ΣmUT

mW̄ ∈ Rrm×p.

4: Compute w̄ = W̄
T

W̄ ∈ Rp×p.

5: Decompose (EVD) K =

(

Σ2
m M

MT w̄

)

!
= Q̃Λ̃Q̃T ∈ R(rm+p)×(rm+p).

6: Determine r̃ ≤ rm + p such that ric(r̃) =
Pr̃

i=1 λ̃i
Prm+p

i=1
λ̃i

≥ 1 − ǫ.

7: Discard the columns of Q̃ of index larger than r̃.

8: Compute Σ̃ = diag (σ̃1, ..., σ̃r̃) = diag
(

√

λ̃1, ...,
√

λ̃r̃

)

∈ R
r̃×r̃.

9: Compute Q :=

(

Vm 0
0 Ip×p

)

Q̃ ∈ R
(m+p)×r̃

10: Compute S =
(

UmΣm, W̄
)

Q̃diag
(

1
σ̃1

, ..., 1
σ̃r̃

)

∈ Rn×r̃.

11: Compute

f := ST Tm+p ∈ R
r̃; F̃ := Tm+p − Sf ∈ R

n; F = F̃

‖F̃‖
∈ R

n;

g := QT
1 ∈ R

r̃; G̃ := 1 − Qg ∈ R
m+p; G = G̃

‖G̃‖
∈ R

m+p;

12: Decompose (SVD)

K =

(

Σ̃ + fgT ‖G̃‖f
‖F̃‖gT ‖F̃‖‖G̃‖

)

!
= ŨΣm+pṼ

T ∈ R
(r̃+1)×(r̃+1)

13: Choose rm+p ≤ r̃ + 1 such that ric(rm+p) =
Prm+p

i=1
σ2

m+p,i
Pr̃+1

i=1
σ2

m+p,i

≥ 1 − ǫ.

Discard the singular values with index larger than rm+p, as well as the correspond-
ing columns of Ũ and of Ṽ .

14: Compute

Um+p := (S, F ) Ũ ∈ R
n×rm+p, Vm+p := (Q, G) Ṽ ∈ R

(m+p)×rm+p .

Output: Updated ROM (Um+p, Σm+p, Vm+p, Am+p, n, m + p, rm+p)

124-2011/3



3. SVD basis update strategies 9

ALGORITHM 3.3: POD-ROM update via two-steps SVD à la [3]

Input: previous-stage ROM (Um, Σm, Vm, Am, n, m, rm)
number of new snapshots p, new snapshots W m+1, ..., W m+p ∈ R

n.
1: Identical to Algorithm 3.2.
2: Identical to Algorithm 3.2.
3: Compute P := W̄ − U(UT W̄ )
4: Compute P⊥ = orth(P ); RW̄ = P T

⊥P .

5: Compute K =

(

Σm UT W̄

0
T RW̄

)

∈ R
(rm+p)×(rm+p).

Decompose (SVD) K = UKΣKVT
K .

6: Determine r̃ ≤ rm + p such that ric(r̃, Σ2
K) ≥ 1 − ǫ.

7: Discard the columns of UK and VK of index larger than r̃.
8: Reduce the singular value matrix Σ̃ := diag (ΣK)ii ∈ R

r̃×r̃.

9: Compute Q :=

((

Vm

0
p×r

)

,

(

0
m×p

Ip×p

))

VK ∈ R
(m+p)×r̃

10: Compute S = (U, P⊥) UK ∈ R
n×r̃

11: Identical to Algorithm 3.2.
12: Identical to Algorithm 3.2.
13: Identical to Algorithm 3.2.
14: Identical to Algorithm 3.2.
Output: Updated ROM (Um+p, Σm+p, Vm+p, Am+p, n, m + p, rm+p)

ALGORITHM 3.4: POD-ROM update via one-step EVD

Input: previous-stage ROM (Um, Σm, Vm, Am, n, m, rm)
number of new snapshots p, new snapshots W m+1, ..., W m+p ∈ R

n.
1: Identical to Algorithm 3.2.
2: Identical to Algorithm 3.2.

3: Compute K1 :=

(

VmΣ2
mVT

m VmΣmUT
mW̄

W̄ T UmΣmVT
m W̄ TW̄

)

4: Compute K2 := 1m+pT
T
m+p

(

UmΣmVT
m, W̄

)

;
Compute K3 := ‖Tm+p‖2

1m+p1
T
m+p.

5: Compute K = K1 + K2 + KT
2 + K3 ∈ R

(m+p)×(m+p).
Decompose (EVD) K = Q̃Λ̃Q̃T .

6: Determine rm+p ≤ m + p such that ric(rm+p, Λ̃) ≥ 1 − ǫ.
7: Discard the columns of Q̃ of index larger than rm+p.

8: Compute Σm+p := diag
(

σ1, ..., σrm+p

)

= diag

(

√

λ̃1, ...,

√

λ̃rm+p

)

9: Set Vm+p := Q̃; Compute diag( 1
σ1

, ..., 1
σrm+p

).

10: Compute

Um+p =
((

UmΣmVT
m, W̄

)

+ Tm+p1
T
m+p

)

Q̃diag
(

1
σ̃1

, ..., 1
σ̃rm+p

)

∈ Rn×rm+p .

Output: Updated ROM (Um+p, Σm+p, Vm+p, Am+p, n, m + p, rm+p)

124-2011/3



4 Analysis of Computational Costs

Computational costs will be measured in floating point operations (flops) [7, §1.2.4]; for
simplicity, nmp flops will be counted for the standard product of matrices A · B, A ∈
R

n×m, B ∈ R
m×p.

Table 4.1 displays the flop count of the first three update methods presented in Section
3. The portion of the total computational costs of the pseudo batch method 3.5 that
scale in the snapshot dimension n add up to

n

(

mrm + (m + p) +
1

2
(m + p)(m + p + 1) + (m + p)rm+p

)

flops.

Using Table 4.1, it follows that

flops(Alg. pseudo batch) - flops(Alg. 3.4) = n

(

1

2
m2 + (rm − 1

2
)m − (rm − 1)p − 1

)

.

An elementary estimate shows that Algorithm 3.4 is more efficient than the pseudo
batch method, if the number of originally retained modes is larger than the number of
snapshot vectors to be added (rm ≥ p) or if the number of original snapshots is both
larger than four and larger than the number of snapshots to be added (m ≥ p∧m ≥ 4).
Note that for most practical applications one of these conditions (most probably both
of them) will hold true.
As can be deduced from Table 4.1, the computational costs of Algorithm 3.3 exceed
those for Algorithm 3.2 by more than

flops(Alg. 3.3) - flops(Alg. 3.2) =

(

rmp +
1

2
(p2 + p)

)

n + O(orth(P ),

Table 4.1: Computational complexity of Algorithm 3.2, Algorithm 3.3 and Algorithm 3.4. For
convenience, only steps depending on n are taken into account. In Alg. 3.3, step 4, the symbol
O(orth) denotes the flop count for computing an orthonormal basis for the column space of the
input matrix. The exact flop count depends on the method applied but is always in O(p2n).

Flops Algorithm 3.2 Algorithm 3.3 Algorithm 3.4
step 1 (p + 3)n (p + 3)n (p + 3)n
step 2 pn pn pn

step 3 rmpn (2rmp + p)n (rmp + mp + 1
2
p(p + 1))n

step 4 1
2
p(p + 1)n p2n + O(orth) (m + p + 1)n

step 10 (rm + p)r̃n (rm + p)r̃n (m + p + (m + p)rm+p)n
step 11 (2r̃ + 3)n (2r̃ + 3)n ∅
step 14 (r̃ + 1)rm+pn (r̃ + 1)rm+pn ∅

10



4. Analysis of Computational Costs 11

where O(orth) denotes the flop count for computing an orthonormal basis for the col-
umn space of the argument matrix P ∈ R

n×p, see Section 3.3. It holds O(orth(P )) =
O(np2), the precise computational effort depends on the orthogonalization scheme ap-
plied.
Next, we compare Algorithm 3.2 with Algorithm 3.4. From Table 4.1 it follows that

flops(Alg. 3.4) - flops(Alg. 3.2) = n
(

mp + 2(m + p) + (m + p)rm+p (4.1)

−(rm + p + 2)r̃ − 2 − (r̃ + 1)rm+p

)

=: (∗)

Further analyse will be made under the assumption that the additional snapshots are
linearly independent and therefore add a maximum number of p to the rank of the
SVD. The initial compression level will be expressed in relation to the original number
of snapshots. More precisely

assume: r̃ = rm + p; rm+p = rm + p + 1; rm = xm. (4.2)

Thus, equation (4.1) becomes a quadratical expression in the compression rate x.

(∗) =
(

(x − 2x2)m2 + (2 − 3x)mp + (3 − 4x)m − p2 − p − 3)
)

n. (4.3)

As a consequence, Algorithm 3.2 is more efficient than Algorithm 3.4, if

0 < x <
1

4m

(

m − 3p − 4 +
√

p2 + m2 − 8p + 22m + 16mp − 8
)

(4.4)

A rough estimate shows that a positive compression rate x > 0 fulfilling the above
equation exists, if m ≥ p

2
+ 3, which is a negligible condition.

The above considerations imply that it is case dependent, whether Algorithm 3.2 is
more efficient than Algorithm 3.4 or vice versa. Given a specific triple m, p, x, equation
(4.4) can be used to make a precise choice between Algorithm 3.2 and Algorithm 3.4.
In the next observation, the above results are summarized and simple rules of thumb
valid in most practical cases are given.

Observation 1. Algorithm 3.2 is always more efficient than Algorithm 3.3.
Algorithm 3.4 is more efficient than the pseudo batch method (see Section 3.5), if (rm ≥ p) or
(m ≥ p ∧ m ≥ 4).
Rules of thumb: For highly compressed models, Algorithm 3.2 is more efficient than Algorithm
3.4; for weakly compressed models, the opposite is true. More precisely:

(i) If the SVD-ROM in question features a compression rate of x = rm

m
≤ 1

2
and if the

number of original snapshots m and the number of update snapshots p are related by
m ≥ 2p + 2, then Alg. 3.2 is more efficient than Alg. 3.4.

(ii) If the SVD-ROM in question features a compression rate of x = rm

m
≥ 2

3
and if the

number of original snapshots is larger than two, m ≥ 2, then Alg. 3.4 is more efficient
than Alg. 3.2.

(iii) If the SVD-ROM in question features a compression rate of x = rm

m
≥ 3

5
and if the

number of original snapshots m and the number of update snapshots p are related by
m ≥ 5

3
p + 5, then Alg. 3.4 is more efficient than Alg. 3.2.
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4. Analysis of Computational Costs 12

Proof. Proofs of the first two statements have already been indicated. On (iii): Let x ≥ 3
5

and m ≥ 5
3
p + 5. Consider equation (4.1) respectively (4.3). It holds

1

n
(∗) = (x − 2x2)m2 + (2 − 3x)mp + (3 − 4x)m − p2 − p − 3

≤ − 3

25
m2 +

1

5
mp +

3

5
m − p2 − p − 3 (4.5)

≤ m

(

− 3

25

(

5

3
p + 5

)

+
1

5
p +

3

5

)

− p2 − p − 3 < 0.

This shows (iii). The claims (i) and (ii) are proved in an analoguous manner.

Table 4.2 displays the computational costs and accuracy of all three update approaches
when applied to snapshot matrices Y ∈ R

n×m and update matrices W ∈ R
n×p with

fixed but random entries; here n denotes the size of the snapshots, m denotes the num-
ber of original snapshot observations and p denotes the number of update snapshots.
The reconstruction error is based on the 2-norm of the matrix

(

Ȳm+p − Um+pΣm+pVT
m+p

)

,
where the SVD-representation of Ȳm+p is computed via the various algorithms.
In all cases, the initial and final compression level were chosen to be the maximum
value of rm = m− 1, respectively rm+p = m + p− 1. As predicted by theory, Algorithm
3.4 outperforms its competitors under this conditions.
The amount of time to compute the initial SVD has not been considered.

Using the same notation as introduced above, Table 4.3 displays the computational
costs and accuracy of all three update approaches when applied to a random snapshot
matrix of dimensions 100, 000 × 500. Here, the original SVD was truncated by force,
disregarding its true rank. The initial and final compression level were chosen to be
rm = 0.4m, respectively rm+p = rm + 100. In this test case, again in line with theory,
Algorithm 3.2 is the most efficient.

Remark 4.1 (A note on parallelization). All subroutines in algorithms 3.2 and 3.4 that scale
in the snapshot dimension n consist of simple arithmetics or matrix-matrix products. Think
of matrices A ∈ R

n×m and B ∈ R
n×p as divided into sub-blocks AT =

(

AT
1 , ..., AT

q

)

, BT =
(

BT
1 , ..., BT

q

)

with Ai ∈ R
ni×m, Bi ∈ R

ni×q and
∑q

i=1 ni = n, then AT B =
∑q

i=1 AT
i Bi. This

indicates an obvious way for parallel computations.
On the other hand, Algorithm 3.3 involves computing an orthogonal basis for a given column
space, which is not as straight-forward to do in parallel.
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Table 4.2: Accuracy and CPU time of the three update approaches when applied to random
matrices and an initial SVD featuring a compression level of 100%.

(n, m, p) = (100.000, 100, 50)
Method Reconstruction error t(steps 3,4) (sec.) t(total) (sec.)
Alg. 3.2 1.923e − 12 0.1540 0.6895
Alg. 3.3, SVD-orth 2.211e − 12 0.7720 1.300
Alg. 3.3, QR-orth 2.375e − 12 0.8073 1.343
Alg. 3.4 1.874e − 12 0.2366 0.5321

(n, m, p) = (100.000, 500, 100)
Method Reconstruction error t(steps 3,4) (sec.) t(total) (sec.)
Alg. 3.2 2.342e − 12 0.3683 6.316
Alg. 3.3, SVD-orth 2.504e − 12 3.311 7.884
Alg. 3.3, QR-orth 2.333e − 12 3.178 8.145
Alg. 3.4 2.279e − 12 1.888 4.424

(n, m, p) = (2.000.000, 20, 5)
Method Reconstruction error t(steps 3,4) (sec.) t(total) (sec.)
Alg. 3.2 3.709e − 11 0.09098 1.023
Alg. 3.3, SVD-orth 5.320e − 11 0.6542 1.520
Alg. 3.3, QR-orth 3.724e − 11 0.6927 1.612
Alg. 3.4 3.666e − 11 0.4325 0.9761

Table 4.3: Accuracy and CPU time of the three update approaches when applied to a random
matrix with the initial SVD featuring a compression level of 40%.

(n, m, p) = (100.000, 500, 100)
compression level rm = 200, rm+p = 300, x = rm

m
= 0.4

Method Reconstruction error t(steps 3,4) t(total) (sec.)
Alg. 3.2 92.21 0.1818 1.934
Alg. 3.3, SVD-orth 92.21 2.700 4.184
Alg. 3.3, QR-orth 92.21 2.746 4.233
Alg. 3.4 93.41 1.882 3.545
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5 Summary and final Remarks

It has been demonstrated that the update strategies of algorithms 3.2 and 3.4, which
follow the symmetric EVD approach, are more efficent than Algorithm 3.3, which relies
on a rank-p SVD update.. It is well-known that computing an SVD of a matrix A via the
symmetric EVD of AT A may lead to a loss of information [7, §5.3.2]. While Algorithm
3.3 does not suffer from this effect, the orthogonalization of the incoming snapshots
against the existing basis required in this approach incorporates additional numerical
inaccuracy. In order to keep track of the data mean, Algorithm 3.2 necessitates to suc-
cessively solve a small EVD and a small SVD and Algorithm 3.3 necessitates to solve
two small SVD problems whereas only one such problem accrues for Algorithm 3.4.
For the examples presented in section 4, all methods shared a very similar level of ac-
curacy. A theoretical error analysis is beyond the scope of this work.
Theory as well as the examples suggest that for practical impelentations, an automated
switching between method 3.2 and method 3.4 based on the compression level and
equation (4.4) is advantageous.
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Institut für Aerodynamik und Strömungstechnik, BS . . . . . 1 Exemplar

Institut für Aerodynamik und Strömungstechnik, GÖ . . . . 1 Exemplar
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