
The Python Papers 6(2): 3

 - 1 -

A Python Wrapper Code Generator for Dynamic Libraries

Arne Bachmann
German Aerospace Center (DLR), Cologne, Germany
arne.bachmann@dlr.de

Abstract
We introduce a new Python code generator for conveniently and transparently wrapping
native dynamic libraries. The presented code generator is used in several projects for
scientific collaboration and can be adapted to other projects fairly easily.

1. Introduction
In research institutions, many scientists and engineers of manifold disciplines collaborate to
build optimized models.

For efficiency and ease of use, scientists nowadays more and more become aware of the
need to unify their software environments. They use software integration frameworks and
common libraries to minimize the potential of observing incompatibilities and interfaces
mismatch. The introduction of these tools for collaboration guided by experts in software
technology is recommended.

On the other hand, each scientific discipline has its own specialized tools and methodologies
needed to calculate models and find optimized solutions in their field of excellence. A good
solution for allowing flexibility, while keeping software diversification at a necessary
minimum, is the introduction of a common and easy-to-learn scripting language.

Python is one of those candidate languages and has significantly gained popularity among
scientists over the past years [1] and offers both a very clear and non-verbose syntax, and a
host of useful domain-specific modules to support almost every task its users may have.

While scripting abilities are useful and convenient for researchers, they also often write their
own highly runtime-optimized and parallelized software in compiled languages like Fortran
and C/C++. These codes can be linked statically into executable files and deployed as stand-
alone tools available through networks to the research community, but can also be packaged
into dynamic libraries that can be linked during runtime by some other code, which may use
whatever functions it needs from the library. Under Windows operating systems, these are
dynamic-link library files *.dll while under Linux there are shared object files *.so [2].

The combination we observe in our interdisciplinary projects at DLR is that there are a few
widely used, but specialized and optimized libraries that are shared between institutes when

The Python Papers 6(2): 3

 - 2 -

collaboratively developing optimized models. The usage of functions from these libraries
varies widely between users and use cases, therefore a lot of researchers use those libraries
from within Python, where they have freedom of implementation, combined with the power
of precompiled optimized functions.

2. The wrapper code generator explained
One of the things we did at the department of Simulation and Software Technology at DLR
was to create a library wrapper generator for dynamic libraries to be used in the Python
language.

The advantage of this approach is obvious: By writing the wrapper generator once, we
gained the benefit of wrapping not only one library, but all of our libraries at once, and it can
be used by third parties, too, due to its open source license. The second advantage is
automation: Each time we extend the core libraries and introduce new functions, the wrapper
generator can automatically update the wrapper code, too, disregarding spurious manual
annotations that might become necessary for exotic cases. This boils down to almost a free
lunch leading to wrapper codes to be in sync with the core libraries at all times.

We investigated other approaches like the SWIG [3] or the suggested procedure presented in
[4], which is very similar to the approach presented here. The first allows for the same
bindings definition to be used in several programming languages, but needs a manual
compilation step for each language supported, while the second needs several binary tools to
parse the header file and extract the interface definition of the library to wrap into an XML
representation. In our projects we took a Python-only approach, based on a pure-Python
parsing and generator of ctypes -wrapping code.

For the time being, the wrapper generator supports the following features:

• A usable enum representation in Python code,
• Pure-Python values for anything going in and coming out of C-type functions,
• Multidimensional array handling in pure python for all basic data types,
• Automatic recognition of input and output parameters, wherever possible,
• Signature augmentation of necessary array dimension parameters, where needed,
• Generation of Windows installers and Linux archives by means of distutils ,
• Upload facilities to repository sites by calling external modules like

googlecode_upload .

The wrapper generator called make-wrapper.py can be broken down into the following
parts:

• A wrapper code template (wrapperstub.py),
• A header file parser,
• The code generator,
• Management code.

The code template is the core of the generated wrapper code and contains state management
and exception handling. It also encapsulates all library loading with the ctypes module.

The Python Papers 6(2): 3

 - 3 -

/**
 @brief Retrieves the names of all dimensions.
 #PY:1:-1# -1 means one user specified return arr ay (of strings)
 */
DLL_EXPORT ReturnCode tixiGetArrayDimensionNames(co nst TixiDocumentHandle handle,
 co nst char *arrayPath, char **dimensionNames);

def getArrayDimensionNames(self, arrayPath, _num_0_):
 ''' This is the generated Python version of the above C header.
 This comment was manually added. '''
 _c_arrayPath = c_char_p() # ctypes char*
 _c_arrayPath.value = arrayPath # assign the value
 _d_dimensionNames = c_char_p * (1 * _num_0_) # create a datatype for the output array
 _c_dimensionNames = _d_dimensionNames() # create the variable to hold the output values
 tixiReturn = self.TIXI.tixiGetArrayDimensionNam es(self._handle, _c_arrayPath,
 byref(_c_dimensionNames))
 self._validateReturnValue(tixiReturn, arrayPath , _num_0_) # check the return code
 return tuple([__x__ for __x__ in _c_dimensionNa mes]) # return pure python values

The header file parser reads in the header file (*.h) associated with the library to wrap. By
applying simple pattern matching mechanisms in functions like findLinesWith , all
relevant parts of the file are extracted and parsed. This results in an object-oriented
representation of the function signatures like ParamType and Param, including
information on pointers, data types and argument names. When adapting the wrapper
generator to your own libraries, you might need to adapt the parsing patterns to your source
code conventions. Functions like createEnums and createMethodStubs are the
heart of the wrapper generator. The following code fragments show some of the simple
mechanisms in the wrapper generator:

The code generator itself is the core mechanism that generates valid Python code to be
merged with the template. Enums are read in and written out in a Pythonesque way, file and
configuration handles are recognized and removed from the signatures, and all functions (or
methods) of the library are wrapped by converter codes that handle all mapping to and from
C-type value representations, including array creation.

As an example, we show the original C interface and the generated code thereof:

The management code comprises only of a few calls to the distutils module for installer
creation and an upload script to the popular source code repository found at
googlecode.com . This way by invoking the wrapper generator with a command line
argument like --upload not only the wrapper gets generated, but also its final installers
are uploaded instantly to their web sites. A typical wrapper execution looks like that:

def getPartBefore(contents, term):
 ''' Iterator to read until a certain line. doct est code was omitted here. '''
 for line in contents:
 if term in line:
 return
 yield line

def isPragma(line):
 ''' Check if this is a pragma line to ignore. d octest code omitted here. '''
 return re.match("\\A\\s*#", line) != None

The Python Papers 6(2): 3

 - 4 -

N:\svn\tixi\Src> python make-wrapper.py
Found 35 values for enum ReturnCode
Found 2 values for enum StorageMode
Found 2 values for enum OpenMode

Building source distribution
running sdist
...
Building windows binary distribution
Running bdist_wininst
...

N:\svn\tixi\Src>

3. Technical details

The generated code depends only on the sys and ctypes modules. The template code
contains string formatting statements like %s that are replaced by the generated codes in a
straight-forward manner. The current code base is for the Python 2 family, adaption to
Python 3 is a major task that leads to incompatible code changes in both directions which
would constitute a completely new project. Since there is no real user base for the Python 3-
family at the time being, we neglect upwards compatibility at the moment.

Enums are represented as class attributes with a string value equal to the enum entry's label.
This makes using them very literal in the user’s source code and allows for string
serialization at the same time. For deserialization there is also a backwards-mapped
dictionary called _names within the enum class automatically generated.

Parsing is done mostly line-wise; the whole header file is read into memory for faster
processing. The template code contains functions for finding certain character sequences
within the header file in functions like getPartBefore and getPartAfter . These
simple and not very runtime-efficient helper functions are fully sufficient to find and
separate all relevant parts of the header file, unless a uniform code formatting has been
neglected, which would be a bad code smell anyway.

The code generator parses the found method signatures and analyses them according to their
constitution: Parameters that contain at least one asterisk (*) are considered an array, unless
they are output parameters where the C-type library returns newly created values. One
additional but uncritical challenge are strings and string arrays, because in C there is no way
to distinguish between a pointer to a character array char* and a string. The same applies
to char** , which can be a two-dimensional character array, but also an array of strings. In
fact the rules for determination of arrays and pointers are even more difficult than shown
here and details can be found in the source code.

For an unbiased interpretation of pointers, arrays and data types, a convention and a short
markup were introduced. The convention goes like this:

• The first parameter – if it is some kind of DLL handle – is ignored and doesn’t count
against the parameters. It is handled inside the code template and the generator code,

The Python Papers 6(2): 3

 - 5 -

• The last parameter is by default the only output parameter, unless it doesn’t have an
asterisk or unless noted otherwise in the annotation,

• All other parameters are considered input parameters, either of singular or array
type.

The annotation for function signatures is parsed from the comment block residing above
each function declaration, from the same place where other documentation stems from, as
for example, markup for the Doxygen processor and the description of Fortran bindings. The
syntax for the wrapper annotation is as follows:

START DELIMITER OUTPUTS DELIMITER ARRAYS END

Where START is the character sequence "#Py", DELIMITER is ":", and END is "#".

OUTPUTS is a list of comma-separated integer numbers in the range of [0; number of
parameters).

ARRAY is a list of comma-separated lists of semicolon-separated integer numbers in the
range of [0; number of parameters).

The outputs list enumerates all parameter positions where an output from the library is
expected. This list is only necessary to note in the header file if there is more than one output
pointer or the only parameter is not at the last (right-most) position. As an example may
serve a geometric function that converts one 32-bit integer value into three double values
representing one combined Cartesian coordinate. Here we might find an annotation like
“#PY:1,2,3#” which tells us that the (last) three parameters at positions 1, 2 and 3 are output
parameters, while the first is not (at position 0).

The arrays list became necessary for functions that not only write data to pointers that are put
into the function (created by the ctypes module), but for functions that allocate new
memory portions and return the created pointer(s) to the wrapper code. Here the wrapper
generator needs to know the size of the array generated within the library in advance,
because the ctypes module cannot expand or shrink arrays dynamically. The semantics of
the semicolon-separated lists are as follows:

• Each list represents one of the outputs, from left to right mapped to the parameters in
the outputs list,

• A value of -1 in the arrays list means user-provided: The wrapper generator will add
one additional parameter to the Python wrapper code, which the user must fill in to
tell the wrapper about the expected size of the returned array,

• Any number of positive integer values (including zero) in the inner list is considered
as indexes of input parameter positions. The product of all their input values is
calculated and taken as output array size. This is useful in cases where, e.g., a two-
dimensional matrix is created or calculated and the wrapper code needs the overall
size of the generated array.

The Python Papers 6(2): 3

 - 6 -

With these simple conventions and one small annotation in diverging cases, we gained
enough flexibility for all our use cases as of today, while keeping a lean code base regarding
Python code.

Drawbacks of the simplicity of this approach are for example the inability to automatically
and recursively go through all included header files from the wrapped file, no knowledge
about #define pragmas or macros.

Besides the other advantages, we don't need "monkey-patching" as in the approach taken by
Kloss, there are no complex command-line parameters and no external dependencies other
than the adapted stub.

4. Summary and outlook
We have presented a simple yet very useful Python code generator that almost fully
automatically wraps dynamic Fortran or C/C++ libraries via the ctypes module, while
completely shielding users from all intricacies of C-types handling.

Automation of wrapper code generation is maximized by one basic convention, and
flexibility is reinstated for diverging cases by introduction of a short annotation within the
documentation block of a function declaration inside the header file.

The wrapper generator has been in use successfully at DLR by several projects and institutes
of diverse research areas collaborating in airplane modeling and optimization. Only minimal
adjustments are necessary for adaption to libraries in other projects or different coding
conventions and we hope to see other projects making use of the library in the future.

Ideas for further improvement include automatic generation of doctest tests in the
generated code to reliably ensure code correctness. Currently there are embedded tests only
inside the generator code.

References
[1] TPCI History for language Python. Available at
http://www.tiobe.com/index.php/paperinfo/tpci/Python.html

[2] Static, Shared Dynamic and Loadable Linux Libraries. Available at
http://www.yolinux.com/TUTORIALS/LibraryArchives-StaticAndDynamic.html

[3] Simplified Wrapper and Interface Generator (SWIG). Available at http://www.swig.org

[4] Kloss, Guy K. (2007). Automatic C Library Wrapping - Ctypes from the Trenches. The
Python Papers 3(3): 5.

Libraries that currently use the Python DLL wrapper code generator:

• http://tixi.googlecode.com
• http://tigl.googlecode.com

