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ABSTRACT
We perform direct numerical simulations (DNS) of tur-

bulent Rayleigh-Bénard convection coupled with surface-to-
surface radiation in a rectangular enclosure filled with air to
investigate whether this interaction influences the heat trans-
fer, temperature distribution and the flow structures. To do so,
horizontal solid plates with finite conductivity are employed
for the considered Rayleigh-Bénard cell. Such boundary con-
ditions allow local variations of the temperature at the hot and
cold interfaces due to their interaction with the fluid and sur-
face radiation. In order to investigate the maximum effect
of those boundary conditions, both interfaces are treated as
a blackbody (ε = 1) and the cell is filled with a radiatively
non-participating fluid (Prandtl number Pr=0.7). The effects
of radiation for highly conducting plates are shown and com-
pared to the case where radiation is neglected.

It is found that due to highly conducting plates the mean
temperature at the interfaces changes only 0.04% from the one
of the infinite conductive plates. Furthermore, we observe that
due to surface-to-surface radiation coupled with highly con-
ducting plates, the mean temperature at the interfaces changes
0.1% at the interfaces and 0.2% in the bulk. It is shown that
the temperature at the hot interface tends to decrease due to the
radiative heat loss while the temperature at the cold interface
slightly increases. Apart from that, we observe small changes
in the temperature distribution at the interfaces due to surface-
to-surface radiation. We notice that the highest temperatures
at the top interface appear in the middle and the values steadily
decrease towards the edges.

Additionally, we observe a small drop of the convective
Nusselt number and little variations of the temperature distri-
bution at the interfaces. Finally, it is shown that all mentioned
variations caused by heat radiation between interfaces are too
small to visibly change the large scale flow structures when
highly conducting plates are employed. It is also shown that

in the non-radiation case of poorly conducting plates the heat
transfer and the temperature variations at the interfaces are in-
fluenced significantly.

INTRODUCTION
Turbulent Rayleigh-Bénard convection (RBC) is one of

the classical problems of fluid dynamics. Despite the great
effort made in the past to understand the complex physical
mechanisms in this type of flow, there are still many open
questions which must be answered. Besides that, the effect
of thermal radiation on turbulent RBC is also of interest since
so far not many conducted investigations address this prob-
lem. The reason might be that modeling thermal radiation is
computationally expensive. One possibility to decrease this
effort in numerical simulations of heat radiation and turbulent
convection is to assume that the radiation does not depend on
the wavelength and to approximate the directional nature by
diffuse emission. Nevertheless, the intensity of irradiation still
depends on the geometrical features and thermal properties of
radiatively interacting surfaces. Hence, simulating heat radia-
tion in a Direct Numerical Simulation of turbulent Rayleigh-
Bénard convection slows down the computation by a factor of
20.

The effect of conductive horizontal plates was inves-
tigated in many experimental and numerical studies (see
Brown et al. 2005, Verzicco and Sreenivasan 2008, John-
ston and Doering 2009). Fixed temperature boundary con-
ditions correspond to an infinite thermal conductivity of the
plates while an imposed heat flux models poorly conducting
plates. Their studies indicated that the heat transfer is sup-
pressed for Ra > 109 in simulations with plates of finite con-
ductivity whereas for lower Ra the two boundaries lead to a
similar flow. Apart from that, Balaji and Venkateshan (1993,
1994) and Akiyama and Chong (1997) performed numerical
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simulations of a square cavity filled with air with gray sur-
faces heated and cooled from the sides. They noticed that the
convective heat transfer is suppressed due to surface radiation
and the radiative heat transfer at the heated and cooled walls
increases greatly with the emissivity of the walls. They also
noted that the surface radiation alters significantly the tem-
perature distribution inside the cavity and the flow patterns.
However, in their simulations the flow was steady, laminar and
two-dimensional. Nevertheless, the results of Verzicco and
Sreenivasan (2008) or Johnston and Doering (2009) as well as
those of Balaji and Venkateshan (1993, 1994) or Akiyama and
Chong (1997) refer to a cell with infinitely thin plates while
the finite thickness of the plates is modelled in our computa-
tions. Such boundary conditions allow changes of the temper-
ature at the hot and cold interfaces due to turbulent convection
and surface radiation.

In this study, the effects of radiation are shown and com-
pared to the case when radiation is neglected. We observe a
similar drop of convective Nusselt number as Akiyama and
Chong (1997) and Ridouane et al. (2004). However, in our
configuration this change of convective Nu due to exchange
of radiation between interfaces is too small to visibly change
the large scale flow structures. It is also shown that poorly
conducting plates significantly influence the heat transfer and
the temperature variations at the interfaces. Hence, future sim-
ulations of RBC coupled with surface radiation might reveal
greater changes in the heat transfer and large scale flow struc-
tures when less conductive materials of the solid plates are
employed.

NUMERICAL PROCEDURE
Direct numerical simulations are conducted in the rectan-

gular domain with aspect ratio Γ = Ŵ/Ĥ = 1, where Ĥ is the
height and Ŵ the width of the enclosed fluid. No-slip and im-
permeability conditions are applied to all solid walls, so that
velocity components ûi|wall = 0. The outer sides of the top
and bottom solid plates are isothermal with non-dimensional
temperatures Ttop =−0.5 and Tbot = +0.5, respectively. Adi-
abatic lateral walls are realized in the spanwise direction and
in the longitudinal direction of length L̂ = 5Ĥ by means of
a zero temperature gradient perpendicular to the wall, i.e.
∂ T̂/∂ x̂ = 0; ∂ T̂/∂ ŷ = 0. Additionally, the irradiation which
reaches a surface on the side walls is directly reflected to the
origin surface, hence only the temperature at the interfaces
can change due to radiation. Fig. 1 illustrates the geome-
try and boundary conditions used in this study. The dimen-
sionless thickness of the heating and cooling plates equals
hs = hh = hc = 0.065. In the simulation where radiation is
taken into account the solid plates are made out of aluminium.
However, to simplify the problem and to investigate the max-
imal influence of surface-to-surface radiation, both interfaces
are treated as a blackbody (ε = 1). Furthermore, we as-
sume that the working fluid is a radiatively non-participating
medium of Prandtl number Pr = 0.7. The considered gov-
erning equations are the incompressible Navier-Stokes equa-
tions derived under the assumption of the Boussinesq ap-
proximation. Their non-dimensionalisation is carried out us-

ing xi = x̂i/Ĥ, ui = ûi/(α̂ ĝ∆̂T Ĥ)1/2, T = (T̂ − T̂0)/∆̂T ,

p = p̂/(ρ̂α̂ ĝĤ∆̂T ) and t = t̂(α̂ ĝĤ∆̂T )1/2
/Ĥ, where α̂ is the

Figure 1. Geometry of the convection cell with temperature
boundary conditions.

thermal expansion coefficient and ρ̂ is the density. ĝ repre-
sents the gravitational acceleration which acts in vertical z-
direction. ∆̂T denotes the temperature difference between the
outer sides of the heating and cooling plates and Ĥ is the
height of the fluid layer. We denote dimensional quantities
with .̂ and dimensionless without. Finally, the dimensionless
form of the governing equations is given by equation (1) -
(3).

∂u j

∂x j
= 0 (1)

∂ui

∂ t
+u j

∂ui

∂x j
+

∂ p
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∂ 2ui

∂x2
j
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∂T
∂ t
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∂T
∂x j
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∂ 2T
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j
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Here, ui(i = x,y,z) are the velocity components in i direction,
T and p represent the temperature and pressure, respectively
and δi j is a Kronecker symbol. The non-dimensional kine-
matic viscosity and thermal diffusivity are defined by (4) and
(5), respectively.

ν = (
Pr
Ra

)
1/2

(4)

κ f =
1

(RaPr)1/2
(5)

The dimensionless control parameters, Prandtl and Rayleigh
numbers, are defined by (6) and (7), respectively and their
values are presented in table (1).

Pr =
ν̂

κ̂ f
(6)

Ra =
α̂ ĝĤ3∆̂T

ν̂ κ̂ f
(7)

The boundary conditions at the interfaces impose the
same heat flux on both sides as described by equation (8) -
(9) and the solution of this equation determines the tempera-
ture at the interfaces. In simulations which do not account for

2



thermal radiation, the radiative heat fluxes represented by qe
and qir are neglected.

bottom inter f ace : qc,s +qir = qc, f +qe (8)

top inter f ace : qc, f +qir = qc,s +qe (9)

qc,s = − k̂s

k̂ f

∂T
∂x
|s.side (10)

qc, f = −∂T
∂x
| f .side (11)

qe = Nr(Ti +θ)4 (12)

qir = Nr∑
S j

(Tj +θ)4Fi j (13)

Here, qc,s and qc, f represent conductive heat fluxes from the
solid and fluid side of the interface, respectively; k̂s/k̂ f de-
notes the ratio of thermal conductivity for solid and fluid. In-
cluding equation (12) and (13) in the boundary conditions
for radiation implies, that additional control parameters like
conduction-radiation number Nr and the temperature ratio θ

defined by (14) and (15), respectively have to be fixed. Table
(1) summarizes the value of the control parameters used in the
considered simulations.

Nr =
σ̂ ∆̂T

3
Ĥ

k̂ f
(14)

θ =
T̂0

∆̂T
=

0.5(T̂bot + T̂top)
T̂bot − T̂top

(15)

In equation (13) the summation over the surface element S j
is done for all the elements in the boundary with which the
element i can interact radiatively. The view factors are deter-
mined by a function of the geometry and they are calculated
from equation (16) as proposed by Incropera et al. (2006).

Fi j = A j
cosφicosφ j

ΠR2
i j

(16)

Here, A j is an area of a surface j and the polar angles φi and φ j
are formed between the line connecting the centers of the sur-
face i and j and the surface normals ni and n j, respectively. Ri j
is a distance between surface i and j. In the present study we
simulate Rayleigh-Bénard convection for two different ther-
mal boundary conditions at the horizontal plates. One is called
’aluminium-fluid case’ and the other one ’plexiglas-fluid case’
assuming that the solid plates are made out of aluminium and

Table 1. Values of dimensionless control parameters and di-
mensional properties used in considered simulations.

Ra
[-]

Pr
[-]

Nr
[-]

θ

[-]
T̂0
[K]

∆̂T
[K]

Ĥ
[m]

6.3x107 0.7 0.0006 39.2 332 8.46 0.5

plexiglas, respectively. Considering aluminium the thermal
diffusivity κ̂s equals 8.418× 10−5m2/s, while for plexiglas
κ̂s = 7.49× 10−8m2/s and for air κ̂ f = 2.216× 10−5m2/s.
The term ’radiation case’ is used for the simulation concerning
aluminium plates. Additionally, the results obtained for the
’solid-fluid cases’ are compared with those where the heating
and cooling plates are isothermal and infinitely thin: hh and
hc → 0 (’fluid case’).

Applying the boundary conditions described in equation
(8) - (9) is only possible by approximating the temperature at
the interfaces. Thus, in order to choose the best approxima-
tion of (T +θ)4 two different methods were tested. Deriving
the temperature at the interfaces around heating/cooling plate
using Taylor Series Expansion gave approximation errors of
order 10−3. By using the Newton-Raphson’s method it was
possible to decrease the approximation error to 10−11 in most
cases after 3 iterations.

The convective heat flux, represented by the Nusselt
number Nuc, is calculated for both radiation and non-radiation
cases with equation (17).

Nuc =
〈ûzT̂ 〉t,Sz − κ̂ f 〈 ∂ T̂

∂ x̂z
〉t,Sz

κ̂ f ∆̂T/Ĥ
=
√

RaPr〈uzT 〉t,Sz −〈
∂T
∂xz
〉t,Sz

(17)
where 〈·〉t,Sz denotes averaging in time and in vertical z di-
rection. Additionally, at the interfaces contributions of both
convection and radiation should be taken into consideration in
the expression of Nu. Thus, the total Nusselt number at the in-
terfaces for each i-th surface is calculated as Nu = Nuc +Nur,
where Nur reads

Nur =
σ̂ T̂ 4

i −∑S j
σ̂ T̂ 4

j Fi j

κ̂ f ∆̂T/Ĥ
= Nr(Ti +θ)4−∑

S j

Nr(Tj +θ)4Fi j

(18)
The method used for DNS is based on the volume bal-

ance procedure by Schumann et al. (1979) and the sec-
ond order accurate explicit Euler-Leapfrog time discretisation
scheme. Spatial derivaties and cell face velocities are approx-
imated by piecewise integrated fourth-order accurate polyno-
mials, where the velocity components are stored on staggered
grids as described in more detail in Shishkina and Wagner
(2007). In order to sufficiently resolve the boundary lay-
ers the minimum number of nodes in the thermal boundary
layer is estimated for all considered cases with the criterion
by Shishkina et al. (2010) which provides the needed grid
points to sufficiently resolve a Prandtl-Blasius type boundary
layer. The grid spacing needed to resolve all relevant turbulent
scales in the core region is estimated according to Grötzbach
(1983) and in every direction is smaller than the Kolmogorov
length. Finally, to satisfy the above requirements performing
our simulations for the Rayleigh number Ra = 6.3x107, we
use 10 grid points to resolve the thermal boundary layer and
256x256x576 grid points in vertical, spanwise and longitudi-
nal direction, respectively.

RESULTS
Temperature analysis

The mean temperature at the interfaces together with it’s
spatial deviation is shown in table 2. It is found that for highly
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Figure 2. Time and area averaged temperature profiles for
Ra = 6.3x107, close-up views for bottom (left fig.) and top
(right fig.) solid plates; fluid case (– –), aluminium-fluid case
(—), plexiglas-fluid case (—), radiation case (- -).

conducting plates (here represented by the aluminium-fluid
case) the deviation of the temperature at the interfaces is very
small. This denotes nearly a homogenous temperature distri-
bution and thus, a small contribution of turbulent convection
on the temperature distribution at the interfaces. Additionally,
figure 2 reveals that for the aluminium-fluid case the mean
temperature at the interfaces differs only 0.04% compared to
the one of the infinite conductive plates (fluid case). This im-
plies that the contribution of thermal conductivity to a change
of the mean temperature at the interfaces is very high.

Analysing the mean temperature for the radiation case
(see figure 2), we observe that the temperature changes 0.1%
at the interfaces and 0.2% in the bulk in comparison to the
infinitely thin plates with isothermal conditions (fluid case).
In details, the temperature at the bottom interface decreases
and the temperature at the top interface increases. Those tem-
perature changes are related with the net radiation which is
directed from hotter to colder interface. Thus, the top inter-
face gains the heat which is lost by the bottom interface. De-
spite the fact, that the changes of temperatures for the radia-
tion case are small, it is noteworthy that the temperature drop
at the bottom interface due to radiation is 50% higher than the
one obtained for the highly conducting aluminium plates.

Figure 3. Time averaged temperature distribution at the top
(top fig.) and bottom (bottom fig.) interface; aluminium-fluid
case, Ra = 6.3x107.

Figure 4. Time averaged temperature distribution at the top
(top fig.) and bottom (bottom fig.) interface; radiation case,
Ra = 6.3x107.

Additionally, comparing the radiation case to the
aluminium-fluid case, small differences in the temperature
distribution at the interfaces are found. Because of a small

Table 2. Time and volume averaged convective Nusselt number (Nuc). In addition, time and area averaged temperature with
spatial deviations; convective, radiative and total Nusselt number (Nuc,Nur,Nubot/top) at the bottom/top interfaces.

bottom (hot) interface top (cold) interface

case Nuc T Nuc Nur Nubot T Nuc Nur Nutop

aluminium-fluid 27.29 0.4998 ±4.3x10−5 27.30 0.0 27.30 -0.4998 ±4.5x10−5 27.20 0.0 27.2

radiation 27.12 0.4995 ±1.1x10−4 27.20 52.13 79.33 -0.4995 ±6.5x10−5 27.08 52.13 79.21

plexiglas-fluid 23.63 0.4472 ±1.2x10−2 23.68 0.0 23.68 -0.4476 ±1.4x10−2 23.60 0.0 23.6
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spatial temperature deviations at the interfaces we plot the re-
sults in figure 3 and 4 in a close-up view with scales rang-
ing from -0.5 to -0.4993 and 0.4993 to 0.5 for the top and
bottom interfaces, respectively. For the radiation case we no-
tice that the highest temperatures at the top interface appear in
the middle and the values steadily decrease towards the edges
while there are four symmetric hot spots for the aluminium-
fluid case.

Finally, we conclude that surface-to-surface radiation in-
fluence the temperature distribution at the interfaces and the
mean profiles, however these variations from the isothermal
conditions (fluid case) are small.

Analysing the plexiglas-fluid case we observe a similar
effect to the one detected for the radiation case. Figure 2
shows vertical temperature distribution in the bulk and in the
vicinity of the plates in a close-up view. It is visible that due
to poorly conducting plates the temperature at the bottom in-
terface decreases and the temperature at the top interface in-
creases about 10% in comparison to the isothermal case (fluid
case). For poorly conducting plates rising and descending
convective plumes can easily modify the temperature at the
interfaces and lead to non-uniform temperature distribution.

The spatial temperature deviations of the temperature at
the interfaces are shown in table 2. The highest values are
obtained for poorly conducting plates what denotes the most
non-uniform temperature distribution at the interfaces com-
pared to the other cases. From the above results, we conclude
that poorly conducting plates decrease the contribution of the
thermal conductivity to the changes of the mean temperature
at the interfaces in favour of turbulent convection and possibly
thermal radiation. Hence, future simulations of RBC coupled
with surface radiation might reveal even larger changes of the
temperature values at the interfaces when less conductive ma-
terials of the solid plates are employed.

Analysis of Nusselt numbers and temperature
gradients

The results summarized in table 2 reveal that the total
heat transfer at the interfaces (Nubot/Nutop) is nearly 3 times
higher in the radiation case than in the case where radiation
is neglected (aluminium-fluid case). The radiative heat flux
emitted from the bottom interface does not interact with the
medium but is absorbed directly by a colder, top interface.
That causes the higher heat flux at the top interface and finally
higher temperature gradients inside the aluminium plate, see
figure 5. The evaluation of the radiative heat transfer at the
hot interface was also investigated by Ridouane et al. (2004,
2006). According to their studies the value of Nur is higher
when the emissivity of the surfaces is higher and in addition
Nur increases quickly with Ra as ilustrated in a graph for Ra
ranging from 103 to 2.3x106. In our study we present the
results for Ra = 6.3x107 which are in a good agreement with
the extrapolated values of Ridouane et al. (2004, 2006).

Further, the time and volume averaged Nusselt number
Nuc, shown in table 2, is lower for the radiation case com-
pared to the aluminium-fluid case. Finally, surface-to-surface
radiation reduces the convective effect by about 0.6%. Similar
conclusions were reported by Akiyama and Chong (1997) and
later by Ridouane et al. (2004) who studied the problem of a
square enclosure with gray surfaces for different emissivities.

Figure 5. Time and area averaged temperature gradient pro-
files for Ra = 6.3x107, close-up views for bottom (lower inset)
and top (upper inset) solid plates; fluid case (– –), aluminium-
fluid case (—), plexiglas-fluid case (—), radiation case (- -).

Figure 6. Instantaneous temperature distribution for the fluid
case (upper figure), the radiation case (lower figure); Ra =
6.3x107.

Figure 7. Distribution of the local, time averaged convective
Nusselt number plotted at y/Z=0.5 for the fluid case (upper
figure), the radiation case (lower figure). Ra = 6.3x107.

Analysis of the large scale flow structures
Instantaneous flow fields obtained for isothermal condi-

tions (fluid case) and the radiation case are presented in fig-
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ure 6. In both cases the large scale plumes forming the large
scale circulation disintegrate into smaller plumes. The shape
of these large scale structures and the temperature on the heat-
ing and cooling boundaries are similar for the fluid case and
the radiation case.

Additionally, figure 7 shows a two dimensional distribu-
tion of the time averaged convective Nusselt number (Nuc) to
demonstrate the fingerprints of the generated large scale flow
structures in detail. Two smaller structures in the middle of the
cell and two bigger ones close to the vertical walls are present
for the radiation case and for the fluid case. However, due to
small variations in the convective Nusselt number (Nuc) and
similar temperature values at the interfaces, the differences
between corresponding flow structures are hardly visible.

CONCLUSIONS
Many numerical studies of Rayleigh-Bénard convection

performed in the past use fixed temperature or fixed flux
boundary conditions for infinitely thin plates. In the present
study we assume fixed temperature boundary conditions at the
outer side of the solid plates with finite thickness. Using such
boundary conditions allows to implement surface-to-surface
radiation and analyse the changes of the temperature distribu-
tion and the heat transfer on the heating and cooling bound-
aries (solid-fluid interfaces). In order to investigate the max-
imum effect of the boundary conditions, both interfaces are
treated as a blackbody (ε = 1) and the cell is filled with a
radiatively non-participating fluid.

Analysing the results of the conducted direct numerical
simulations for Ra = 6.3x107, it is found that due to surface-
to-surface radiation coupled with highly conducting plates,
the temperature changes 0.1% at the interfaces and 0.2% in the
bulk in comparison to the infinitely thin plates with isother-
mal conditions. Additionally, the temperature at the hot inter-
face decreases due to radiative heat loss and the temperature
at the cold interface increases. Apart from that, we observe
small changes in the temperature distribution at the interfaces
due to surface-to-surface radiation. We notice that the highest
temperatures at the top interface appear in the middle and the
values steadily decrease towards the edges.

Finally, we conclude that surface-to-surface radiation in-
fluences the temperature distribution at the interfaces and the
mean temperature profiles, however these variations from the
isothermal conditions (fluid case) are small.

We observe a small reduction of convective effect due to
radiation. The similar drop of the convective Nusselt num-
ber was also reported by Akiyama and Chong (1997) and Ri-
douane et al. (2004) in their 2D simulations of a square cavity.
Due to the small variations in the convective Nusselt number
(Nuc) and similar temperature at the interfaces for the radia-
tion case and the isothermal case, the differences in large scale
flow structures are hardly visible.

The analysis of the results for poorly conducting plates
(plexiglas-fluid case) reveals that these boundary conditions
significantly influence the heat transfer and the temperature
distribution at the interfaces. The temperature at the bottom
interface decreases about 10% and at the top interface in-
creases. This effect is similar to the one observed for the radi-
ation case but the influence of the temperature is much higher

for the plexiglas-fluid case than for the radiation case. Finally,
we suppose that future simulations of RBC coupled with sur-
face radiation might reveal greater changes in the heat transfer
and some changes in the flow structures when less conductive
materials of the solid plates are employed.
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