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Abstract— One of the fundamental demands on robotic sys-
tems is a safe interaction with their environment. For fulfilling
that condition, both collisions with obstacles and the own
structure have to be avoided. We address the problem of self-
collisions and propose an algorithm for its avoidance which
is based on artificial repulsion potential fields and applicable
to both torque and position controlled manipulators. To this
end, we design a damping that incorporates the configuration
dependance of the robot. For a maximum level of safety, an
additional emergency brake strategy based on kinetic ener-
gy considerations is introduced for situations in which self-
collisions are not avoidable by the controller. Experiments are
performed on DLR’s humanoid Justin.

I. INTRODUCTION

For robots in human and industrial environment, it is
crucial to ensure a high level of safety. That involves the avoi-
dance of collisions with both obstacles and the own structure.
Over the last decades, this safety aspect has been addressed
frequently. A wide variety of approaches has been developed
to cope with dynamic environments and unexpected events in
the workspace of the manipulator. They range from collision
detection methods [1], [2], [3] to reactive path-planning of
safe trajectories and repulsion from potential obstacles [4],
[5], [6].

An elegant real-time approach has been applied to the
HRP-2 humanoid robot [7]. Based on cost functions, col-
lisions are avoided via control in the velocity domain. In
[8], an algorithm is presented which predicts a human’s
motion in the working area of the robot based on estimated
velocities. Then, an optimal trajectory for the manipulator is
planned to prevent the predicted collision. A wide field of
research focuses on reactive repulsion potential field-based
designs, introduced by Khatib [9]. This concept has been
implemented on the humanoid ASIMO [10]. Therein, virtual
repulsive forces are generated between potentially colliding
links and transformed via an admittance into corresponding
joint motions which are projected into the nullspace of the
main task. Another application for potential fields in collision
avoidance can be found in [11]. On the Ranger Dexterous
Manipulator, repulsive potentials with respect to obstacles,
joint limits and singularities in the configuration space are
designed. One can say that most of these related approaches
have in common that repulsive forces between links are
transformed into appropriate joint motions in order to be app-
licable to the respective position controlled system. However,

Fig. 1. DLR’s humanoid Justin performing a grasping/lifting task.

also for torque controlled manipulators like the upper body of
DLR’s humanoid Justin [12] collision avoidance applications
have been developed. The potential field-based algorithm in
[13] leads to joint torques for avoiding self-collisions though
leaving the open question of an appropriate damping design
and cases of emergency in which the potential fields are
overstrained and not able to completely avoid a collision in
the end.

The aim of this paper is to present a new repulsion poten-
tial field-based algorithm for self-collision avoidance which
extends the work started in [13]. The method is implemented
on DLR’s humanoid Justin, see Fig. 1. One main contribution
of the paper is an efficient damping design which incorpo-
rates the configuration dependance of collision-endangered
situations. Thereby, even critical situations like entangled
arms in front of the chest, in which many virtual contact
points exist, do not lead to oscillations. The second major
contribution is a strategy for indispensable emergency stops
of the entire system. Based on the kinetic energy which
is stored within the motion of two approaching links, we
determine whether a collision is preventable by the repulsion
potential fields or mechanical braking is the only possibility
left. Thus, the manipulator’s safe working range can be
enlarged and a maximum level of self-protection is reached.
The computation of the reflected, one-dimensional inertia in
contact direction is essential for both damping design and



TABLE I
SYSTEM OVERVIEW

Subsystem DoF control mode
Torso 3 torque
Arms 2 × 7 torque
Hands 2 × 12 torque

Head & Neck 2 position
Platform & Legs 8 position

emergency behavior. The third contribution is an admittance-
based interface to position controlled subsystems which can
be embedded naturally in the derived force/torque-based de-
sign approach. Further, we use a small-sized generic collision
model volume representation for distance computation which
allows a tighter modeling of the robot than in [13].

The paper is organized as follows. After a brief introduc-
tion of the employed system in Section II, we deliver in-
sight into the applied distance computation algorithm which
provides the controller with information about potentially
colliding links in real-time in Section III. Subsequently, we
derive the control algorithm in Section IV. Starting with
the design of the potential fields and repulsive forces, we
proceed to formulate the damping term. Thereafter, a passage
addresses a subset of position controlled joints by introducing
an admittance interface. Eventually, a kinetic energy-based
logic for emergency cases is proposed. To validate the
theoretical claims, experimental results on DLR’s humanoid
Justin are presented and discussed.

II. SYSTEM OVERVIEW

DLR’s humanoid Justin consists of an upper body system
which is mounted on a mobile platform, see Fig. 1. The latter
is able to realize any translational and rotational trajectory.
Furthermore, the footprint is variable due to four extendable
legs. The upper body consists of a torso, two arms, two
hands and a sensor head which is mounted on a pan-tilt-
unit for unrestricted stereo vision in the working range of
the manipulator. The 51 degrees of freedom (DoF) of Justin
are grouped by subsystem and control mode in Table I.

The upper body weighs approximately 45 kg, whereas the
mobile platform amounts to about 150 kg. Further details on
the structure, kinematics and control can be found in [12]
(upper body) and [14], [15] (mobile platform).

III. DISTANCE COMPUTATION

This chapter describes the solution to a prerequisite task
for the repulsion potential field-based algorithm, namely
finding the np pairs of Justin’s links having the smallest
distances. As collisions are most likely to appear between the
links having small distances, these are the objects of interest.
The task is to provide the distance and the potential contact
points, i.e., the points on these links having that minimal
distance, for each of these np pairs. The algorithm combines
a compact and numerically well-posed volume representation
with a standard distance computation technique for convex
hulls [2].

A. Overview

Each of Justin’s rigid links is modeled by a fixed volu-
me V . The computation operates as follows: In every control
cycle, all volumes are transformed into the world frame
by applying the corresponding transformations. Then, for
every pair of links, the distance and corresponding proximal
points are determined. It is possible to exclude some pairs
from being processed, e.g. because they can not collide.
Finally, the np pairs of smallest distance are kept for further
processing.

B. Representation

The collision model volume of each link has to be a
superset of the real volume of that link. Though, it should be
as tight as possible and its representation should use as few
points as possible for minimizing the computation time for
world frame transformations and distance calculations which
are dependent on the number of points in the representation.

To do so, we represent volumes in terms of spherically
extended convex hulls (swept sphere volumes):
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Thus, each volume is the Minkowski-sum of a convex
polyhedron, given by the convex hull of

{
pk
}n
k=1

1, and a
sphere of radius r.

This representation is very flexible. It allows modeling of
edged and round links using just a few points. Overall, the
28 links of Justin’s collision model contain only 78 points
and 28 radii. A single link’s representation uses only 2.8
points on average, which is very little, e.g., a tetrahedron,
which is the smallest polyhedron having a volume different
from zero, takes 4 points, and a cuboid takes 8. Nevertheless,
the collision model is tight, see Fig. 2. This is a substantial
extension to the presentation used in [13].

C. Distance and Potential Contact Point Computation

In each of Justin’s joint frames Cj the collision volume
Vj = V

(
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{
pj
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}nj

k=1

)
of the link connected to joint j is

defined. The transformations Tw←j(q) of every joint frame
Cj into world frame w w.r.t. the joint DoF q derive from the
robot’s kinematics. Using these transformations, the collision
model volumes Vj are transformed into the world frame by
transforming their generating points.

V w
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Now, for every pair of volumes V w
i and V w

j , their distance
di,j and corresponding proximal points, also denoted as the
contact point pair, are computed.

Distance and potential contact points of the volumes given
by the convex hulls of
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}ni
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and
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are determi-

ned using the algorithm by Gilbert, Johnson, and Keerthi [2].
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describes the quantity of n points {p1, ...,pn} defining the

convex hull.



Fig. 2. Self-collision avoidance model of DLR’s humanoid Justin consisting
of 28 convex hulls (left arm: 8, right arm: 8, mobile platform: 5, torso: 4,
head: 2, floor: 1).

This algorithm is widely used and has shown to be efficient
and reliable. It yields a distance d′i,j and corresponding points
x′wi and x′wj . The value d′i,j is the minimum distance of any
two points taken from the convex hulls conv

{
pik
}ni

k=1
and

conv
{
pjk
}nj

k=1
. The points x′wi and x′wj are placed on these

convex hulls such that d′i,j =
∥∥x′wj − x′wi ∥∥.

Subsequently, distance and potential contact points of
V w
i and V w

j are calculated. As V
(
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)
enlarges
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by r in any direction, the distance bet-
ween the volumes shrinks by ri due to the enlargement
of V
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)
and by rj due the enlargement of
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)
. Hence,

di,j = d′i,j − ri − rj . (3)

Due to the enlargements, the potential contact points move
on the connecting line of x′wi and x′wj by ri and rj towards
each other.

xw
i = x′wi + riv with v =

x′wj −x
′w
i∥∥x′wj −x′wi ∥∥ , (4)

xw
j = x′wj − rjv. (5)

In case of any di,j < 0, a collision is present and should be
handled appropriately.

While computing distances and contact points, the np pairs
having smallest distance are stored. So far, all contact points
are expressed in world coordinates but they are required
to be in the respective link’s joint frame for self-collision
avoidance. Actually, we need both contact points of a link
pair in both links’ joint frames. So finally, we compute them
for the np pairs

xi
i = T

−1
w←i(q) · xw

i , (6)

xi
j = T

−1
w←i(q) · xw

j , (7)

xj
i = T

−1
w←j(q) · xw

i , (8)

xj
j = T

−1
w←j(q) · xw

j . (9)

For the real-time self-collision avoidance application, Jus-
tin’s collision model is calculated once per control cycle

(1 ms) applying 302 pairs of links. With a computing time
of 0.3 to 0.4 ms on an Intel Core2Duo Processor T7400
(2.16 GHz), the distance computation algorithm reveals to be
very fast. It is faster than grid-based distance computation ap-
proaches like [16] and comparable to those using bounding-
volume hierarchies such as [17] and [18]. But it avoids the
usage of bounding-volume hierarchies which could induce
discontinuities in distance and contact points for link pairs
over time. That would complicate the design of a reactive
behavior.

IV. DESIGN OF THE CONTROL ALGORITHM
A. General Methodology

The basic idea of the control algorithm is to apply repul-
sion potential fields to approaching links in order to avoid
self-collisions. Another main aspect is to take energy out
of the system by dissipating kinetic energy via an efficient
damping design. In general, the torques which have to be
commanded to the robot joints can be expressed as

τ cmd = −
(
∂Erep,tot(q)

∂q

)T

−D(q)q̇ + g(q), (10)

wherein Erep,tot represents the total potential energy of all np
potential fields applied to the manipulator:

Erep,tot(q) =

np∑
i=1

Erep,i,j(q). (11)

Damping in (10) is injected via D(q)q̇ and gravity com-
pensation via g(q).

The repulsive effect can be described as a function of the
distance di,j between two proximate points xi and xj on
different links, see Fig. 3.
∂Erep,i,j(q)

∂q
=
∂Erep,i,j

∂di,j
· ∂di,j
∂xi,j

· ∂xi,j

∂q

=
∂Erep,i,j

∂di,j

[
∂di,j
∂xi

∂di,j
∂xj

]
∂xi

∂qi

∂xi

∂qj
∂xj

∂qi

∂xj

∂qj

 .
(12)

Herein, vectors qi and qj denote the joint values which
directly2 affect the location of xi and xj , respectively.
Notice that in general, the contact points may have the
same base of the kinematic chain so that qi and qj would
overlap. However, just the joints after the branch-off point
are relevant. It follows from the multiplication of ∂di,j/∂xi,j

and ∂xi,j/∂q that just the principal diagonal of ∂xi,j/∂q
affects the result. The residual multiplications result in zero
since the factors are always orthogonal. As an example, let
us consider ∂di,j/∂xj and ∂xj/∂qi in the context of Fig.
3. The direction of ∂di,j/∂xj is orthogonal to the surface of
the link on which xj is lying, whereas qi is only able to let
xj move on this surface (indirect influence).

Hence, one needs just to account for direct influence,
whereas indirect coupling vanishes.

2Indirect influence implies the point’s motion due to the motion of the
corresponding contact point partner.



Fig. 3. Relations between corresponding contact points xi
i and xi

j and
resulting repulsive forces Frep(di,j). (subscript: point number; superscript:
coordinate frame).

B. Repulsion Potential Field and Repulsive Force

For us, exclusively the distance di,j between two points is
important for determining forces which repel the links they
are placed on. Figure 3 depicts a generic case with xi

i and
xi
j representing the contact point pair. The value Frep (di,j)

describes the corresponding repulsive force w.r.t. the distance

di,j = ||xi
i − xi

j || = ||x
j
j − x

j
i ||. (13)

Subscripts denote the point number and superscripts the
coordinate frame in which the points are expressed.

The forces result from repulsion potential fields which are
located around the convex hulls discussed in the previous
section. We propose the following piecewise function which
describes a spherical field with respect to di,j .

Erep (di,j) =

{
− Fmax

3d2
start

(di,j − dstart)
3 ∀ di,j ≤ dstart

0 ∀ di,j > dstart
. (14)

The corresponding repulsive force is derived as follows:

Frep (di,j) =−
∂Erep (di,j)

∂di,j

=

{
Fmax
d2

start
(di,j − dstart)

2 ∀ di,j ≤ dstart

0 ∀ di,j > dstart
. (15)

Figure 4 depicts the corresponding curves. For distances
smaller than dstart, a growing repulsive force results up to
the maximum force Fmax, while the local stiffness also
increases. Obviously, two parameters, namely Fmax and dstart,
are needed to be set in order to define a unique potential and
force, respectively. One choice is to limit the maximum local
stiffness (∂Frep (di,j) /∂di,j)|di,j=0

to a yet feasible value
which is determined by the sample time of the controller.
Since we will have multiple contact point pairs and con-
figuration dependent relations between repulsive force and
corresponding joint torques, the choice of Fmax is in general
not easy. However, a rough estimation for the worst case,
i.e., one single contact point pair for a collision endangered
area/situation, can be made. Hence, a separate Fmax for each
link can be determined according to the maximum feasible
joint torques.

Fig. 4. Potential and repulsive force.

Fig. 5. Illustration of the projected motions of xi and xj into distance-
direction. Positive directions are defined from xi to xj .

C. Damping Design

The aim of this section is to derive a damping design that
can be specified by a damping ratio ζ, and that is a function
of the system’s inertia matrix and the stiffness.

We address the contact point pair (xi
i,x

i
j) again as depic-

ted in Fig. 3. In addition to the repulsive force, a separate
damping force shall be applied to each contact point with
respect to the relative motion between the two corresponding
contact points. That results in 2np damping forces or D(q)q̇
from (10), respectively.

We define ḋi and ḋj which denote the velocities of the
respective contact points projected into distance-direction as
depicted in Fig. 5. Positive directions for both ḋi and ḋj are
defined from xi to xj .

The following closed loop equation shall be satisfied:

Md,i,j(q)

[
d̈i
d̈j

]
+Dd,i,j

[
ḋi
ḋj

]
+

+Frep(di,j)

[
1
−1

]
+C(q, q̇) = 0. (16)

Coriolis and centrifugal effects are represented by C(q, q̇).
The mass matrix Md,i,j contains the projections of the
reflected inertias at the contact points into distance-direction:

Md,i,j(q) =

[
Md,i(q) 0

0 Md,j(q)

]
. (17)

The damping matrix Dd,i,j ∈ R2×2 in (16) is supposed to be
chosen such that a desired damping behavior, i.e., damping
ratios ζ1 and ζ2, can be realized. The following derivation
transforms the known mass matrix of the manipulator into
Md,i(q). The scalar Md,j(q) is attained analogously.

1) Mass Projection Md,i(q): We consider the general
relation between joint torques τ and angular accelerations
q̈ of the joints:

M(q)q̈ = τ , (18)

wherein M(q) is the corresponding mass matrix. Additio-
nally, the well-known transformation from joint space to



Cartesian space via the Jacobian matrix Jx,i(q) with respect
to an arbitrary point xi

i(q) ∈ R3×1 is required:

ẋi
i = Jx,i(q)q̇, (19)

τ = Jx,i(q)
TF i

x,i. (20)

The value ẋi
i denotes the Cartesian velocity and F i

x,i an
external force applied at xi

i. As our goal is to refer to the
distance-direction, we define the coordinates

ei =
xi
j − xi

i

di,j
(21)

with the corresponding Jacobian

Jd,i(ei) = e
T
i , (22)

wherein ei describes the normalized direction vector from xi
i

to xi
j . Considering (19), one can project ẋi

i into the distance-
direction via Jd,i(ei):

ḋi = Jd,i(ei)ẋ
i
i = Jd,i(ei)Jx,i(q)︸ ︷︷ ︸

Ji

q̇ (23)

with J i expressing the resultant Jacobian matrix which
relates the joint space to the distance-space. Deriving ḋj
is done analogously with ej being oriented in the same
direction as ei.

Based on (23), the acceleration constraint is obtained by
differentiation w.r.t. time:

d̈i = J i(q)q̈ + J̇ i(q)q̇. (24)

Combining (18), (20), (23) and (24) leads to

d̈i = J i(q)M(q)−1J i(q)
T︸ ︷︷ ︸

Md,i(q)−1

F d
x,i + J̇ i(q)q̇. (25)

Herein Md,i(q) expresses the scalar mass of point xi
i to be

accelerated in distance-direction. Due to the transformation,
F d
x,i now describes a scalar force acting at xi

i.
2) Damping Matrix Dd,i,j: Now having Md,i,j(q), we

can apply desired damping ratios ζ1, ζ2 to (16) via Dd,i,j .
However, since (16) is nonlinear, we linearize around the
working point d∗i,j = f(q∗), ḋ∗i = ḋ∗j = 0, under the
additional assumption of a quasi-static analysis. This leads
to

Md,i,j(q
∗)

[
δd̈i
δd̈j

]
+D∗d,i,j

[
δḋi
δḋj

]
+K∗d,i,j

[
δdi
δdj

]
= 0, (26)

wherein K∗d,i,j denotes the local stiffness matrix:

K∗d,i,j(d
∗
i,j) =

[
1
−1

]
∂Frep(di,j)

∂di,j

∣∣∣∣
di,j=d∗i,j

· ∂di,j
∂ [di dj ]

=
∂2Erep(di,j)

∂d2i,j

∣∣∣∣∣
di,j=d∗i,j

·
[

1 −1
−1 1

]
. (27)

The local damping behavior is represented by D∗d,i,j . Based
on (26) and (27), various methods from linear algebra theory
can be applied in order to realize the desired damping ratios.
We have chosen the Double Diagonalization approach, see

Fig. 6. Admittance Simulation.

[19] for more details. Finally, the required damping matrix
can be formally written as

D∗d,i,j(q
∗) = D

(
Md,i,j(q

∗),K∗d,i,j(d
∗
i,j), ζ1, ζ2

)
. (28)

It will be computed and applied at each time instant.

D. Collision Avoidance Torques

The procedure described up to now has to be applied to
each of the np contact point pairs. The collision avoidance
torques τ coll due to repulsion and damping effects w.r.t. the
actual values q, di,j , ḋi and ḋj equal

τ coll =

np∑
i=1

[
J i(q)
J j(q)

]T ([−Frep(di,j)
Frep(di,j)

]
−D∗d,i,j

[
ḋi
ḋj

])
(29)

with j defined such that it is the corresponding contact point
number to i.

E. Admittance Interface

The computed torque τ coll has to be split up:

τ coll =

(
τ tc

τ pc

)
. (30)

τ tc ∈ Rntc expresses the torques for all ntc torque controlled
joints, whereas τ pc ∈ Rnpc contains the torques for the npc
position controlled DoF. For each position controlled joint,
the respective torque has to be transformed into a desired
joint motion, comprised in qd. We suggest an admittance
interface as follows:

Mpc(q)(q̈d − q̈r) +Dpc(q̇d − q̇r) +Kpc(qd − qr) = τ pc.
(31)

Herein Mpc(q) comprises the npc inertias with respect to
the corresponding joints. Dpc and Kpc represent arbitrary
positive definite matrices for damping and spring behavior
of the admittance loop. The vector qr ∈ Rnpc denotes
the reference joint values to accomplish the nominal task,
whereas qd ∈ Rnpc contains the desired commanded values
under consideration of the additional collision avoidance
behavior. Figure 6 depicts the general methodology. In the
case of Justin, each joint is torque controlled except for
the mobile platform and the two neck joints which are
responsible for pan and tilt motions of the head.

F. Controller Output

Beside the joint motions from the admittance loop which
have to be commanded by the position controllers, all ntc
torques have to be applied to the torque controlled robot
joints to satisfy (10):

τ cmd = τ tc + g(q). (32)



G. Energy-based Emergency Stop Algorithm

During normal operation, collisions are improbable if the
repulsion fields are active and appropriately parameterized.
However, an emergency stop which leads to a mechanical
braking of each motor is yet an additional safety feature,
though, an emergency stop shall only occur if it is indis-
pensable and should not constrict the usual working range.

One possible approach is to engage the brakes if a
minimum emergency distance is reached. In this context,
let us consider two different operating states. Firstly, we
address the case of a slow, highly precise manipulation task
like filling a glas with water. During the whole operation,
the manipulator will execute quasi-static motions. On the
contrary, a task such as ball catching requires trajectories
which account for dynamic effects. Although a high accuracy
is still essential, rapid movements of the manipulator are
top priority now. Certainly, more kinetic energy will be
stored in the system during the task. As a consequence,
an abrupt mechanical braking of all actuators would cause
overshootings due to compliances located in the structure and
the drive system. In the first operating state, the emergency
distance may be set comparatively low, primarily accounting
for the accuracy of the collision model. In the case of the
ball catching task, it is both necessary to determine if the
repulsion fields are powerful enough to avoid a collision
and to account for overshootings if the brakes get activated
otherwise. Apparently, the emergency distance should be
dependent on the kinetic energy of the approaching links
and the expected overshoots due to braking.

1) Limit Case for Avoidable Self-Collisions via the Repul-
sion Potential Fields: We address the kinetic energy which
is stored in a contact point pair or in the corresponding links,
respectively. However, we do not take into account the total
inertias and velocities of the two contact points but only
the projected masses imposed in (16) and the velocities in
distance-direction.

Epair,i,j =
1

2

(
g(ḋi)Md,i(q)ḋ

2
i + g(−ḋj)Md,j(q)ḋ

2
j

)
(33)

with

g(z) =

{
1 ∀ z ≥ 0

0 ∀ z < 0
, (34)

wherein g(z) is used to determine the direction of motion
of the respective contact point and to neglect the energy if
the point goes away from the corresponding contact partner.
This is due to the prevention of negative energy values.
Epair,i,j describes the instantaneous kinetic energy which

is stored in the approaching motion of the contact points. In
other words, Epair,i,j is the energy which has to be taken out
of the system in order to avoid a collision of the considered
links.

On the other side, the potential energy

Estored(di,j) = Erep(0)− Erep(di,j) (35)

is stored within the potential field and leads to a consequenti-
al reduction of Epair,i,j . One can say that the repulsion poten-
tial is too weak if Estored < Epair,i,j . Therefore, a variable and

permanently adjusted kinetic energy-based distance, denoted
dke,i,j , can be obtained from the limit case:

dke,i,j =

{
E−1stored (Epair,i,j) ∀ Epair,i,j ≤ Erep(0)

dstart ∀ Epair,i,j > Erep(0)
. (36)

The inverse function is feasible since the potential described
by Erep(di,j) is strictly monotonically decreasing.

2) Decelerating the Links before Braking: However, just
engaging the brakes if di,j < dke,i,j could result in the
following undesirable event: Once a potential field is entered
while much kinetic energy is stored within the approaching
links, the discussed criterion is reached promptly and leads
to an abrupt stop although the actual distance dstart is compa-
ratively large. Correspondingly, the kinetic energy has to be
absorbed by the brakes and the structure. A more preferable
behavior would be an extensive, active deceleration of the
links and an emergency stop in the last safe time instant
such that overshooting due to elasticities does not lead to a
self-collision. In this context, a second distance dos,i,j(q, q̇)
can be determined which describes the maximum overshoot
of abruptly stopped links w.r.t. the configuration and joint
velocities. To attain a suitable value, measurements can be
performed [20].

Between dke,i,j and the last safe distance dos,i,j , the
maximum force Fmax is applied, taking out of the system
as much kinetic energy as possible.

3) Geometric Minimum Distance: We impose a third
distance dgeom which takes into account the accuracy of the
distance computation algorithm, the sample time and model
uncertainties. This constant specifies the minimum distance
between two contact points which may not be gone below
in all cases.

4) Emergency Behavior: Finally, an emergency logic can
be set up, incorporating the three discussed distances:

Action =


Engage brakes if di,j ≤ dgeom + dos,i,j

Apply Fmax if dgeom + dos,i,j < di,j ≤ dke,i,j

No operation otherwise

.

(37)

V. RESULTS

In the following, experiments for the validation of the
proposed control structure will be presented. All along, the
manipulator is controlled via an impedance controller [19]
in gravity compensation mode3. The user is required to feed
kinetic energy into the system manually. A maximum of
np = 25 multiple contact point pairs is applied during
the experiment which complies with the design such that
each penetrated potential field is taken into account and no
discontinuities arise in the commanded torques. Figure 7
(left) depicts the starting position. Starting distance dstart is
set to 0.15 m and maximum repulsive force Fmax = 25N.
Damping ratios ζ1 and ζ2 are equal and set to ζ which is
varied in the following.

3Except for the left arm (7 DoF), all other joints are locked in the present
experiment.



Fig. 7. Starting position (left) and snapshot during the experiment (right).

The user throws the left forearm onto the right arm as
shown in Fig. 7 (right) in the case of undamped (ζ = 0),
underdamped (ζ = 0.7), critically damped (ζ = 1.0) and
overdamped (ζ = 1.3) design. In this experiment several
contact pairs generate repulsion. Figure 8 depicts the two
most interesting ones which are placed on the left hand and
right hand links (left column plots) and on the left hand and
right wrist links (right column plots).

As the user brought in about the same amount of kinetic
energy in all of the four scenarios4, the penetration of the
potential fields is significantly smaller while damping is
active. Evidently, the returning velocities of the links are
affected by ζ as it can be seen in the upper plots in Fig.
8. Thus, without dissipation by damping forces, no energy
is taken out of the system. It is also noticeable, that the
highest damping (ζ = 1.3) does not lead to the smallest
penetration in the second contact point pair (left hand and
right wrist). The reason is that the interaction between the
multiple contact point pairs results in different behavior of
the left arm.

Due to the potential design, the repulsive forces are con-
tinuously differentiable (C1 continuity, see Fig. 4). Since the
damping directly depends on the local stiffness, the damping
forces are continous but not continuously differentiable as it
can be seen in the bottom plots in Fig. 8.

Beside the depicted contact point pairs in Fig. 8, several
repulsions between potentially colliding links emerge du-
ring the experiment, performing analogously with respect
to the applied damping ratio. In the considered case, a
total number of 14 contact point pairs is relevant for self-
collision avoidance. In the most critical case (undamped),
the most crucial contact point pair (left hand and right hand)
consumes 25.2 % of the total potential energy which is stored
in the corresponding repulsion field until the distance reaches
its minimum at time 0.28 s and increases again. Hence, a
sufficient buffer is left and switching to Fmax or engaging
the brakes, as discussed in (37), is not necessary.

The video which is attached to this paper shows se-
veral exemplary scenes from a presentation of the control

4The energies which are absorbed by the most crucial potential field in
all four cases, i.e., between left hand and right hand, have a maximum
deviation of <12%.

Fig. 8. Repulsion between left hand and right hand/wrist. (no damping
ζ = 0: blue, solid; underdamped ζ = 0.7: green, dashed; critically damped
ζ = 1.0: red, dotted; overdamped ζ = 1.3: black, chain dotted).

algorithm to the public at the Automatica Fair 2010 in
Munich. Moreover, the reactive behavior in the case of
different damping ratios (undamped, underdamped, critically
damped) is visualized as well as the admittance interface
concerning the position controlled head joints. A short scene
also demonstrates the manipulator’s behavior if the brakes
are engaged during motion.

VI. CONCLUSION AND FUTURE WORKS

In robotics, a high level of safety and reliability is only
ensured if self-collision can be completely excluded. In this
paper, we discussed and analyzed this issue and proposed
a controller to remedy this problem. Based on the well-
known technique of repulsion potential fields placed around
the robot links, the segments are repelled from each other
to avoid self-collisions. An effective damping design was
introduced which incorporates the configuration dependent
inertia of the manipulator. After deriving the necessary joint
torques, we included an admittance interface for position
controlled subsystems of the robot. As the fundamental issue
is to guarantee a maximum level of protection, we proposed
an emergency stop algorithm that incorporates the kinetic
energy which is stored within approaching links and the
assumed overshoot due to elasticity while braking. This
problem becomes even more relevant for more compliant
systems with larger dynamics such as the recently developed
DLR hand arm system. The emergency logic is restricted to
cases in which self-collisions are unavoidable. Thereby, the
working range of the manipulator is not limited unnecessa-
rily. Experimental results on DLR’s humanoid manipulator



Justin supported our approach.
Future work will focus on the enlargement of the algorithm

to the point of collision avoidance with obstacles/humans in
the working range of the robot. An efficient real-time iden-
tification and detection of potential obstacles is essential for
that purpose. Further improvements can also be achieved in
terms of the potential field design. A configuration dependent
potential field design would take advantage of the use of
the full feasible torque range and minimize the necessity of
emergency stops.
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