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Coherent shift estimation for stacks of SAR images
Francesco De Zan

Abstract—Speckle tracking is used with SAR images to es-
timate displacements, in ways that support or integrate inter-
ferometric measurements. This paper derives Fisher informa-
tion expressions for the displacement estimation using coherent
speckle tracking, for the multi-image scenario with an arbitrary
coherence structure. Previous results were limited to image
pairs. An estimator that approaches the theoretical bound is
also proposed, establishing a link with phase estimation for
multi-image SAR interferometry. The derivation of the Fisher
information is given in the general case when the coherence is a
function of the frequency.

Index Terms—Synthetic Aperture Radar, SAR interferometry,
delay estimation, maximum likelihood estimation, covariance
matrices

I. INTRODUCTION

The most popular technique to measure displacements from

SAR images is undoubtedly interferometry. This technique can

yield accuracies in the sub-wavelength range, at centrimetric

or millimetric level. However there is a second possibility to

measure displacements with SAR, which is by maximizing the

correlation of two images. There are several incarnations of

this technique, depending on the use of complex or amplitude

images, and whether the presence of features in the backscatter

image is required or not. In this paper I deal with the specific

case of coherent speckle tracking, which needs interferometric

coherence between the acquisitions, relies on complex signals,

but requires no features.

With coherent (and incoherent) speckle tracking the per-

formances are in the order of the resolution element for a

few independent samples, that is to say typically much larger

than the wavelength and thus much worse than interferometric

figures. However we could be interested in this technique

for a number of reasons. Coherent tracking is suited for

homogeneous areas with no features to track. It will work also

in the along-track direction (azimuth), where interferometric

tools cannot be applied, because it is a direction orthogonal

to range. Moreover, the immunity to phase ambiguity makes

speckle tracking useful also in the range direction, where it

can support the phase unwrapping problem that inevitably

rises in SAR interferometry. This use is detailed in [1] and

[2]. Correlation techniques become more and more interesting

for geophysical applications as high-resolution SAR systems

(in range and/or in azimuth) become progressively available.

Examples of coherent speckle tracking can be found in [3]

and [4].

The problem of deriving the performance for coherent

speckle tracking for SAR images has been already discussed

in [5] and [2], together with an efficient estimation scheme.
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However in those works only the case of two images was

investigated, i.e. the estimation of the displacement between

two acquisitions. In this paper I shall extend those results

to the case of stacks of images, where –generally speaking–

the optimal estimation of the shifts requires a dedicated,

joint approach. I shall also address the problem of spectral

dependency of the coherence.

The original proposal in [1] involved the use of two fre-

quency sub-bands for an efficient shift estimation. Later, many

authors have suggested the use of multi-frequency techniques.

For example the reader is referred to [6], [7] and [8]. A multi-

frequency scheme is also found in [9] and [10]. A discussion

of the multi-frequency scheme is out of the scope of this

letter; the main advantages are related to the reduction of phase

wrapping issues along the frequency axis and the possibility

to apply spectral weighting in case of non-uniform signal-to-

noise ratio.

Ultrasonic imaging applications face similar problems of

delay estimation with speckle signals. For example the first

results for the two-sensor case can be found in [11]. Develop-

ments in the multi-sensor case are described in [12]. However

this multi-sensor analysis cannot be identified with the multi-

image SAR case and different tools have to be developed.

The first goal of this letter is to present the performance

bound relative to the estimation of the shifts in a stack

of partially coherent speckle signals. The second goal is to

describe an estimation scheme to retrieve those shifts with a

performance close to the theoretical bound. Instead of dis-

cussing Cramér-Rao bounds I will use an equivalent quantity,

which is the Fisher Information.

A. Matricial Notation

Through this letter bold lower-case symbols are reserved

for vectors, upper-case for matrices. Here is some additional

notation:

MT the transpose of a matrix/vector

MH the transpose-conjugate of a matrix/vector
∂

∂y
x the Jacobian matrix of x with respect to y

⊙ the Hadamard product (element by element)

δn,k the Kronecker delta

IN the N × N identity matrix

1N the N element vector [1, 1, . . . , 1]T

0N the N element vector [0, 0, . . . , 0]T

A(n) a null matrix, except that element (n, n) is 1

E(n) a null matrix, except that column n is 1N

[M]n,k the element n, k of matrix M

[M]n the nth column of matrix M

Tr[M] the trace of matrix M
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II. PROBLEM FORMULATION

Let us indicate with yn(x) the nth complex speckle signal

out of a stack of N , with n = 1, . . . , N . Each signal will be a

delayed version of a corresponding unknown undelayed signal

ξn(x). To fix the ideas one could write

yn(x) = ξn(x − dn), (1)

where the dn’s are the various delays or shifts, one per

signal or acquisition. These unknown dn’s are the goal of the

estimation procedure. Note that the ξn(x)’s are not identical,

albeit aligned to one another. This is because of signal decor-

relation, which includes also the effects of additive noise. The

coherence properties of the various signals are expressed by

the N × N coherence matrix Γ whose elements are:

[Γ]n,k = E[ξn(x) ξ∗k(x)] (2)

whereas the spectral properties of each signal are given by the

autocorrelation function

E[yn(x) y∗

n(x′)] =

E[ξn(x) ξ∗n(x′)] = sinc(x − x′). (3)

Using the normalized cardinal sine is equivalent to having

unitary bandwidth, which simplifies the notation. For the time

being let us suppose that there is no dependence of Γ on the

frequency: this hypothesis will be removed later and a more

general result will be presented.

In order to operate with discrete signals I introduce the

N vectors yn which collect the available samples of yn(x),
sampled according to Nyquist’s limit. For example x =
1, 2, . . . , L, assuming that L independent samples are avail-

able. Explicitely:

yn = [yn(1), yn(2), . . . , yn(L)]. (4)

Let us also assume that the vectors yn are circular-Gaussian

distributed, and that the coherence matrix is a complete

statistical description (scale factors are obviously irrelevant, so

one can safely confuse coherence and covariance matrices).

III. FISHER INFORMATION MATRIX

The first result of this paper is that the Fisher infor-

mation matrix of the vector d = [d1, . . . , dN ] given the

{y1,y2, . . . ,yN} and for large L is

FIMd = (Γ ⊙ Γ−1 − IN ) 2L
π2

3
. (5)

Since the signals were scaled to unitary bandwidth in (3), the

resulting Fisher information is dimensionless and normalized

to the resolution element. The proof is given in the Appendix.

Typically by inverting the Fisher information matrix it

is possible to derive the Cramér-Rao covariance bounds of

the estimation of the d [13]. However a precisation is here

necessary: the matrix FIMd is rank deficient and it is thus not

invertible. Indeed, using basic properties of the determinant

and the inverse matrix, one can show that the vector 1N is

always an eigenvector for (Γ⊙Γ−1 − IN ) with an eigenvalue

of 0. This means that there is no information on any additional

delay affecting equally the dn. This fact is easily understood

considering that the observation of the yn will carry informa-

tion concerning the relative shifts between the signals, not the

absolute shifts which will stay unknown.

The FIMd can still be used to find the Cramér-Rao bound on

functions of the d, for example the shifts relative to one signal

taken as a reference or the average velocity, assuming uniform

motion. In general, if one can write d as a differentiable

function of some vector parameter α, the corresponding Fisher

information can be retrieved through the relation [14]:

FIMα =
∂

∂α
dT FIMd

∂

∂α
d. (6)

A. Examples of derived Fisher information

With two signals (N = 2), for example, modelling the shifts

as d = [x0, x0 + ∆x]T and

Γ =

[

1 γ
γ 1

]

, γ ∈ (0, 1) (7)

it is possible using (5) and (6) to obtain the information for

∆x, i.e. the relative delay, as

FIM∆x =
γ2

1 − γ2
2L

π2

3
, (8)

which is a confirmation of the result derived by other means

in [5]. As expected, the Fisher information on x0 will instead

be zero.

As another example, when the shift history is expected to

follow the law of a constant velocity v, one could write

d = vt + x0, and thus:
∂

∂v
d = t, (9)

where t is the vector collecting the dates of the various acqui-

sitions. Finally, using (5), (6) and (9) the scalar information

on v results

FIMv = tT (Γ ⊙ Γ−1 − IN ) t 2L
π2

3
. (10)

An alternative formulation of the same result was published

in [15].

In the special case in which the signals share the same

speckle component corrupted only by independent additive

noise with a given power, it is possible to derive a con-

cise expression for FIMv. For a regular sampling (i.e. t =
[1, 2, . . . , N ]) the following holds:

FIMv =
N2(N2 − 1) SNR

N + SNR−1

π2

18
L ≃ SNR N3 π2

18
L. (11)

In this scenario the signal-to-noise ratio SNR is enough to

characterize the whole coherence matrix.

B. Similarity to phase estimation for a stack

The expression for the FIMd in (5) is very similar to the

Fisher information for interferometric phase estimation in a

stack of SAR images presented in [16]. In that work, the Fisher

information of a vector φ of N phases with L independent

samples and stack coherence Γ was found to be:

FIMφ = (Γ ⊙ Γ−1 − IN ) 2L (12)



3

considering only decorrelation issues (i.e. ignoring atmo-

spheric phase disturbances).

This expression is reported here not only for its similarity

to the case under study, but also because I am going to suggest

a method to estimate the shifts that relies on the estimation of

a set of interferometric phases.

IV. ESTIMATION OF SHIFTS IN A STACK

This section describes how to implement an estimator for

the shifts d in a stack of images and which performance to

expect.

Similar to [1], [2], I propose a “Delta-k” or split-band ap-

proach. The rationale of split-band exploits the correspondence

between delays in the space/time domain to phase slopes in the

frequency domain. It takes the difference of the interferometric

phases at two frequency points. In fact it is a double difference

method (two images and two frequencies) and it measures a

relative delay.

To extend this approach to the multi-image case, I suggest

to filter the lower and the upper third of the bandwidth of

each signal yn. So doing, one would have a set of y′

n and a

set of y′′

n vectors, each counting only 1/3 of the original L
independent samples.

From the lower-bandwidth set {y′

1,y
′

2, . . . ,y
′

N} one would

then estimate N phases (actually N − 1, since one must be

taken as a reference), using the algorithm in [16], there called

“Phase Linking”. It is the maximum likelihood estimator of

the phases in a stack, from all the possible N2 interferograms

that can be formed with the N acquisitions. It requires the

knowledge of the coherence matrix Γ, which will be prac-

tically estimated from the data themselves or derived from a

model. Let us collect the estimated phases in a N×1 vector φ′.

The same procedure will be applied to the higher-bandwidth

set {y′′

1 ,y′′

2 , . . . ,y′′

N} to get φ′′.

Finally one would take the differences of the two vectors,

∆φ = φ′′ − φ′, and scale it by 3/(4π), which comes from

inverting the basic phase-delay relation

∆φ = 2π∆fd (13)

for ∆f = 2/3, which is the frequency separation between

the two sub-bands. Of course phase ambiguities have to be

considered in case the delay is larger than 3/4 of the resolution

cell.

The described procedure is the natural extension of the

split-band principle to a stack. The only difference is that

for the two-image case the phase estimation step is trivially

averaging the interferogram complex samples, whereas in the

multi-image case it requires a more complex optimization (for

example the mentioned Phase Linking).

A. Performance of the proposed estimator

The performance of the proposed estimator will be derived

from the bound for phase estimates (12), with proper scaling

factors. The first scaling factor is due to the reduced number

of independent samples, and it amounts to 1/3. The second is

due to the phase-delay relation (13) and is (4π/3)2. The last

one is a factor of 1/2 due to the difference φ′′ − φ′.

FIM′

d = (Γ ⊙ Γ−1 − IN ) 2L (1/3) (4π/3)2 (1/2)

= (Γ ⊙ Γ−1 − IN ) 2L
π2

3
(8/9)

= FIMd (8/9) (14)

The loss factor of the proposed procedure is thus 8/9, which

corresponds to 0.5 dB and is the same figure for the split-band

algorithm on a single pair of images [5]. Since the Phase-

Linking step was already shown in [16] to have a performance

asymptotically close to the bound, it can be concluded that the

whole procedure will have the same property with respect to

its own bound (5), with an additional penalty of 0.5 dB.

V. FREQUENCY DEPENDENCE OF COHERENCE

The assumption that there is no variation of the coherence

across the spectrum may not hold in some cases, for example

for the azimuth direction because of the antenna pattern. In

this case an additional degradation is expected, since the signal

quality is worse where it is most useful, i.e. at the edges of the

spectrum. In this scenario the optimum estimator will have to

weigh each frequency component according to the position in

the spectrum and the noise level. Introducing a dependence of

the coherence matrix on the angular frequency (Γ = Γ(ω)), it

is possible to obtain an expression for the Fisher information:

FIMd =

∫ π

−π

ω2 (Γ(ω) ⊙ Γ(ω)−1 − IN )L
dω

π
. (15)

The reader is referred to the Appendix for a proof.

In the simple case of two images the correlator will take

the following form in the frequency domain [17]:

∆̂x = arg max
∆x

∣

∣

∣

∣

∫ π

−π

ỹ1(ω) ỹ∗

2(ω)W (ω) ejω∆x dω

∣

∣

∣

∣

. (16)

This is the expression of a weighted periodogram. For the

Maximum Likelihood estimator the weights are [17]

W (ω) =
[Γ(ω)]1,2

1 − [Γ(ω)]21,2

. (17)

The signals ỹn(ω) are frequency domain equivalent of the

yn(x)’s and are assumed to be normalized:

E[|ỹn(ω)|2] = 1. (18)

VI. DISCUSSION OF ADDITIONAL ISSUES

So far the bound and the estimator have been discussed for

1-D signals, but with SAR images one deals typically with

rectangular windows of data. The formulas still hold counting

the total number of samples, multiplying the range and the

azimuth extensions of the estimation windows, provided that

they extend enough in the direction in which we want to

estimate the shifts. When dealing with 2-D shifts the given

formulas apply to each direction independently, under the

hypothesis that the displacement is a rigid translation.

Sometimes, even if coherent SAR images are available, it

is advisable to use amplitudes instead of complex signals. For

example when the interferometric phase cannot be properly
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compensated before the shift estimation. However we do not

have analytical expressions for the case of incoherent speckle

tracking, although we know there is a performance degradation

compared to the coherent case of 3dB or more in the single

image-pair case [2].

VII. APPENDIX

In this appendix I derive the expressions for the Fisher

information given in (5) and (15). For each frequency we have

N observations that we collect in a single vector

ỹ(ω) = [ỹ1(ω), ỹ2(ω), . . . , ỹN (ω)]. (19)

The corresponding covariance matrix is C(ω) is:

[C(ω)]n,k = [Γ(ω)]n,ke−jω(dn−dk). (20)

Thanks to the hypothesis of zero-mean circular Gaussian

distribution of the vector ỹ(ω), it is possible to write the Fisher

information in terms of the covariance matrix C(ω) and its

derivatives with respect to the unknown parameters, i.e. the

dn’s [13], [18], [19]:

[FIMd(ω)]n,k

= tr

[

C(ω)−1 ∂

∂dn

C(ω) C(ω)−1 ∂

∂dk

C(ω)

]

. (21)

The covariances and the derivatives will be evaluated for

d = 0N . The total Fisher information will be obtained

integrating across the spectrum and multiplying by the number

of independent samples (in the time or space domain) [18],

[19]:

FIMd = L

∫ π

−π

FIMd(ω)
dω

2π
. (22)

The derivative of the covariance matrix with respect to the

delays is a fundamental ingredient and results:

∂

∂dn

[C(ω)]n,k = −jω [Γ(ω)]n,k e−jω(dn−dk), (23)

or the same with the opposite sign if the derivative is taken

with respect to dk, or zero if it is done with respect to another

delay or if n = k.

In order to express the derivative in a compact way I use

the additional N × N matrix E(n), defined above:

∂

∂dn

C(ω) = −jω
(

(E(n) − ET
(n)) ⊙ Γ(ω)

)

. (24)

Then I proceed towards building the (21). To simplify the

notation I temporarily drop the dependence of C and Γ on ω.

The first two matrices at d = 0N are:

C−1 ∂

∂dn

C = −jω Γ−1
[(

(E(n) − ET
(n)) ⊙ Γ

)]

(25)

One term in (25) is easy to compute:
[

Γ−1
(

E(n) ⊙ Γ
)]

= E(n) ⊙ ET
(n) = A(n). (26)

To second term in (25) results
[

Γ−1
(

ET
(n) ⊙ Γ

)]

= [Γ−1]n [Γ]Tn . (27)

Putting all the pieces of (21) together:

C−1 ∂

∂dn

C C−1 ∂

∂dk

C

= −ω2
(

A(n) − [Γ−1]n [Γ]Tn
) (

A(k) − [Γ−1]k [Γ]Tk
)

= −ω2
(

A(n)A(k) − A(n)[Γ
−1]k [Γ]Tk

−A(k)[Γ
−1]n [Γ]Tn + [Γ−1]n [Γ]Tn [Γ−1]k [Γ]Tk

)

(28)

and finally taking the trace:

[FIMd(ω)]n,k = −ω2
(

δn,k − [Γ−1]n,k[Γ]n,k

− [Γ−1]n,k[Γ]n,k + δn,k

)

. (29)

This expression can be conveniently rewritten in matrix form:

FIMd(ω) = 2ω2 (Γ(ω) ⊙ Γ−1(ω) − IN ). (30)

Expression (15) follows readily from (22) and (30). Solving

the integral (15) for constant Γ gives (5).

It is now easy to generalize (15) to a band-pass case that

encompasses both interferometry and radargrammetry. The

Fisher information for the shifts in the case of a signal with

carrier ω0 = 2πf0/B (B being the bandwidth, f0 the carrier

frequency) results:

FIMd =

∫ ω0+π

ω0−π

ω2 (Γ(ω) ⊙ Γ−1(ω) − IN )L
dω

π
. (31)

As in (15) and (5), the information is normalized to the

resolution element. Under the hypothesis that there is no

frequency dependence of the coherence:

FIMd = (Γ ⊙ Γ−1 − IN ) 2L

(

ω2
0 +

π2

3

)

. (32)

This expression becomes (5) for ω0 = 0 and is equivalent

to (12) for ω2
0 ≫ π2/3, when the carrier delay brings virtually

all the information. In this way we see that interferometry and

(coherent) radargrammetry are just two extreme ends of the

same continuum.
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