Ursachen der Variabilität der einfallenden Strahlung unter Wasser

P. Gege, DLR, Institut für Methodik der Fernerkundung (IMF)
N. Pinnel, DLR, Deutsches Fernerkundungsdatenzentrum (DFD)
Motivation

Campaigns
Small boat in shallow areas of 3 German lakes
421 data sets, 4375 spectra at 0–5 m depth

Observation
Reflectance spectra (in shallow water) can vary strongly in magnitude and spectral shape – why?

Due to variability of downwelling irradiance
Ursachen der Variabilität von E_d im Wasser

- Wave focusing induces large fluctuations
- Statistics is well known
- Wavelength dependency?
- Other sources of variability?

Very complete book on the topic:
Ursachen der Variabilität von E_d im Wasser

Intensity changes of E_d during a measurement

$N = 4375$
$N' = 421$
Wavelength dependency of E_d variability (Type 1)

- Smooth spectral shape across VIS
 - no spectral fine structures from E_d
 - power law
- Relevance in our data set
 - γ_{VIS} average = 5.4 %
 - little depth dependency

\[
\gamma_{VIS,i} = \frac{E_{d,i}(400)}{E_d(400)} - \frac{E_{d,i}(700)}{E_d(700)}
\]
Wavelength dependency of E_d variability (Type 2)

- Characteristic feature in NIR
 - dominated by water absorption
- Relevance in our data set
 - 0–1 m: γ_{NIR} average = 5.7 %
 - > 1 m: γ_{NIR} average = 3.7 %

$$\gamma_{\text{NIR},i} = \frac{E_{d,i}(755)}{E_d(755)} - \frac{E_{d,i}(700)}{E_d(700)}$$
Ursachen der Variabilität von E_d im Wasser

Irradiance model

Irradiance is sum of a direct and a diffuse component

$$E_d(\lambda, z) = f_{dd} E_{dd}(\lambda, z) + f_{ds} E_{ds}(\lambda, z)$$

E_d: downwelling irradiance

E_{dd}, E_{ds}: direct / diffuse component of E_d

f_{dd}, f_{ds}: actual fraction of E_{dd}, E_{ds}

Wave focusing changes f_{dd} and f_{ds}

Depth dependency of each component according to Lambert-Beer law

$$E_{dd}(\lambda, z) = E_{dd}(\lambda, 0-) \exp\{-[a(\lambda)+b_b(\lambda)]z/cos\theta_{sun,w}\}$$

$$E_{ds}(\lambda, z) = E_{ds}(\lambda, 0-) \exp\{-[a(\lambda)+b_b(\lambda)]z l_{ds}\}$$

l_{ds}: average path length of diffuse radiation.

z: water column thickness above sensor.

Waves alter z.
Ursachen der Variabilität von E_d im Wasser

Illustration of irradiance model

$E_d(\lambda, z) = f_{dd} E_{dd}(\lambda, z) + f_{ds} E_{ds}(\lambda, z)$

Depth dependency: $z = 0..5$ m
Ursachen der Variabilität von E_d im Wasser

Inversion of irradiance measurements

WASI software

ftp.dfd.dlr.de/pub/wasi
Sources of irradiance variance (from model)

1. Changes of direct radiation due to waves
2. Changes of direct radiation due to sensor tilt
3. Changes of diffuse radiation due to waves
4. Changes of sensor depth due to waves and swaying boat
Importance of sources

1: Changes of direct radiation due to waves
2: Changes of sensor depth due to waves and swaying boat
3: Changes of diffuse radiation due to waves
Summary and conclusion

3 relevant sources of irradiance variability (intensity and spectral shape)
- Rank 1: Changes of direct radiation due to waves. \(\text{var} E_d \sim \left[\frac{r_d}{(r_d+1)} \right]^2 \). Typical: \(\pm 5\% \) across VIS.
- Rank 2: Changes of sensor depth due to waves and swaying boat. \(\text{var} E_d = f(r_d, a, b_d, \theta_{\text{sun}}, l_{\text{ds}}) \). Typical: \(\pm 6\% \) across NIR.
- Rank 3: Changes of diffuse radiation due to waves. \(\text{var} E_d \sim \left[\frac{1}{(r_d+1)} \right]^2 \)

\(f_{dd} = 0.86, f_{ds} = 0.94 \)

Assignment of „best“ in-water measurement requires above-water measurement in order to determine the actual values \(f_{dd}, f_{ds} \).