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ABSTRACT: The project SAMPLE evaluated methods for
measuring particle properties in the exhaust of aircraft engines
with respect to the development of standardized operation
procedures for particulate matter measurement in aviation
industry. Filter-based off-line mass methods included gravime-
try and chemical analysis of carbonaceous species by combus-
tion methods. Online mass methods were based on light
absorption measurement or used size distribution measure-
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ments obtained from an electrical mobility analyzer approach. Number concentrations were determined using different
condensation particle counters (CPC). Total mass from filter-based methods balanced gravimetric mass within 8% error.
Carbonaceous matter accounted for 70% of gravimetric mass while the remaining 30% were attributed to hydrated sulfate and
noncarbonaceous organic matter fractions. Online methods were closely correlated over the entire range of emission levels studied
in the tests. Elemental carbon from combustion methods and black carbon from optical methods deviated by maximum 5% with
respect to mass for low to medium emission levels, whereas for high emission levels a systematic deviation between online methods
and filter based methods was found which is attributed to sampling effects. CPC based instruments proved highly reproducible for
number concentration measurements with a maximum interinstrument standard deviation of 7.5%.

1. INTRODUCTION

Concerns on potential impacts of aviation particulate matter
(PM) emissions on Earth’s climate and human health' has
stimulated the development of new measurement methodologies
for PM emission certifications for aircraft engines.” PM emissions
consist of volatile particles (do not exist in the condensed phase
at T = 350 °C) which form in the expanding and cooling plume
downstream the engine, and of nonvolatile combustion particles
(exist as particulates at T = 350 °C) which form inside the
engine.’ One key property governing particles’ impact on
climate via contrail formation and aerosol cirrus interaction is
the number of nonvolatile particles* while studies focusing on the
impact of aircraft emissions at ground on air quality show the
importance of sub-20 nm sized volatile particles.>”

The engine emissions databank of the International Civil
Aviation Organization ICAO (www.caa.co.uk/) lists emission
factors for gaseous species in units of gram per kg of burnt fuel.
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PM emissions, however, are reported as smoke number (SN),
which relates the darkening of particle-loaded filters to the mass
of deposited PM.® SN does not measure mass, nor is it intended
to include volatile particulate matter. New methodologies for
replacing the SN method focus on engine exit plane measure-
ments of nonvolatile particles only because combustion-related
particles are closely linked to engine properties. Volatile PM is
excluded in the current stage because they form downstream the
engine exit, and their formation depends crucially on fuel proper-
ties and ambient conditions.

An overview of techniques available for measuring nonvolatile
PM emissions from aircraft engines was prepared by the SAE
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E-31 Aircraft Exhaust Emissions Measurement Committee.”’
Building on this method review this committee prepares aero-
space recommended practice (ARP) documents for future
standardized measurement methods for nonvolatile PM. The
key purpose of the study SAMPLE (sampling and measurement
of aircraft particulate emissions) which is funded by the Eur-
opean Aviation Safety Agency (EASA) is to evaluate potential
methods for gas turbine emission measurements and to provide
information on instrument applicability and method character-
istics under real-world conditions corresponding to engine
certification measurements."’

2. EXPERIMENTAL APPROACH

2.1. Rig Description. Particle emissions were generated by a
gas turbine engine simulator composed of a combustor and a unit
to simulate a 3-shaft turbine section (so-called hot end simulator;
HES). This particular assembly was developed and successfully
applied during the EU project PARTEMIS."" The representa-
tiveness of HES PM emissions for aircraft gas turbine emissions
was evaluated.'> Here, the HES served as a robust source for
simulated gas turbine exhaust PM. Aviation grade kerosene Jet
A-1 with fuel sulfur content (FSC) of 0.030 wt-% (weight-%)
was used.

The exhaust gas flow was transported through temperature-
controlled pipes which were kept above 160 °C on gas analysis
lines and controlled at 70 °C on heated sections of PM sampling
lines. The exhaust gas was pretreated in a hot dilution system for
removing the majority of volatile PM. The hot dilution system
was constructed of a DEKATI pressurized dilution air heater and
ejector diluter (DI-1000) which was operated at 400 °C and
diluted the sample by a factor of 10:1. The hot diluter was
followed by a2 9.525 mm (3/8 in.) line of 2655 mm length kept at
360 °C. At the downstream end of the heated line a Palas VKL
10-E stainless steel injection diluter was operated. The overall
dilution ratio was on average 34.6 = 3.9, indicating a 10-variation
of the average value of approximately 11%. Details of the HES set
up and the sampling line set up are given in the Supporting
Information (SI).

In total three operation conditions were selected. Condition 1
(C1: low particulates—low organic matter) represents the base-
line condition with nominal particulates and organic matter
loading. Condition 2 (C2: low particulates—high organic matter)
represents a typical engine loading for low load operation of an
aircraft waiting at the gate. Condition 3 (C3: high particula-
tes—low organic matter) refers to a condition typical for high
load in preparation of takeoff. The aim of selecting the three
conditions was to provide measurable differences in the compo-
sition of the particulates emitted from the HES. Of particular
interest was the difference in emissions for cases of varying
organic matter (volatile, semivolatile and nonvolatile) and non-
volatile elemental carbon contributions to PM.

2.2. Measurement Methods. Nonvolatile PM mass methods
are divided into three approaches: (i) gravimetric methods which
measure total particulate mass (TM); (ii) carbon burnoff meth-
ods which measure total carbon (TC), organic carbon (OC), and
elemental carbon (EC); (iii) optically based methods which are
sensitive to the light absorbing black carbon (BC) fraction of PM,
making them decidedly appropriate for measuring nonvolatile
combustion particles because nonvolatile carbon and light-absorbing
carbon are closely linked. Table S1 of the SI compiles the list of
applied PM methods and instruments. The uncertainty values stated

in the following refer to errors of the analysis method, but do not
include sampling errors.

Gravimetry uses glass fiber filters (Whatman GF/C) for
exhaust particle sampling that show a filtration efficiency of >99%
in the size range 10 nm < d,, < 500 nm relevant for PM emitted
from gas turbines. Sampled PM is analyzed gravimetrically by
weighing the filter before and after loading. The gravimetric
methodology was based upon techniques described in ref 13.
Prior to weighting, the samples were gently heated, removed
from the oven, placed in a desiccator, and left in there to cool to
room temperature. This method was adopted to avoid as much as
possible any water and gaseous compounds being absorbed by
the filter matrix during sampling. Prior to any measurements on
filter samples a known mass was weighed 10 times to exercise the
balance and determine confidence limits. Known errors asso-
ciated with this technique are about +=10%.

Filter samples for 2-step combustion (2-SC) were collected on
preconditioned quartz fiber filters (47 mm @, Pallflex—Tissue
quartz, Pall Life Sciences). During sampling the flow through the
filters was fixed by a critical orifice providing a constant volumetric
flow rate of 10.7—11.0 L min ™", 2-step combustion'* without HCI
fumigation analyses the carbon content of PM in a two-step
combustion process where OC is removed at 340 °C in pure O,.
The remaining carbon, defined as EC, is then determined as CO,
evolving at 1000 °C (TC error 8%; EC, OC error 20%"). Total
carbon (TC) is measured from the same sample in a separate single-
combustion step at 1000 °C in O, while OC is obtained from
TC—EC. Besides carbon, organic matter (OM) contains also
oxygen and hydrogen which can be approximated by OM = 1.20 x
OC for fuels with an O/C ratio of less than 1.0 wt-%."® For the
carbonaceous fraction of PM, OC is the appropriate property,
whereas OM has to be considered if total mass is targeted.

Aerosol absorption photometry analyzes the modification of
filter optical properties as transmittance or reflectance caused by
the light-absorbing particles deposited on the filter. The principal
measure of any absorption photometer is the aerosol absorption
coefficient 0, given in units of m . The conversion of an
absorption coefficient into a BC mass concentration requires the
assumption of a mass-specific absorption cross-section, Bpc.
Multi-angle absorption photometry (MAAP) is an improved
version of absorption photometers which uses a multi angle
absorption photometer approach combined with a radiation
transfer code'” to analyze the modification of radiation fields in
the forward and back hemispheres of a glass-fiber filter caused by
deposited particles. The THERMO model 5012 MAAP uses
Bgc = 6.6 m2g71 at A = 630 nm which was determined from
calibration studies.'” This value is in accordance with By = 7.5
m”g ' at 550 nm proposed for fresh BC.'"® The standard
deviation of the error in BC mass concentration is 12%."” In
terms of reproducibility the standard deviation is 3%."

Laser-induced incandescence (LII) measures the thermal
emission (incandescent light) from particles heated by a pulsed
laser to temperatures in the 2500—4500 K range.”® Similar to
absorption photometry, LII is highly selective for BC only and
cannot be used for measuring TM. LII data is converted from the
volume fraction to mass concentration by applying the particle
material density for EC of 1900 kg m >.*° In terms of bias, it
depends on the knowledge of the absorption function, as does
the MAAP. In terms of reproducibility, the standard deviation is
3% as measured by operating two instruments in parallel.

PM emitted from a gas turbine is composed of elemental
carbon, organic matter and inorganic species like sulfate (SO,).
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Besides gravimetry, the sum of chemical components offers an
alternative for total mass determination. The selected approach
follows version 3 of the First Order Approximation (FOA3) for
estimating particulate matter emissions from certified commer-
cial aircraft engines.”’ The contributing species are determined
directly like EC, estimated from measurement data like OM, or
estimated from fuel properties like sulfur-containing compounds.
The sulfate content of TM originates from the fuel sulfur which is
converted to particulate sulfate with an average efficiency € =
2.4wt-%.%*! With FSC = 0.030wt-% (0.30 g kg™ ') for the fuel
burned, the sulfate emission index Elgo, in g per kg of fuel burn is

MWso4
o 1
; (1)

Elgo4 = FSC X € X

with molecular weights MW, of respective species. The core
flow Qcore of air through the aircraft engine combustor in m’ per
kg of fuel burn is required to calculate the exhaust mass
concentration of sulfate from the respective emission index.
The value of Q.. is calculated from the combustor air-to-fuel
ratio AFR by *!

Qeore = 0.776 X AFR + 0.877 (2)

This approximation matches the experimental conditions within
+10%, see SL

As is known from the gravimetric analysis of particle samples
from diesel engines,”” sulfate exists in its hydrated form as
(H,S0O4*4.5H,0) for conditions applicable to gravimetry. This
fraction of sulfate-associated water has to be considered in the
assessment of the sum of the chemical components. Combining
all contributions, the mass concentration of hydrated sulfate in
the exhaust flow is

MW, 1
H,S0,-4.5H,0 = FSC x & X ——2%%
MWS QCOre
4.SMW
X [1 + 71{20] 3)
MWinsos

Finally, total particulate matter is calculated from the sum of
single components as

TMsym = OM + EC + H,804-4.5H,0 (4)

The overall error of this approximation method is estimated as
22% based on 8% uncertainty for the TC determination and on
20% uncertainty for the estimation of hydrated sulfate. The latter
value is based on the fact that adding or subtracting one H,O
molecule leads to a variation in hydrated sulfate mass by £10%.

Number concentrations in the exhaust gas were measured by
three different models of condensation particle counters (CPC).
The applied instruments differed significantly in the minimum
detectable particle diameter d}, 1. Two of the CPC instruments
are manufactured by TSI Incorporated, Shoreview, MN, (TSI
model 3760, d;, i, = 14 nm; TSI model 3010, d;,, i, = 10 nm),
one CPC is produced by GRIMM Aerosol Technik, Germany
(GRIMM model 5.400, d,,, i, = S nm). Similar instruments were
tested for their applicability to measuring automotive engine
exhaust PM.** Since the CPC based instruments cannot distin-
guish between volatile and nonvolatile particles, volatile particle
removal requires thermal pretreatment of the sample as de-
scribed in Section 2.1 and in the SL

Particle size distributions were measured by means of electrical
mobility spectrometers.** Two different models were applied:
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Figure 1. Particle size spectra for all investigated conditions measured
with a DMSS00 in terms of number (a) and volume (b); the fraction of
particles larger than 10 nm in diameter is >90% for investigated
conditions C1—C3.

DMSS500 manufactured by CAMBUSTION, UK, and TSI model
3090 EEPS, manufactured by TSI Inc. Differential mobility
spectrometers separate charged particles according to their
electrical mobility. They are widely used in the measurement
of diesel engine emissions™® and aircraft engine emissions.® The
mobility diameter was measured with compensation made for
the number of charges as suggested in the data processing
respective to the DMS500 and the EEPS. The maximum size
of particles detectable by a DMSS500 is 1 4m in diameter.

The electrical aerosol detector EAD?® reports a measurement
of total particle length which corresponds to the sum of all
particle diameters present in the probed volume. The method
employs diffusion charging of aerosol particles and their subse-
quent detection by a sensitive electrometer. This diffusion
charging produces a nearly linear relationship between particle
diffusion diameter and the number of unit charges acquired by
particles in the 10 nm—1 um size range.””** Normalizing the
EAD signal to the total particle number concentration measured
by a CPC may provide another potential method for measuring
an average particle size.””?®

2.3. Data Reduction. For Condition 1, two tests (Run 1, Run
2) were performed, whereas for Condition 2 and Condition 3,
single tests were conducted. Respective runs lasted 03 h 40 min
(C1-R1),02h 20 min (C1-R2),06 h (C2), and 02 h 30 min (C3).
The following numbers of filter samples were analyzed: C1-R1:
three samples each for gravimetry and 2-step combustion; C1-
R2: one sample each for gravimetry and 2-step combustion; C2:
three samples for gravimetry, S samples for 2-step combustion;
C3: three samples for gravimetry, 11 samples for 2-step combus-
tion. Since the online instruments operate on different time
resolutions, the data reduction was adjusted such that DMSS00
and MAAP provided average data for respective filter sampling
times while LII and EEPS provided data averaged over the entire
condition run times. Data from CPC instruments were converted
from 1 Hz to 1S5 s averages because this time resolution was met
by all applied online instruments.

3. RESULTS

The exhaust aerosol is characterized by a trimodal size distribu-
tion. The number size distribution (Figure 1a) is dominated by
one mode centered at 14—15 nm and a second mode centered
at 47—59 nm. For the volume size distribution (Figure 1b) the
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Figure 2. Condition-averaged mass concentration data for respective methods as a function of gravimetric values. Dashed lines indicate
1:1—relationship; error bars refer to 1-0 of the average (STP = 273.15 K, 1013.25 hPa).

sub-20 nm mode is negligible, whereas a third mode centered at
320—420 nm contributes significantly. The size of emitted
particles depends on operation conditions with particles being
largest for high smoke conditions and being smallest for low
smoke—low OM conditions. The chemical composition of the
emitted PM is characterized by variable OC and EC fractions
depending as well on the operation condition. The EC fraction of
TC varies from 54% at condition C2 with high OM emissions to
91% at condition C3 with high smoke emissions, see also Table S2
of the SI and ref 10.

Mass measures are defined as follows: TMgray = total mass
from gravimetry, TMgyy = total mass calculated from the sum of
chemical components by eq 4, TMy0p = total mass calculated
from mobility spectra (DMS500, EEPS) assuming spherical
particle shape and an effective particle density of 1000 kg m >
for particles being composed of variable fractions of organic
matter and elemental carbon. All mass-based methods are
evaluated against the reference gravimetry TMgray. Addition-
ally, MAAP and LII are evaluated against 2-step combustion
(EC) because they separate the light-absorbing carbonaceous
fraction (BC) from TM. Data of two identical CPC are correlated
for assessing the uncertainty in the measured data depending on
instrument performance like variations in instrument flow and
lower detection diameters. LI measures concentration directly
and is independent of flow rate variations. The minimum
detectable concentration for LII is approximately 1 ug m > but
no known lower limit on particle size.

3.1. Mass-Based Techniques. Figure 2 compiles the mass
concentrations obtained from the applied methods in relation to
TMgrav as reference method; numerical data are listed in Table
S2 of the SI. Systematic trends are obvious: Mass closure between
gravimetric mass and mass calculated from the sum of chemical
components is achieved with TMgyy = (1.07 £+ 0.10) X
TMcray (Figure 2a). Neglecting adsorbed H,O results in
TMgsum-dry = (0.92 + 0.06) X TMgray- TC is closely correlated
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Figure 3. Intercomparison of mass-sensitive online methods; (a) mass
concentrations measured by MAAP and LII for black carbon (BC) and
DMSS00 for total mass (TM) compared to elemental carbon (EC)
from 2-step combustion representing filter-based methods; (b) TM
(DMSS500) and BC(LII) compared to BC(MAAP). Data from condi-
tion 3 (C3) are marked.

to TMgrav, but with a significant offset attributed to noncarbo-
naceous inorganic compounds (Figure 2b). Total mass calcu-
lated from size distributions underestimates total mass by >35%
on average (Figure 2c). EC from 2-step combustion (Figure 2b)
and optical methods sensitive to light-absorbing BC (Figure 2d)
are weakly correlated to TMggay while close correlation is found
between EC and BC.

The correlation between online methods MAAP, LII, and
DMSS500 and EC as a proxy for filter-based methods is shown in
Figure 3. Close agreement is found between BC from absorption
photometry (MAAP) and EC for conditions C1 and C2 with
BCpaap = (1.08 & 0.16) x EC. For condition C3 with the
highest mass concentration values, all online methods deviate
significantly but consistently from filter-based off-line methods

5 dx.doi.org/10.1021/es103969v |Environ. Sci. Technol. 2011, 45, 3562-3568
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Table 1. Average Number Concentrations Measured by the Different Cpc Systems and the DMS500 in the Raw Exhaust Gas; Data
Presented As Number Concentration Values Given as 10’ cm * STP and as Results of a Linear Regression Analysis of Two Identical

CPC Operated in Parallel

TSI 3760A dy, pyin = 14 nm TSI 3010 d, pyin = 10 nm

GRIMM 5.400 d;,, 1in = Snm  DMSS00 d), 1in = S nm

condition C1, R1 0.96 0.99 1.22 N/A
condition C1, R2 1.32 1.39 1.60 2.17
condition C2, sequence 1 2.79 291 3.61 3.40
condition C2, sequence 2 1.8 2.07 2.58 N/A
condition C3 1.86 1.89 2.14 1.92
Linear regression slope m 0.920 % 0.001 1.060 £ 0.001 1.011 £ 0.002 0.929 £ 0.007
correlation coeficient r* 0.996 0.990 0.891 0.988
ratio instrument no. 1/instrument no. 2 0.925 £ 0.077 1.044 £ 0.087 1.013 £ 0.036 0.82 — 1.43
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Figure 4. Correlation of two identical instruments (a) of CPC type GRIMM 5.400 and (b) of DMSS00; (c) correlation of EAD type TSI 3070A and

CPC GRIMM 5.400 for conditions C1—C3 separately.

(Figure 3a), whereas online methods are well correlated over the
entire operation range (Figure 3b). Total mass from mobility
data correlate well with BC from the MAAP with TMy;op =
(=029 + 027)+(1.64 £ 0.05) X BCyiaap (* = 0.99; 99%
significance). Higher TMy;op values compared to BC reflect the
fact that size distributions contain also OC which is not detected
by light-absorption methods. For the LII instrument, data are
again correlated to BCyaap, but showing a significant negative
bias. This bias requires further investigation.

Observed deviations of online and off-line methods for Con-
dition C3 with the highest combustor load and resulting high
sample flow and high mass concentration values are considered a
sampling artifact. A detailed analysis of the LII signal (see SI)
indicates the random occurrence of giant particles of 10 #m in
diameter and larger. These particles affect both gravimetry and
EC/OC analysis in the same way, but they are not sampled by
online methods due to upper cutoff sizes in the inlet (DMSS500),
due to the fact that they occur only randomly (LII), or related to
the fact that they do not contribute homogeneously to the filter
loading of the MAAP.

For filter-based methods, reproducibility was taken from
methods evaluations; see Section 2.2. Reproducibility of online
optical methods LII and MAAP was not investigated but taken
from separate studies conducted outside of SAMPLE. Reprodu-
cibility of the MAAP method was tested during an instrument

356

intercomparison workshop yielding a relative standard deviation
of 3% from the average (1-0)." Comparative measurements for
identical Artium LII-200 instruments were performed, investi-
gating BC concentrations produced from a kerosene burner.
There was a 1:1 correlation with less than 2% deviation for the
majority of the data over the measured range of concentrations
from less than 0.1 mg m ™ to over 10 mg m ™ >.*°

3.1. Number-Based Methods. Three different models of
CPC were operated in parallel in order to provide instrument
intercomparison data. Results for the number-based instruments
for the different conditions are compiled in Table 1. In addition,
total number concentration of particles was derived from the
DMSS500. According to the different instrument d, i, number
concentrations appear in the order N(DMSS00) = N(GRIMM
5.400) > N(TSI 3010) > N(TSI 3760A). Condition C2 was split
into two sequences with different particle number concentrations.

Prior to each measurement the instrument bias of each CPC
was tested with filtered air yielding number concentrations
<2.0 cm . Additionally, the maximum response function of all
deployed CPC was tested applying an aerosol with d, > 30 nm by
connecting diffusion screen separators’ upstream of the CPC.
Obtained number concentrations for individual CPC instruments
deviated by maximum 7% from the value averaged over all
instruments. Differences between CPC are thus be attributed
entirely to differences in d;, in.

6 dx.doi.org/10.1021/es103969v |Environ. Sci. Technol. 2011, 45, 3562-3568
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Table 2. Size Distribution Measurements Performed As Repetitive Measurements Using Two DMSS500 Instruments (See Given
Serial No.), or Determined from the Ratio of EAD vs. CPC Which Is Providing a Measure of Average Size

DMS500
1st mode 2nd mode serial no. EAD/CPC GRIMM 5.400
CMD (nm) GSD CMD (nm) GSD ratio (nm) ?
condition C1 15.7 1.53 S51.6 1.39 M44 74 +£03 0.733
15.8 1.54 50.0 141 M45
condition C2 15.1 1.53 46.6 1.30 M44 5.6+02 0.880
14.1 1.54 46.9 1.32 M44
condition C3 17.4 1.5 58.5 1.45 M44 11.5+£0.06 0.263

Figure 4 shows the scatter plots for CPC model GRIMM 5.400
(Figure 4a) and for the DMSS00 (Figure 4b). All instruments
based on the CPC technique show excellent reproducibility with
a standard deviation of less than 5% in accordance with
literature,” with the exception of the TSI model 3060A which
deviates by 7.5%.'° No effect of operation conditions or the
organic content of PM is observed. The DMS500 instruments
are also well correlated with an overall slope of the linear
regression line of 0.93. In contrast to CPC based instruments,
the average ratio between the two instruments shows a substan-
tially larger scatter and varies from 0.84 to 1.43 for different
operation conditions.

3.3. Size-Based Methods. The data analysis of the differential
mobility spectrometer is summarized in Table 2. Compiled are
the count median diameter (CMD) and the geometric standard
deviation (GSD) for two modes dominating number size dis-
tributions. These properties are defined on the basis of a bimodal
log-normal size distribution. The reproducibility of particle size
measurements is also shown in Table 2. Performing measure-
ments in the same sampling line with two types of the DMSS00
instruments yields relative standard deviations of measured
CMD values of <4%.

The data from EAD and CPC are also highly correlated; see
Figure 4c. The ratio of EAD to CPC which has the unit of an
average particle diameter shows similar trends with condition as
the CMD of the second mode of the mobility size spectrum.
However, in accordance with ref 27 this method is not able to
produce reliable particle size data, see Table 2 for details.

4. DISCUSSION

The consistent data set collected in SAMPLE from off-line and
online mass-based methods permits an assessment of investi-
gated methods with respect to their application for PM measure-
ment in gas turbine exhaust. The focus on nonvolatile PM is in
line with current understanding of particulate matter impacts on
climate as well as on human health.

We achieved mass closure with the sum of key chemical
components balancing total mass within 10% deviation from
gravimetry data. Carbonaceous matter makes up the largest
fraction of PM mass with light-absorbing BC corresponding
closely to nonvolatile EC. From that, robust light absorption
measurement methods are potential candidates for online tech-
niques sensitive to nonvolatile PM. Among those MAAP shows
close agreement with EC while LII data indicate a systematic
underestimation of BC compared to MAAP or EC from 2-step
combustion. Total mass inferred from size distributions require
major assumptions concerning particle shape and effective

density for data inversion. Being aware of decreasing emission
levels for future aircraft engines, methods of sufficient sensitivity
at acceptable sampling times have to be considered. This
requirement is met by the online methods tested here while
gravimetry with sampling times of up to 45 min is ruled out.

Major discrepancies between online and off-line methods at
high power condition are most likely related to sampling artifacts.
These sampling issues are associated with the presence of
supermicrometer-sized soot agglomerates which are suspected
to originate from combustor surfaces including the spray nozzle,
or from sample line abrasion. The use of a PM 1.0 cyclone or
impactor prior to the filter sampling locations for eliminating
these large agglomerates, will be studied in the next phase of
SAMPLE in order to reduce sampling artifacts caused by large
soot agglomerates.

CPC instruments proved highly robust tools for measuring
aerosol number concentrations, characterized by a method
precision of less than 7.5%. Dilution of sample gas prior to the
measurement is required. Absolute number concentrations given
by different condensation particle counter models require careful
consideration of the minimum detection diameter, defined for
50% detection efficiency. Indirect methods for the measurement
of particle number concentrations as differential mobility spec-
trometry (DMSS500, EEPS) are also capable of providing particle
number concentration values, but direct methods like CPC are
preferred because of much smaller scatter in data.

We recommend the measurement of nonvolatile particle
number concentration by CPC-based methods with prior agree-
ment on the instrument d;, ,;, and the application of a volatile
particle remover based on the hot dilution principle. Reprodu-
cibility with a standard deviation of less than 5% can be achieved.
The method for measuring particle mass requires prior agree-
ment of the measurand. For this particular source type, light
absorbing BC and chemically inert and nonvolatile (for T =
350 °C) EC are almost equivalent. Potential techniques are
optical-based methods for light-absorbing BC, and carbon burn-
off methods for EC. Gravimetry as the only traceable method
seems not appropriate because modern aircraft engines with low
particle mass emissions require very long sampling times.

Il ASSOCIATED CONTENT

© Ssupporting Information. Additional information on in-
strumentation, hot end simulator, gas sample distribution system,
dilution systems, evaluation of FOA3 for HES, mass measurement
data, and supermicron particulates. This material is available free of
charge via the Internet at http://pubs.acs.org.
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