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Abstract 

We describe a newly developed combustion diagnostic for the simultaneous planar imaging of soot 

structure and velocity fields in a highly sooting, lifted turbulent jet flame at 3000 frames per second, or 

two orders of magnitude faster than “conventional” laser imaging systems. This diagnostic uses short 

pulse duration (8 ns), frequency-doubled, diode-pumped solid state (DPSS) lasers to excite laser-

induced incandescence (LII) at 3 kHz, which is then imaged onto a high framerate CMOS camera. A 

second (dual-cavity) DPSS laser and CMOS camera form the basis of a particle image velocity (PIV) 

system used to acquire 2-component velocity field in the flame. The LII response curve (measured in a 

laminar propane diffusion flame) is presented and the combined diagnostics then applied in a heavily 

sooting lifted turbulent jet flame. The potential challenges and rewards of application of this combined 

imaging technique at high speeds are discussed. 
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1. Introduction 

Laser-induced incandescence (LII) is a minimally intrusive diagnostic technique used to study soot 

structure and volume fraction in flames and combustion exhaust gases [1,2]. In this technique, soot 

particles are rapidly heated to 4000 K (or higher) using a high-intensity pulsed laser. The resulting 

incandescence is captured on a photo-sensor, typically a photomultiplier tube or intensified CCD 

camera. The minimally-intrusive nature of LII, with its ability to take both point and planar in-situ 

measurements of soot volume fraction and particle size make it a diagnostic technique of both 

fundamental and applied technical interest. It has been used extensively to study soot distributions in 

flames ranging from laboratory-scale test flames [3,4] to automotive engines [5-7], high-pressure 

industrial-type combustors [8-10] and aero engine exhaust [11,12]. A thorough review of the theoretical 

basis for the LII technique can be found in [13] and [14]. 

Soot formation in a turbulent flame is a complex, multi-parameter dependent phenomenon. Studies so 

far [15,16] have yielded new insight into the thermo-kinetic processes responsible for soot formation, 

but all were limited to temporally uncorrelated single-shot measurements. Soot formation and oxidation 

in a turbulent flame is a transient phenomenon and one highly sensitive to residence time in the flame-

zone and local fluid dynamics. An effective way to separate chemical-kinetic (i.e. chemical reactions) 

and thermo-fluidic (e.g. particle condensation / agglomeration) effects would be to track fluid elements 

as they approach, pass through and convect downstream of the reaction zone of a flame and, in effect, 

perform the measurement in the local frame of reference of the soot particle itself. Although this is 

clearly impossible, a practical substitute is to acquire continuous, time-resolved planar measurements of 

the velocity field simultaneously with the LII soot measurement, and track elements as they pass 

through the field of view. With the development of high framerate CMOS cameras and high power 

diode-pumped solid state (DPSS) lasers, researchers have recently used simultaneous time-resolved LIF 

imaging of the hydroxyl (OH) combustion radical and PIV to study transient combustion phenomena 

ranging from edge-flame propagation [17] to local flame extinction [18], flame hole re-ignition [19], 

engine misfire [20] and blow-out [21]. Development of a similar flow-tracking capability for LII 

measurements has been hindered however, by the relatively high peak laser fluence (2 mJ/mm2 and 

above) required to accomplish 2D-LII and the difficulty of performing PIV in a densely sooting flame. 
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The purpose of this paper is to describe a combined LII / PIV measurement system recently developed 

at the DLR Institute for Combustion Technology, with a 3 kHz framerate and 0.67 second measurement 

duration, and to present initial results acquired with the system. The kHz-LII system is characterized 

and compared to conventional 10 Hz LII systems based on a non-linear LII response curve measured in 

a laminar propane diffusion flame. Critical limiting factors relating to the kHz LII technique are 

identified and discussed. The potential of this advanced combustion diagnostic is demonstrated by 

applying it to the study of a heavily sooting turbulent jet flame of ethylene. Sample mean and 

instantaneous data from this measurement series is presented and the results compared to data recently 

acquired [22] in the same test flame using conventional LII and PIV measurements. The results indicate 

the technique is both viable and yields interesting new insight into the turbulence-chemistry interactions 

associated with soot formation in turbulent flames. Surprisingly, initial results indicate that increasing 

the acquisition rate of the PIV measurements from 5 Hz to 3 kHz also simplifies the sooting-flame 

experiment and improves measurement quality by significantly reducing the influence of background 

luminosity. 

 

2. Experimental setup 

2.1 Laser-induced incandescence system 

The LII system consists of a frequency-doubled, Q-switched, diode-pumped solid state (DPSS) 

Nd:YAG laser (Edgewave IS-8IIE) and an intensified CMOS camera (LaVision, details below), as 

shown in Fig. 1. At 3 kHz, the laser delivered 5 mJ/pulse at 532 nm, with an 8.5 ns pulse duration. The 

short pulse-duration is essential in order to reach sufficiently high fluence to excite LII using the 

relatively low energy pulses characteristic of kHz-rate DPSS lasers. A continuously variable beam 

attenuator consisting of a half wave plate and polarizing beamsplitter cube (for use in measuring the LII 

response curve) was mounted at the exit of the laser. The beam was formed into a thin sheet using a 

coated cylindrical lens (fLII,1 = 1000 mm) and focused to a waist using a spherical lens 

(fLII,2 = 1000 mm). A rectangular aperture was used to block the low fluence edges of the sheet, 

producing a sheet approximately 6 mm high. The LII laser sheet thickness was measured to be 

approximately 500 μm at the probe volume using a burn-mark on photographic paper. The spatial 

profile of the beam was not measured as no beam profiling camera with sufficiently high framerate was 

available to image the pulses. Due to the associated uncertainties, we report laser pulse energies instead 

of fluence for the remainder of this paper. 
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LII emission was detected perpendicular to the laser beam using a 10-bit, 1024 × 1024 pixel CMOS 

camera (LaVision HSS5) with an external two-stage, lens-coupled intensifier (LaVision HS-IRO). The 

camera was equipped with a 100 mm, f/2.8 (Tokina) objective lens. Background flame luminosity was 

minimized using a 100 ns intensifier gate. Elastic scattering from soot and/or PIV particles at 532 nm 

was blocked using a bandpass filter (LOT 450 FS40-50) centred at λ = 455±15 nm (FWHM). The 

camera holds sufficient on-board memory (2.6 GB) for 2048 images (i.e., 0.68 seconds continuous 

imaging) at full resolution. It should be noted that LII signal exists only in the region illuminated by the 

LII excitation sheet (as defined by the response curve described later) and thus, the imaging array was 

not fully utilized in this experiment. Correction for camera and intensifier sensitivity was accomplished 

via normalization of the measured images with a 2048 frame ensemble average of a uniform white-field 

illumination lamp.  

As current generation CMOS cameras (particularly those coupled with image intensifiers) are known 

to suffer from non-uniformity in pixel response and non-linearity in photon-to-signal conversion [23], 

the LII data presented below is qualitative and evaluation limited to phenomenological description. It 

should be noted however, that an extensive database of quantitative LII measurements acquired in the 

same flame using the conventional (low-framerate) LII technique [22] offers an excellent basis for 

comparison and recently developed pixel-by-pixel background characterization techniques [23] offer a 

viable path to more quantitative measurements in the foreseeable future. 

 

2.2 Particle image velocimetry system 

The PIV system consists of a Q-switched, dual-cavity DPSS laser (Edgewave, IS-6IIDE) and a 

high-speed CMOS camera (LaVision HSS5). The laser produces 2.6 mJ pulses at 532 nm with pulse 

durations of approximately 14 ns at repetition rates up to 10 kHz. In this study the system was operated 

at 3 kHz, synchronous with the LII measurement. The laser was formed into a thin, collimated sheet 

using three cylindrical lenses (fPIV,1= -38 mm, f PIV,2 = 250 mm, and f PIV,3 = 750 mm) and overlapped at 

a shallow angle ( < 0.6 degree) with the LII excitation sheet. This was accomplished using a mirror 

mounted sufficiently far (1.9 m) from the measurement volume. As this beam-combining technique 

inevitably results in non-parallel laser sheets, the intersection point of the two beams was set at the most 

probable flame location on the entry-side of the jet-flame (with respect to the laser sheets) and the PIV 

sheet was made sufficiently thick to ensure good overlap of the measurement volumes in the sooting 
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region on that side of the flame. The resulting PIV laser fluence of 0.02 J/cm2 or below is not relevant in 

LII categories and too small to cause particle evaporation. 

Pulse separation for the PIV system was set to 20 μs. The LII excitation pulse was temporally 

interlaced between the first and second PIV pulse of each measurement cycle and timed to occur during 

the inter-frame readout period of the CMOS camera, rendering it invisible to the PIV system. The 10 μs 

delay between the first PIV pulse and the LII measurement also eliminates the possibility any LII signal 

excited by the PIV laser being detected by the LII camera. 

Mie scattering from titanium dioxide (TiO2) particles (nominal diameter 0.5 µm) seeded into the flow 

was imaged onto a high speed CMOS camera (LaVision HSS5). The camera was mounted opposite to 

the LII camera and was equipped with a 100 mm, f/4 (Tokina) objective lens. Flame luminosity, already 

minimal compared to conventional PIV cameras due to the short (1/6000th second) integration time of 

the CMOS sensor, was blocked with a 10 nm FWHM band-pass interference filter. The camera is 

equipped with sufficient on-board memory (2.6 GB) for 2097 image-pairs (i.e., 0.67 seconds imaging) 

at 768 × 680 pixel resolution. Spatial calibration of the particle images was accomplished using a dual-

plane, three dimensional imaging target (LaVision Type 7). Image mapping, calibration, and particle 

cross-correlations were completed using a commercial, multi-pass adaptive window offset cross-

correlation algorithm (LaVision DaVis 7.2). Final window size and overlap were 16 × 16 pixels and 

50%, corresponding to a vector resolution and spacing of ≈ 0.52 mm and 0.25 mm, respectively. The 

particle images were processed using the extended dynamic range technique described in Boxx et al. 

[18], wherein vectors derived from the cross-correlation of image pairs in a given measurement cycle 

(t = 20 µs) are filtered based on particle displacement and combined with vector fields produced from 

cross-correlation of particle images from the subsequent measurement cycle (t = 333 µs). Based on the 

± 0.1 pixel uncertainty of the cross-correlation peak-finding algorithm, the random uncertainty of the 

PIV measurements is estimated to be ± 0.16 m/s for the inter-pulse separation and ± 0.0097 m/s for the 

intercycle time separation. 

 

2.3 Flames Studied 

Two flames were used in this study: a laminar propane jet diffusion flame and a lifted turbulent jet 

flame of ethylene. The former was used to determine the response curve of the kHz-LII system, the 

latter to demonstrate its suitability as an applied combustion diagnostic.  
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The laminar flame consisted of a circular (8 mm inner diameter) jet of propane (99.5% purity) issuing 

into a concentric, low-velocity co-flow of dry room-temperature air at atmospheric pressure. Propane 

was metered into the central tube at a rate of 17.3 g/min via an electromechanical flow control unit 

(Brooks 5851S) and monitored throughout each experiment using a calibration standard Coriolis mass 

flow meter (Siemens Sitrans-FC Mass-Flo 2100, Model DI-3). The response curve of the LII system 

was derived based on measurements acquired 35 mm downstream of the burner exit, a position where 

soot concentration is almost constant with downstream distance and fluctuations in the radial position of 

the flame were minimal. 

The lifted turbulent jet flame is based on the test case described recently in [22] and consists of a 

2 mm diameter round jet of ethylene issuing into a concentric, low-velocity co-flow of dry, room-

temperature air. Ethylene (99.95% purity) was metered into the central tube at a rate of 10.4 g/min via 

an electromechanical flow control unit (Bronkhorst F1C0-FAC-33-Z) and monitored throughout the 

experiment via a calibration-standard Coriolis mass flow meter (Siemens Sitrans-FC Mass-Flo 2100, 

Model DI-1.5). This corresponds to a bulk flow-velocity of 44 m/s at the jet-exit, and jet-exit Reynolds 

number of 10000. The resulting flame is lifted and has a visible flame length of 400-500 mm. For the 

demonstration of the technique, two imaging regions were used: the first spanning 58 – 68 mm and the 

second 98 – 108 mm downstream of the jet-exit. 

Extinction measurements by previous researchers [22] indicate the average maximum soot 

concentration in this flame is 0.54 ppm and instantaneous soot concentrations can exceed 5 ppm.  

 

3. Results and Discussion  

3.1 High-speed LII 

The correct interpretation of LII data depends on knowing the response characteristics of the 

measurement system to a given excitation laser fluence. This is typically determined by measuring a 

response curve of the system in a well-defined sooting flame. Conventional LII imaging systems are 

usually operated in the so-called ‘plateau region’ of the response curve [13,24]. In this region the 

integrated LII signal measured by the detector becomes almost independent of the fluence of the 

excitation laser.  

Figure 2 shows the response curve for the LII system, measured in the laminar propane diffusion 

flame described above. It was measured by taking 1000-shot LII image sequences of the flame over 

excitation energies ranging from 0 to 5 mJ/pulse. The ensemble-average of LII signal, integrated over 
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the sooting regions of the flame (shown by the boxes on the representative mean-image) is used as a 

marker for LII response. As the sheet profile was seen to be inhomogeneous in the vertical direction, it 

was impossible to define a single, global fluence for the LII system. Instead, three integration window 

sizes were used and the results compared for consistency. As beam-steering, laser attenuation and sheet 

divergence may affect the excitation laser as it propagates through the flame the response curve was 

measured on both the laser entrance and the laser exit side of the laminar flame. Finally, as LII response 

curves are known to be highly dependent on laser-sheet profile and collection optics configuration [25], 

the measurement was made with the optics, camera settings and intensifier gate identical to that used to 

image the sooting turbulent jet flame. As can be seen in Fig. 2, the results were uniformly consistent. 

All measured LII response curves increase in a quasi-linear fashion up to pulse-energy 1.7 mJ, after 

which the integrated signal plateaus and subsequently only minor changes are observed with increasing 

excitation energy. Similar behaviour (not shown here) is found for very small evaluation rectangles (3x3 

pixels). Deterioration of the excitation beam profile quality is the most probable explanation for 

different signal levels in the response curves. For the turbulent flame characterized below, only the laser 

entrance of side of the soot distribution was overlapped with the PIV field of view. 

Figure 3 shows a sequence of LII images acquired in the sooting turbulent jet flame at 3 kHz. To 

illustrate the signal-to-noise ratio and image quality achievable with the system, the images in Fig. 3 are 

not corrected for noise, camera sensitivity or laser sheet profile. Despite this, soot structures are clearly 

identifiable and well resolved across the width of the flame and can be easily tracked from one frame to 

the next. A comparison of the images in Fig. 3 with those acquired in the same flame and imaging 

location with a conventional LII system [22] shows soot structures of very similar size and shape, a 

qualitative indication of similar detection sensitivity, albeit over a smaller imaging region.  

Figure 3 illustrates that individual soot structures can be identified and tracked from frame-to-frame. 

Remarkably, a significant influence of the laser radiation on the soot distribution or LII signal reduction 

is not observed. This gives rise to the question whether individual soot particles have been subject to 

multiple excitations and possibly a significant change in the soot characteristics. PIV measurements 

described below indicate that multiple excitations are likely. For example, at h ≈ 100 mm and r ≈ 10 mm 

where high soot concentrations are observed in Fig.3, the mean axial velocity is on the order of 2 m/s 

(see Fig.5b). Thus, from shot to shot (0.333 ms) the fluid is convected on the average by about 0.7 mm 

in axial direction. At r ≈ 8 mm it is about twice the distance. The instantaneous out-of-plane velocity 

(circumferential velocity component) was not determined in this study. However, it is expected to be 
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significantly smaller than the axial velocity so that a fluid element probably stays within the laser sheet 

of 0.5 mm thickness for several shots. This estimation indicates that individual soot clouds are probably 

subject to several laser shot exposures. It is well established [26] that even at relatively low laser 

fluences (ca. 1.5 mJ/mm2), LII excitation can have measurable effects on soot morphology. Recent work 

[27] has shown that these effects extend to the optical properties of the soot, indicating that multiple 

exposures of the same soot particle may result in a spurious measurement. This effect was not accounted 

for in the present measurements and is beyond the scope of this paper. We note, however, the peak laser 

fluence used for LII in this study is not far beyond that shown to induce initial changes in soot 

properties, and significant effects of multiple exposures were not observed in our image sequences.  

A further point should be kept firmly in mind in studying image sequences of this sort; that soot is not 

a conserved scalar and it is impossible to determine with certainty the origin of soot appearing in a given 

region of an LII image, or where it goes when it disappears. It may form in-plane through chemical 

reaction or simply convect into the measurement plane through bulk fluid motion. Soot disappearing 

from the field of view may have been oxidized, de-agglomerated and dispersed by fluid-dynamic shear 

stress or have propagated out of the plane of laser excitation. Stereoscopic PIV provides a means to 

identify regions where through-plane convection is a possible explanation, but even then does not 

answer the question with certainty. Thus, special care must be taken in drawing global conclusions 

based on planar measurements such as these. 

 

3.2 Highspeed PIV  

Figure 4 shows two pairs of unprocessed (raw) particle images acquired in the sooting turbulent jet 

flame alongside a pair of images taken in the flame using a conventional 5 Hz system to illustrate a 

somewhat surprising practical advantage of the kHz-PIV technique over its conventional low-framerate 

counterpart. Both image pairs show luminous soot structures as well as the Mie scattering from the seed 

particles. While the images recorded with the high-speed system exhibit similar signal quality, the 

second image obtained with the 5 Hz system is dominated by luminous soot or flame structures. 

The overwhelmingly dominant imaging technology used in conventional PIV systems is the interline-

transfer CCD camera. These cameras capture two images in rapid succession by exposing a CCD 

imaging array, rapidly transferring the resulting charge into an array of on-sensor storage registers and 

immediately beginning the exposure of the second frame, thus allowing the sensor to capture a second 

frame before the first is completely read out. Although this allows two frames to be acquired in rapid 
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succession it has a major drawback when used in highly luminous sooting flames, namely significant 

different exposure times for first and second image. Whereas the first frame may have a sub-

microsecond exposure time, the second frame may be exposed as long as 30 milliseconds or more, 

resulting in perhaps orders of magnitude greater soot luminosity being acquired in the second frame. As 

the PIV technique relies on the cross-correlation of two particle images, this makes it challenging to 

obtain reliable vector yields. CMOS cameras however, do not have this problem inasmuch as they run 

continuously at double the framerate of the pulsed laser source, capturing each laser pulse on separate, 

equally exposed frames. Although some soot luminosity is still captured during each exposure, the equal 

exposure time serves to minimize its effect on the PIV cross-correlation function. In addition, the 

absolute exposure time of the PIV image is one over twice the framerate, meaning the higher the 

framerate, the lower the exposure time and the less soot luminosity acquired in a given image. Although 

it is clearly possible to mitigate some of the problems associated with different exposure times 

characteristic of interline transfer CCD cameras, for example with narrower bandpass filters, smaller 

imaging apertures, larger PIV interrogation windows or more exotic shuttering techniques, each method 

degrades the overall system performance in its own way. The short, constant exposure periods 

characteristic of highspeed CMOS cameras eliminates the problem altogether, thus making them more 

suitable for PIV in highly luminous sooting flames. 

Figure 5a shows the ensemble-averaged velocity field measurements for each of the two regions 

measured in the sooting turbulent jet flame with the highspeed LII/PIV system, together with the mean 

velocity field measured by Köhler et al. [22] using conventional 5 Hz PIV. Figure 5b shows horizontal 

profiles at 60 and 100 mm height above the burner exit for each of the datasets for comparison. We note 

an apparent misalignment of the 5 Hz data inasmuch as the peak velocity in that profile occurs slightly 

to the right of the centerline. If one corrects for this misalignment, the overlap in the profiles is even 

better at both locations showing a good agreement. The kHz-rate PIV measurements show smoother 

mean contours, indicative of more fully converged mean data. This results from our having used 2096 

PIV measurements at 3 kHz to compute the mean velocity field shown, compared to 200 PIV 

measurements at 5 Hz used by Köhler et al. [22]. Figure 5 also shows the significantly higher spatial 

resolution of the kHz-PIV measurements compared to the 5 Hz measurements [22]. Although the choice 

of PIV resolution in the present work was driven by a desire to match the field of view of the LII 

system, it is clear from the sample LII/PIV sequence of Fig. 6, it resulted in an excellent match to the 

length scales of the temporally developing soot structures at the measurement location. 
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3.3 Simultaneous high-speed LII and PIV 

Figure 6 shows every second frame of a representative LII / PIV measurement sequence acquired with 

this system in the sooting turbulent jet flame. The PIV imaging region spans 98 – 108 mm downstream 

of the jet-exit. The mean velocity field at this location has been subtracted from the instantaneous vector 

plots to better isolate and identify fluid-dynamic effects in the frame of reference of the soot structures. 

Although a detailed analysis of the spatiotemporal interaction of soot structures and the local flowfield 

is clearly beyond the scope of this work, some interesting phenomena are observable in Fig. 6. In this 

sequence, we see a soot structure spanning approximately half the jet-width propagate through the field 

of view of the measurement system, deforming as it interacts with higher velocity fluid near the jet-

centerline. In frame 1, the downstream edge of the structure is thin and resides in the periphery of the jet 

at a radial position of approximately 10 mm. By frame 3, the downstream edge of the structure has 

moved beyond the field of view and the structure is seen to have widened considerably and now spans 

all the way from the centerline to the outer periphery of the jet. In frame 4, as the trailing edge of the 

structure propagates up through the field of view we see it begin to deform, with the portion closer to 

the high-velocity centerline swept downstream faster than that laying in the periphery. By frame 5, only 

a small portion of the trailing edge of the structure remains visible in the image. 

Despite the LII data in the present work being non-quantitative, comparison of the data in Fig. 6 with 

previous measurements in the same flame yield a logical explanation of what we see in this image 

sequence. Comparing the spatial location of the soot filament in frame 1 with the mean velocity fields 

shown in Fig. 5, it is clear the structure resides at the outer edge of the fuel jet. Comparison with 

previously published OH* chemiluminescence data [22], one sees this soot structure also resides very 

close to the mean reaction zone location. Absent a direct measurement of the instantaneous reaction 

zone location (e.g. via LIF imaging of CH or OH) it is impossible to say with certainty, but it is highly 

probably the soot structure in frame 1 is enveloped by a high velocity fuel flow on the left side and a 

reaction zone on the right. It is well established [28] that shear affects soot formation and 

agglomeration, and one would expect rapid oxidation and burnout of soot in the reaction zone, resulting 

in a thin, filament or sheet-like soot structure there. Comparing the LII images with the instantaneous 

flowfields in frames 2 and 3, we observe that a.) the structures become significantly wider near the jet 

centerline and b.) the structures reside in a region of the flow that, in the local frame of reference 

resulting from having subtracted the mean velocity field, resembles the region immediately upstream of 
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a stagnation-point. Thus, in the moving reference frame of the fluid element, the thickest part of the soot 

structure exists in a low-velocity region where residence times are longer and fluid-dynamic extensive 

strain is minimal. Finally, the thickest point of the soot structure also exists closer to the centerline, 

where one would expect to find little oxygen to burn out the soot. In frame 4, the soot structure is 

aligned with the local stagnation point flow and has begun to thin. By frame 5, the bulk of the structure 

is beyond the field of view. Taken together, a reasonable explanation of this sequence is that the soot 

formation here is being driven by a large-scale vortex structure propagating up through the jet, with the 

uppermost edge impinging upon the reaction zone and its wake inducing a region conducive to soot 

formation. Although this result is unsurprising, for it is known that regions of low strain, high fuel 

concentration and long residence time are conducive to soot formation, Fig. 6 is illustrative of the power 

of simultaneous highspeed LII and PIV imaging. With access to both the temporally developing soot 

and velocity field information, a greater fundamental understanding of the turbulence-chemistry 

interaction responsible for soot formation and reduction is possible. 

Conclusion 

Simultaneous planar laser induced incandescence (LII) and particle image velocity (PIV) measurements 

have been performed in a sooting turbulent jet diffusion flame at a sustained repetition rate of 3 kHz 

employing diode pumped solid state lasers. Using a pulse energy of 5 mJ at 532 nm with a pulse 

duration of 8.5 ns, high quality LII images were achieved in a sheet of 6 mm height. The soot structures 

can be tracked from frame-to-frame reflecting the temporal development of the soot distribution. The 

question whether distinct soot particles were subject to multiple LII laser light exposures can not be 

answered unambiguously, but simultaneous acquired velocimetry data indicates it is likely. Importantly, 

the LII images show no indication of changes of the size or morphology of soot particles as a result of 

this.  

High-speed PIV measurements were performed using TiO2 seed particles of 0.5 μm diameter. 

Compared to “classical” PIV measurements with interline transfer CCD cameras, the current setup with 

a high-speed CMOS camera resulted in a high signal-to-background ratio and thus better image quality 

for the second frame of a PIV image pair. The reason is a significantly reduced exposure time for the 

second frame by which the background from flame luminosity is strongly suppressed. In this way, high 

quality PIV measurements were performed despite the luminous soot radiation. The simultaneous 

application of LII and PIV at 3 kHz enables a deeper insight into the interaction between the flow-field 
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and the soot structures. In an example sequence it is demonstrated that high soot concentrations are 

correlated with low relative flow velocities (long residence time) and low extensive strain.  

The results obtained in this sooting turbulent C2H4 jet flame show that a combined LII/PIV measuring 

system is able to generate high-quality results at repetition rates that enable the tracking of temporal 

development. It thus has the potential to significantly extend the understanding of soot formation and 

oxidation phenomena in combustion systems of fundamental and applied technical interest.  
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List of Figures 

Figure 1: Setup for the combined LII/PIV experiment running at 3 kHz on a lifted turbulent jet flame. 
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Figure 2: LII signal as a function of energy. The averaged intensity in three regions is used to observe 

inhomogeneities in the used laser sheet for the laser entrance side or laser exit side. The image 

indicating the analysed rectangles is an average of 1000 single shots excited at 4.7 mJ.  
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Figure 3: Sequence of instantaneous soot structures from the lifted ethelyne/air jet flame running at 

3 kHz. An excitation pulse energy of 4.7 mJ is chosen for all soot concentration imaging measurements. 
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Figure 4: Comparison of raw particle images in the sooting turbulent jet flame; a,b) image pair for 3 

kHz PIV and c,d) image pair for conventional 5 Hz system. 

a) 3 kHz – Frame 1 b) 3 kHz – Frame 2 

c) 5 Hz – Frame 1 d) 5 Hz – Frame 2 
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Figure 5: Comparison of high-speed (3 kHz) and conventional (5 Hz, [22]) PIV measurements in the 

sooting ethylene/air jet flame. a) Comparison of velocity contour plot from 5 Hz measurement (left) and 

3 kHz measurement (right). b) Horizontal velocity profiles for selected heights at HAB = 60 mm and 

100 mm. 
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Figure 6: Sample measurement sequence of simultaneous 3 kHz PIV/LII for the sooting ethylene/air jet 

flame. 
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