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Abstract— Conventionally decision trees are fixed structures for 
sequential classification, which are designed for certain regions 
and specific research questions. In heterogeneous and dynamic 
urban environments their broad application requires a continual 
change of their structure, which is time consuming and labor-
intensive. This study focuses on the development of a user 
interface to facilitate the interactive adaption of decision trees. 
The platform of the user interface is composed of fixed feature 
sets which are equally applied to all scenes. They are selected on 
the basis of the Transformed Divergence. The features’ 
thresholds are connected to controllers, which can be adapted by 
the user. For assessing the effectiveness of the user interface, its 
classification performance is compared to the one of a decision 
tree with fixed thresholds. By means of Landsat 7 imagery four 
land-cover classes are distinguished. Results show that in all 
analyzed test-sites the overall accuracy lies for adjusted 
thresholds above 80% and is by up to 33% higher than for fixed 
thresholds. Therefore the user interface proved to be more 
efficient in classifying a broad variety of scenes in urban 
environments than a decision tree with fixed thresholds.  

I. INTRODUCTION 

Triggered by the development of commercial software 
(eCognition, ERDAS) decision trees are increasingly used for 
land-cover classification with remotely sensed data. Several 
studies have also been conducted in urban areas using decision 
trees [1] [2] [3]. Decision trees are composed of hierarchically 
structured decisions, which have to be traced, when classifying 
each segment or pixel of an image. Conventionally decision 
trees are based on fixed decision rules and thresholds, which 
are often only feasible for one specific scene. If new 
knowledge was available or the target question changed, the 
decision tree would have to be redesigned by an expert [4]. 
Especially in urban environments where the spectral and spatial 
characteristics vary within and among cities [5], such 
classification algorithms are labor-intensive and require expert 
knowledge.  

This study aims at the development of a user interface (UI), 
which allows non-experts to classify independent data sets of 
cities with only one decision tree platform. While the feature 
sets stay unchanged for different kinds of images, the threshold 
values can be interactively adapted by the user. The prototype 
is designed on the basis of the eCognition Developer 8 
software (Architect Solution) for Landsat ETM+ data and 
distinguishes four land-cover classes: water, vegetation, (bare) 
soil and impervious surfaces. The paper will point out the 

benefits and limitations of classifying a broad set of scenes via 
a UI and compare the accuracies achieved with those of a 
conventional decision tree with fixed thresholds.   

II. METHODOLOGY  

Fig. 2 shows the structure of the decision tree, which we 
implemented within the UI for land-cover classification [6]. 
After a multi-resolution segmentation, the classes are identified 
hierarchically, starting with classes of significant separability 
from other classes and ending with those of lower separability. 
The four-step approach allows the user to adjust the threshold 
values successively, lowering the complexity of threshold 
optimization. Remaining unclassified segments are iteratively 
assigned to the class of the neighboring segment, starting with 
the class of impervious surfaces and advancing back to the one 
of water.  

For the design of the classification platform feature sets 
have to be identified which effectively distinguish a certain 
class in different scenes. We therefore analyzed the spectral 
patterns of ten different features on the basis of four Landsat 
ETM+ test-sites and their reference images. Eight of these 
features stem from the Landsat ETM+ sensor and are the blue, 
green, red, near infrared (NIR), short-wavelength infrared one 
(SWIR1), thermal infrared one (TIR low gain mode), thermal 
infrared two (TIR high gain mode) and the short-wavelength 
infrared two (SWIR2) band. The remaining two features are the 
vegetation indices NDVI (Normalized Difference Vegetation 
Index) [7] and SAVI (Soil Adjusted Vegetation Index) [8]. For 
the SAVI we chose an adjustment factor of L = 0.5, as 
proposed by [8]. 
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Figure 1.   Step-wise structure of the classification algorithm [6]. 
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Feature selection involves feature prioritization, excluding 
irrelevant information, and feature decorrelation, removing 
redundant information [9]. For feature prioritization we 
calculated the Transformed Divergence (TD) for all potential 
feature sets of each class. The TD is a statistical distance 
measurement and describes the difference of spectral signature- 
derived probability distributions for different classes [10]. It 
originates from the Divergence DF1_F2 between two classes A 
and B based on Feature 1 and Feature 2 [11]: 
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where VA is the covariance matrix of Feature 1 and Feature 2 
for Class A, VB is the covariance matrix between Feature 1 and 
Feature 2 for Class B, MA is the mean vector of class A, MB is 
the mean vector of class B and tr [ ] is the trace of the matrix. 
Higher values indicate better separability than lower values. If 
more than two features are applied, the covariance matrix and 
the mean vectors increase in their dimension. In the case of the 
UI, we set the maximum number of features to three, assuming 
that an adjustment of more than three features per class is time-
consuming and complex for the user.  

To take saturation effects into account, the Divergence was 
altered to the TD [11], which we used for the feature selection 
of this study: 
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The TD scales the distance values of the Divergence so that no 
values higher than 2000 are reached.  

If more than two classes are to be distinguished with the 
same feature set, the TD values of different class combinations 
are averaged [4]. For example if one wanted to distinguish 
class A from class B and class C, then the TD value for class A 
(TD_A) would be the average of the TD value to distinguish 
class A from class B (TDA_B) and the TD value to distinguish 
class A from class C (TDA_C). For the UI we also took the 
hierarchical structure of the decision tree into account and 
introduced a system of weighting. Thereby the distance values 
of previously classified classes loose in significance by a factor 
of three:  
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For feature decorrelation we calculated the Pearson product 
momentum correlation coefficient for each feature pair within a 
class-specific feature set. If two features correlated in all 
possible scene pairs by more than 99%, we removed the feature 
with the lower average TD value from the set. 

On the basis of the feature selection process we chose one 
feature set for each class to be implemented in the UI. 
Afterwards we assigned to each feature upper and/or lower 
controllers, which we adjusted to each individual test site, 
yielding four site-specific threshold sets. A conventional, fixed 
threshold set was simulated by applying the average of the site-
specific thresholds to all test-sites. Furthermore we combined 
unrelated test-sites and threshold sets (e.g. applying the 
threshold set of Test-site 1 to Test-site 2). For the evaluation of 
the classification performance we derived the user’s, 
producer’s and overall accuracy [4] [12]. To test the UI in 
terms of an independent scene, we finally applied it to a fifth 
Landsat test-site, which had not been involved in the design of 
the classification platform. 

III. STUDY AREA AND DATA SETS    

To reflect spectral similarities and differences between 
urban Landsat ETM+ images we selected four test sites of 
15x15 km2 (Fig. 1). Three of them are located in Mexico City, 
Mexico. The first one shows the city center (S1 Jan 02). The 
second and third one are located at the northern urban fringe of 
the city and only differ in their time point of acquisition (S2 
Jan 02 and S2 Apr 02). The fourth test site shows a suburban 
area of Istanbul, Turkey (S3 Mar 02). The fifth one (150x450 
pixels), which was not integrated in the feature selection 
process, is located at the urban fringe of Cairo, Egypt.  

For each test-site we created manually a reference image 
with the land cover type of each segment. As S2 Jan 02 and S2 
Apr 02 only differ in the date of acquisition, we generated only 
one common reference image. Table 1 highlights the 
appearance of each land cover type in the four test-sites.  
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S2 Jan. 2002 S3 Mar. 2002S1 Apr. 2002Test-sites S2 Apr. 2002

different seasons

different stages of urbanization

different cities

a)
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Figure 2.  (a) Overview on the selected test-sites of Landsat 7 and exemplarily 
(b) test-site S2 Jan 02 in RGB+NIR and (c) test-site S3 Mar 02 in RGB+NIR. 
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TABLE I.  DISTRIBUTIONS OF SEGMENTS FOR EACH TEST SITE 

Test-site Water Vegetation Soil Imp. Surf. Total Nr. 

S1 Jan 02 0.2% 8.2% 3.5% 88.1% 11204 

S2 Jan 02  
S2 Apr 02 

0.5% 41.6% 1% 56.9% 11879 

S3 Mar 02 6.5% 40.8% 0.7% 52% 7805 

IV. RESULTS 

Fig. 3 shows in class-specific plots for each test-site the 
features with the four highest TD values. Higher ranks indicate 
a higher suitability of the feature to distinguish the class from 
others. For the class of water, the features indicated differ 
strongly among the test-sites. For the remaining classes at least 
one feature can be found which is in all test-sites among the 
four highest ranks. The highest ranked features take on average 
over different test-sites the following TD values: water: 1688, 
impervious surfaces: 1211, vegetation: 1102, soil: 747.   

Based on the feature selection process the feature sets of 
Table 2 were implemented in the UI. The TD values of those 
features differ at maximum by 10% from the highest distance 
value reached by a site-specific feature. The lowest TD for 
water lies (with respect to all test-sites) at 1782, for vegetation 
at 1426, for soil at 1229, and for impervious surfaces at 1438. 
Due to feature decorrelation the features of one class correlate 
at most by 99%.  
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Figure 3.   Features with the four highest distance values in different test-sites. 

TABLE II.  SELECTED FEATURE SETS FOR THE USER INTERFACE 

Class 
Final Feature Sets 

Feature 1 Feature 2 Feature 3 

Water SWIR2 SAVI - 

Vegetation blue NDVI - 
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Figure 4.   Overall accuracies for fixed and adjusted thresholds. 
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Figure 5.   User’s and producer’s accuracy for S2 Jan 02. 

The threshold adjustment for the chosen feature sets gave 
the overall accuracies shown in Fig. 4. The graph shows that 
the overall accuracy is always higher for thresholds which have 
been optimized for the target area and lower for averaged 
thresholds which are uniformly applied to all test-sites. The 
highest difference amounts to 33% for S1 Jan 02. While for 
adjusted thresholds the overall accuracy always lies above 80% 
for averaged thresholds it can be as low as 62% (S2 Jan 02). 

The results for the user’s and the producer’s accuracy are 
shown exemplarily for S2 Jan 02 in Fig. 5. Both accuracies are 
generally higher for adjusted thresholds. However, for the class 
of impervious surfaces averaged thresholds lead to a higher 
user’s (by 8%) but lower producer’s accuracy (by 47%). Also 
for vegetation averaged thresholds lead to a higher producer’s 
accuracy. For the class of soil with the least segments in the 
image the producer’s accuracy is in both cases very low 
(<15%). The problem of identifying classes of low occurrence 
could also be observed in other test-sites where for example 
only few segments of water exist (e.g. S1 Jan 02, Table 1). 
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Figure 6.   Various classification results for S2 Jan 02. 
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Fig. 6 shows that the higher producer’s accuracy for 
averaged thresholds in the case of vegetation is based on over-
classification (lower left). The resulting under-classification of 
impervious surfaces is an explanation for the class’s high user’s 
but low producer’s accuracy for averaged thresholds. Taking 
the threshold set, optimized for the same area but a different 
time point (three months later), a similar outcome can be 
observed (lower right). The threshold set produced for S2 Apr 
02 again over-classifies the vegetation cover, when applied to 
S2 Jan 02. Using this set for its descend-test-site (S2 Apr 02) 
this trend is not observed. Further combinations show that the 
sun elevation angle at the time point of acquisition has most 
influence on the threshold setting. For example in S2 Jan 02 
and S2 Apr 02 the sun elevation angles differ between 39.2° 
(January) and 61.6° (April).  

For the independent test-site of Cairo we reached an overall 
accuracy of 75% within 30 minutes of threshold adaptation. 
With another 10 minutes of manual classification the overall 
accuracy rose to 86%. The manual classification was 
specifically beneficial for the class of soil, where the 
producer’s accuracy rose from 36% to 73%. Taubenböck et al. 
applied the UI to Landsat data of Mexico City and three further 
Mexican cities: Guadalajara, Monterrey and Puebla. They 
thereby reached on average an overall accuracy of 94% [13].  

V. DISCUSSION  

In the analyzed test-sites the class of water reaches higher 
separability values than any other land-cover type. At the same 
time no feature can be found which is among the four highest 
ranks in all test-sites. Based on this observation we find two 
main guidelines to be effective in identifying a suitable feature 
set for the implementation in the UI. Firstly the TD value, 
telling how much the probability distributions differ between 
classes, should be maximized. Secondly the difference of the 
distance values for the most suitable site-specific feature and 
the uniformly applied feature should be minimized. 

Adjusting the thresholds for the selected feature sets to each 
test-site, the classification accuracy increases by up to 33% and 
lies for all test-sites with adjusted thresholds above 80%. 
Therefore two objectives for the functioning of the UI are met. 
Firstly the UI is more efficient in classifying a variety of scenes 
than a fixed decision tree. This is especially true when the sun 
angles differ between scenes. Secondly the overall accuracy 
achieved does not fluctuate significantly between scenes. 
Therefore the UI can be applied to diverse scenes, differing in 
location, state of urbanization and time point of acquisition.  

The limitations of the UI become apparent through the poor 
users’ or producers’ accuracies for classes of low occurrence. 
In the case of soil, the poor accuracies are based on the class’s 
low TD values. For the class of water the TD values are high, 
but its spectral pattern overlaps with the one of the frequently 
occurring class of vegetation. As consequence the shared part 
of the feature space is assigned to the class of vegetation with 
the larger amount of segments or pixels to keep the overall 
accuracy high. Consequently two main limitations to the UI 
can be identified. Firstly difficulties of distinguishing classes 
with similar spectral signatures cannot be overcome. Secondly 
classes of low occurrence are likely to be masked by broadly 

occurring classes to keep the overall accuracy high. Manual 
classification is specifically effective for the identification of 
less frequently occurring classes. This was shown in the fourth 
test-site of Cairo, where manual classification of 10 minutes 
raised the producer’s accuracy by 37% for the class of soil.  

VI. CONCLUSION AND OUTLOOK  

The study has shown that for the classification of a broad 
spectrum of scenes, decision trees with adjustable thresholds 
yield higher overall, producer’s, and user’s accuracies than 
conventional ones, lowering over- and under-classification. 
Especially for scenes that have been acquired at different sun-
elevation angles the improvement in classification accuracy is 
significant. Therefore the UI is expected to be advantageous for 
multi-temporal and multi-spatial image analysis. 

The classification outcome of the UI depends on the user’s 
skills to adjust the platform settings to each scene. Therefore in 
the future features should be developed, which simplify the 
threshold optimization e.g. by providing default values. 
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