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Abstract—Contention resolution diversity slotted ALOHA
(CRDSA) is a simple but effective improvement of slotted
ALOHA. CRDSA relies on MAC bursts repetition and on inter-
ference cancellation (IC), achieving a peak throughput T ≃ 0.55,
whereas for slotted ALOHA T ≃ 0.37. In this paper we show
that the IC process of CRDSA can be conveniently described by a
bipartite graph, establishing a bridge between the IC process and
the iterative erasure decoding of graph-based codes. Exploiting
this analogy, we show how a high throughput can be achieved by
selecting variable burst repetition rates according to given prob-
ability distributions, leading to irregular graphs. A framework
for the probability distribution optimization is provided. Based
on that, we propose a novel scheme, named irregular repetition
slotted ALOHA, that can achieve a throughput T ≃ 0.97 for
large frames and near to T ≃ 0.8 in practical implementations,
resulting in a gain of ∼ 45% w.r.t. CRDSA. An analysis of
the normalized efficiency is introduced, allowing performance
comparisons under the constraint of equal average transmission
power. Simulation results, including an IC mechanism described
in the paper, substantiate the validity of the analysis and confirm
the high efficiency of the proposed approach down to a signal-
to-noise ratio as a low as Eb/N0 = 2 dB.

Index Terms—Bipartite graphs, erasure channel, density evo-
lution, slotted ALOHA, diversity slotted ALOHA, contention
resolution diversity slotted ALOHA, successive interference can-
cellation.

I. INTRODUCTION

WHEREAS the adoption of demand assignment multiple
access (DAMA) medium access control (MAC) proto-

cols guarantees an efficient usage of the available bandwidth,
random access schemes remain an appealing solution for
wireless networks. Among them, slotted ALOHA (SA) [1]–
[3] is currently adopted as initial access scheme in satellite
communication networks [4], where the large propagation
delays make the low access latency of ALOHA-based schemes
extremely appealing [5]. Several enhancements of SA have
been investigated in the past decades [6]–[8]. Among them,
diversity slotted ALOHA (DSA) introduces a burst repetition
which, at low normalized loads, yields a slight throughput
enhancement respect to SA. A more efficient use of the burst
repetition is provided by contention resolution diversity slotted
ALOHA (CRDSA) [9].

The intuition behind CRDSA deals with the adoption of in-
terference cancellation (IC) [10]–[13] for resolving collisions.
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More specifically, with respect to DSA, the twin replicas of
each burst transmitted within a MAC frame1 possess a pointer
to the slot where the respective copy was sent. Whenever a
clean burst is detected and successfully decoded, the pointer
is extracted and the potential interference contribution caused
by the twin replica on the corresponding slot is removed. The
procedure is iterated, hopefully permitting the recovery of the
whole set of bursts transmitted within the same frame. This
results in a remarkably improved throughput T (defined as
probability of successful packet transmission per slot) which
may reach 0.55, while the peak throughput for pure SA is
T = 1/e ≃ 0.37. Further improvements may be achieved by
exploiting the capture effect [2], [14], especially in presence
of power unbalance among different users. CRDSA permits
moreover to achieve low packet loss rates (e.g., 10−2 or
less) at moderate-high loads, whereas SA needs to operate
at extremely low loads. Hence for CRDSA most of the burst
transmissions are successful at the first attempt, leading to
low latencies. CRDSA (as well as the enhancement proposed
herein) is currently investigated within the Digital Video
Broadcasting (DVB) - Return Channel via Satellite (RCS)
standardization as random access scheme for next generation
interactive satellite services [15], [16].

In this paper, we propose a novel scheme, referred to as
irregular repetition slotted ALOHA (IRSA), which relies on a
bipartite graph optimization of CRDSA. In fact, we first show
that the iterative burst recovery process can be represented
via a bipartite graph. Bipartite graphs have been often used
to describe the structure of iteratively-decodable error correct-
ing codes and to analyze their performance under iterative
(message-passing) decoding [17]–[20]. Based on the bipar-
tite graph representation of low-density parity-check (LDPC)
codes [21], methods for obtaining iterative decoding thresholds
close to the Shannon’s limit for many types of communication
channels were introduced. The result was achieved by irregular
bipartite graph constructions [19], [20], whereas regular graphs
usually lead to a loss in terms of iterative decoding threshold.
In the CRDSA context, the bipartite graph representation
allows analyzing the convergence of the iterative IC process,
permitting a fast analytical characterization of the CRDSA
performance. We show how the bipartite graph framework
can be used to largely improve the performance of CRDSA by
allowing a variable repetition rate for each burst, leading to ir-
regular graphs (the definitions of regular and irregular graphs

1According to [9], in this paper we consider a random access scheme where
the slots are grouped into MAC frames. We further restrict to the case where
each user proceeds with only one transmission attempt (either related to a
new packet or to a retransmission) within a MAC frame.
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are provided in Section III). The proposed IRSA scheme is
hence based on irregular graphs. The repetition rate is selected
by the user according to a probability distribution (which is
the object of our optimization), on which the throughput2

performance will depend. Extensions of the proposed analysis
accounting for possible impairments and capture effects are
outlined in Appendix A. The simulation results, including
an actual IC technique described in Appendix B, confirm
the validity of the proposed analytical tools, which permit
an accurate prediction of the throughput for large frames. It
is further shown that, even under the assumption of small
MAC frames, the proposed technique still achieves a high
throughput. Large performance gains are also demonstrated
in terms of packet loss rates.

The remainder of this paper is organized as follows. In
Section II an overview of the system is provided. The graph
representation is discussed in Section III, while the iterative
IC analysis is presented in Section IV. An analysis in terms of
normalized efficiency is provided in Section V, allowing per-
formance comparisons under the assumption of equal average
transmission power. Numerical results on the throughput and
the packet loss rate of IRSA are presented in Section VI. The
conclusions follow in Section VII.

II. SYSTEM OVERVIEW

We will consider next MAC frames of duration TF , each
composed of n slots of duration TS = TF /n. The transmission
of a packet (or burst)3 is enforced within one slot. We will
assume that in each MAC frame a finite number (m) of users
attempts a packet transmission. Without losing generality,
each of the m users performs a single transmission within
each MAC frame, either related to a new packet or to the
retransmission of a collided one. Furthermore, retransmissions
shall not take place within the same MAC frame where the
collision happened. Hence, among the m users, some may be
back-logged. The normalized offered traffic (or channel traffic)
G is given by G = m/n, and represents the average number of
packet transmissions per slot. The normalized throughput (or
channel output) T is defined as the probability of successful
packet transmission per slot. In a framed SA case (Fig. 1a),
each packet is transmitted once in a MAC frame, and eventual
collisions lead to retransmissions in the following frames. For
SA, the throughput can be expressed as a function of G as
T (G) = Ge−G. The peak throughput T = 1/e ≃ 0.37 is
achieved at G = 1.

CRDSA relies on the repetition of each burst within the
same MAC frame. In each burst replica, a pointer to the
position of the twin burst is included, e.g. in a dedicated
header field. Whenever a clean burst (i.e., a burst which did
not collide) is successfully decoded, the pointer is used to
determine the slot where the twin burst has been transmitted.
Supposing that the burst replica has collided, it is possible
to subtract, from the signal received in the corresponding

2The analysis presented in this paper focuses on the throughput/packet loss
rate performance. A thorough analysis on other performance metrics (e.g.
delay, stability) as in [22] is not considered here.

3The notation burst and packet will be interchangeably used to denote
layer-2 data units.

slot, the interference contribution of the twin packet. This
may allow the decoding of another burst transmitted in the
same slot. The IC proceeds iteratively, i.e., cleaned bursts may
allow solving other collisions. CRDSA brings to a remarkable
throughput improvement w.r.t. SA over a wide range of loads.
Furthermore, the limit for which the throughput is almost
linear in G is extended from 0.1 for SA to 0.4 for CRDSA.4

This means that for loads lower than 0.4, the burst loss
probability is kept remarkably low [9].
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Fig. 1. Overview of the slotted ALOHA (a) and the CRDSA/IRSA (b)
protocols (framed). The frame is made by n slots and lasts TF seconds. The
number of users attempting a transmission is m. In the CRDSA/IRSA case
(b), a burst is repeated within the MAC frame d times (where d is fixed
for CRDSA, while it may vary among users in the IRSA case). Each burst
contains a header with a pointer to the position of its replicas. Whenever
a burst is successfully received, the pointer is extracted, and the replica
positions are identified. The interference contribution caused by the replicas
can be then removed, i.e. the signal waveform associated with the burst is
reconstructed, and it is subtracted from the signal received in the slots where
the replicas have been transmitted. In the example above, a replica of the
burst transmitted by User 1 is received without collisions (second slot from
the left). Its contribution on the 4th and the 6th slots can be removed. In
the 4th and in the 6th slots, the bursts transmitted by Users 3 and 2 can be
decoded. The process proceeds iteratively.

The approach proposed in this paper is a generalization of
the above-described one. When IRSA is used, each burst is
transmitted l times within the MAC frame, where the repetition
rate l varies from burst to burst (Fig. 1b) according to a given
probability distribution. CRDSA can be seen as a special case
of IRSA, where the repetition rate is fixed to l = 2.5

4For CRDSA/IRSA the relation G = m/n still holds, i.e. G still relates to
the number m of transmission attempts (it is not influenced by the number of
replicas). Thus a packet replicated l times counts as 1 transmission attempt.
Hence, G represents in a certain sense the logical load of the channel,
in contrast with the physical load, which for CRDSA is 2G. Note that
the physical load represents the average number of burst replicas that are
transmitted per slot, and therefore it does not provide a direct measure of the
traffic handled by the scheme, which is in fact given by the logical load.

5Through this paper, we will refer to CRDSA as it in original definition [9],
i.e. with constant repetition rate l = 2. Recently, CRDSA has been extended
in a way that each burst can be repeated more than 2 times [14]. However,
also in that case the repetition rate l is constant and a-priori fixed for all the
bursts. The performance of CRDSA with l > 2 repetitions will be considered
in Sections IV-B and VI.
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III. GRAPH REPRESENTATION OF THE IC PROCESS

The IRSA approach works as follows: for each transmission,
the user adopts a variable repetition rate, which is picked
according to a given distribution {Λd} (see Fig. 1b), i.e. for
a generic packet l replicas are transmitted within the MAC
frame with a probability Λl.

It is now convenient to introduce a graph representation
of the IC process. We keep on considering a MAC frame
composed of n slots, in which m users attempt a transmission.
The frame status can be described by a bipartite graph,
G = (B,S,E), consisting of a set B of m burst nodes (one
for each burst that is transmitted), a set S of n sum nodes
(one for each slot in the frame), and a set E of edges. An
edge connects a burst node (BN) bi ∈ B to a sum node (SN)
sj ∈ S if and only if a replica of the i-th burst is transmitted
in the j-th slot. Loosely speaking, BNs correspond to bursts
and SNs correspond to slots. Similarly, each edge corresponds
to a burst replica. Hence, a burst with l replicas is represented
by a BN with l neighbors (i.e. a BN from which l edges
emanate). A slot where l replicas collide corresponds to a
SN with l connections. As an example, the bipartite graph
describing a frame made by n = 4 slots where m = 4
transmission attempts take place is depicted in Fig. 2a, where
squares denote SNs, and circles denote BNs. The number of
edges connected to a node is referred to as the node degree.
Graphs for which the BN degree is constant will be referred to
as regular graphs. In contrast, graphs for which the BN degree
varies from BN to BN will be referred to as irregular graphs.
It follows that CRDSA leads to regular graphs, while IRSA
allows irregular graphs. The IC process can be represented
through a message-passing along the edges of the graph. More
specifically, assuming the case where no capture effect is
exploited, a burst replica can be revealed by two means, i.e.

• The burst replica has been successfully decoded in the
slot where it has been sent. This is possible if the
interference caused by other burst replicas (colliding in
the same slot) has been removed, or if no collisions at
all happened in the slot.

• The corresponding burst has been recovered elsewhere.
Example. An example of a graph representation is provided in
Fig. 2. We label each edge with a ‘1’ if the corresponding burst
replica has been revealed. Otherwise, the edge is labeled as
‘0’. The iterative IC process starts (b) by decoding the second
burst (the burst is received without collisions within the second
slot, in fact the degree of the second SN is 1). The contribution
of the second burst can be removed from the slots where its
replicas were transmitted. The revealed edges (labeled as ‘1’)
are then removed from the graph. During the second iteration
(c), we look for SNs with residual degree 1. Those nodes
represent the slots where, after the first IC iteration, cleaned
bursts can be now detected. The only degree-1 SN in (c) is
the first one, from which it is possible to recover the first
burst. Its contribution into the third slot is then removed (d).
During the third iteration, B3 is recovered. Accordingly, the
edge connecting B3 to S4 is revealed. The contribution of
the third burst into the fourth slot is cancelled, allowing the
recovery of the fourth burst (e).
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Fig. 2. Graph representation of the IC iterative process.

A. Node- and Edge-Perspective Degree Distributions

We introduce next the concept of node-perspective degree
distribution. The burst node degree distribution is defined by
{Λl}, where Λl denotes the probability that a BN possesses
l connections. The SN degree distribution is represented by
{Ψl}, where Ψl is the probability that a SN possesses l con-
nections.6 Polynomial representations of the node-perspective
degree distributions are given by

Λ(x) ≜
∑
l

Λlx
l, Ψ(x) ≜

∑
l

Ψlx
l.

The BN degree distribution Λ(x) is under full control of
the system designer. This is indeed not the case for the SN
degree distribution Ψ(x). It will be shown that the SN degree
distribution is fully defined by the system load G and by the
average burst repetition rate. The average burst repetition rate
is given by

∑
l lΛl = Λ′(1), while the average number of

collisions per slot is
∑

l lΨl = Ψ′(1).7 It is easy to verify that
G = m/n = Ψ′(1)/Λ′(1).

6Consistently with the definition at the beginning of Section III, Λl is also
the probability that a burst is replicated l times. Ψl represents instead the
probability that l bursts replicas would be transmitted within a given slot.

7We denote by f ′(x) = df(x)/dx. Hence Λ′(x) =
∑

l lΛlx
l−1 and

Ψ′(x) =
∑

l lΨlx
l−1.
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Degree distributions can be defined also from an edge
perspective. We define λl as the probability that an edge
is connected to a degree-l BN. Similarly, ρl defines the
probability that an edge is connected to a SN of degree l.
It follows from the definitions that

λl =
Λll∑
l Λll

, ρl =
Ψll∑
l Ψll

.

The polynomial representations of {λl} and {ρl} are8

λ(x) ≜
∑
l

λlx
l−1, ρ(x) ≜

∑
l

ρlx
l−1.

The relations λ(x) = Λ′(x)/Λ′(1) and ρ(x) = Ψ′(x)/Ψ′(1)
follow from the definitions above.

IV. ITERATIVE IC CONVERGENCE ANALYSIS

Consider now a degree-l BN. Denote by q the probability
that an edge is unknown, given that each of the other l − 1
edges has been revealed with probability 1 − p during the
previous iteration step. The edge is revealed whenever at least
one of the other edges have been revealed. Hence, q = pl−1.
In a similar manner, consider a SN with degree l. According
to the notation introduced so far, p denotes the probability
that an edge is unknown, given that each of the other l − 1
edges have been revealed with probability 1−q in the previous
iteration step. The edge is revealed whenever all the other
edges have been revealed. Hence, 1 − p = (1 − q)l−1 or
equivalently p = 1−(1−q)l−1.9 According to the tree analysis
argument of [18], by averaging these two expressions over the
edge distributions, one can derive the evolution of the average
erasure probabilities during the i-th iteration as

qi =
∑
l

λlp
l−1
i−1 = λ (pi−1) (1)

and

pi =
∑
l

ρl

(
1− (1− qi)

l−1
)
= 1− ρ (1− qi) , (2)

where the subscript i denotes the iteration number that, for
the sake of simplicity, will be omitted in the rest of the paper.
By iterating (1),(2) for a given amount of times (Imax), it
is possible to analyze the convergence of the IC process.10

The initial condition has to be set as q0 = p0 = 1 (there are
no revealed edges at the beginning of the process). Following
(2), at the first iteration p is the probability that an edge is not
connected to any degree-1 SN.

Note that the recursion of (1),(2) holds if the messages
exchanged along the edges of the graph are statistically

8For the node-perspective degree distributions we associate the coefficients
(Λl,Ψl) to xl. In the edge-perspective case the coefficients (λl, ρl) are
related to the xl−1 term. This choice will bring to a compact description
of the IC process.

9Similar equations were developed in [9, Sec.III.D] for deriving an upper
bound to the throughput of CRDSA.

10This approach is in fact equivalent to the density evolution analysis for
LDPC codes [20]. However, note that the IC process of IRSA and the erasure
recovery process of LDPC codes are similar, but not strictly the same. In fact,
while for IRSA the entire graph is active in the collision resolution, in the
LDPC codes case just the sub-graph induced by the erasure pattern is involved
in the erasure recovery process.

independent. Thus, the accuracy of (1),(2) is subject to the
absence of loops in the graph (recall that loops introduce
correlation in the evolution of the erasure probabilities). This
assumption implies very large frame sizes (n → ∞), hence the
analysis presented next will refer to this asymptotic setting.
It is crucial to remark that this hypothesis is nevertheless
needed just in the system design phase for deriving a simple
Λ(x) distribution optimization criterion. We will see that
this criterion remains valid also for short or moderate-length
frames. In particular, it will be shown by numerical results that
probability distributions designed for the asymptotic setting
turn to be effective also for realistic frame sizes.

By fixing Λ(x) (and hence λ(x)), for each value of the
offered traffic G the distribution ρ(x) can be determined. For
values of G below a certain threshold G∗, the bursts will be
recovered with a probability close to 1. Above the threshold
G∗, the procedure will fail with a probability bounded away
from 0. Hence, we define the threshold G∗ as the maximum
value of G such that

q > λ (1− ρ (1− q)) , ∀q ∈ (0, 1]. (3)

We will look for distributions Λ(x) leading to a high threshold
G∗, allowing (in the asymptotic setting) transmission with
vanishing error probability for any offered traffic up to G∗.

A. Derivation of the Sum Nodes Distribution

To get the threshold for a given Λ(x) we have first to derive
ρ(x). Recalling that the average number of collisions per burst
is Ψ′(1) and that m users attempt a transmission in a MAC
frame, the probability that a generic user sends a burst replica
within a given slot is Ψ′(1)/m. Thus, the probability that a
SN has degree l is given by

Ψl =

(
m

l

)(
Ψ′(1)

m

)l (
1− Ψ′(1)

m

)m−l

.

The node-perspective SNs degree distribution results in

Ψ(x) =
∑
l

Ψlx
l =

(
1− Ψ′(1)

m
(1− x)

)m

. (4)

By letting m → ∞ (asymptotic setting), (4) becomes
Ψ(x) = exp(−Ψ′(1)(1− x)) = exp(−GΛ′(1)(1− x)).11

Recalling the identities provided at the end of Section III,
the polynomial representation of the edge-perspective SNs
distribution is obtained as

ρ(x) =
Ψ′(x)

Ψ′(1)
= e−GΛ′(1)(1−x). (5)

By replacing (5) in (3), the threshold G∗ is defined as the
maximum value of G such that

q > λ
(
1− e−qGΛ′(1)

)
, ∀q ∈ (0, 1]. (6)

11For large n the number of transmissions in a slot follows a Poisson
distribution, Ψl = (1/l!)(GΛ′(1))l exp(−GΛ′(1)). As pointed out by one
of the anonymous reviewers, the graph representation for IRSA is closely
related to that of Luby-Transform (LT) codes [23]. For LT codes, the encoding
symbol degrees (corresponding to the SNs degrees of the IRSA case) are
defined by the code designer, whereas input symbols (which correspond to
BNs) involved in an equation are selected with a uniform distribution, resulting
for large blocks in Poisson-distributed input symbol degrees.
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Define now f(q) ≜ λ (1− exp(−qGΛ′(1))). A simple
upper bound on the threshold can be obtained by observing
that, for q → 0 and for G ≤ G∗, the derivative of f(q) with
respect to q must be less or equal than one, i.e. f ′(0) ≤ 1.
This turns in λ′(0)Λ′(1)G = λ2Λ

′(1)G ≤ 1 and hence in the
bound on the threshold is given by

G∗ ≤ 1

λ2Λ′(1)
. (7)

In the IRSA case, this bound is the counterpart of a similar
bound (referred to as stability condition) on the decoding
threshold for LDPC codes over the erasure channel [20].

B. Examples of Degree Distributions

Examples of distributions are provided next. We refer to
those with constant repetition rate l as l-regular distributions.
The others will be referred to as irregular distributions.

Example 1 (Slotted ALOHA). The SA can be considered as
a 1-regular distribution with Λ1(x) = x. No threshold can be
derived since no iterative IC process can take place. Note that
the throughput SA relates to the fraction of slots where one
and only one transmission attempt has been performed. Such
a fraction is given by the coefficient of the degree-1 term of
Ψ(x). Taking the Taylor’s expansion of (5) around x0 = 0, the
coefficient of the degree-1 term is given by GΛ′(1)e−GΛ′(1),
where Λ′(1) = 1. Thus, T = Ge−G.

Example 2 (CRDSA). The approach of [9] leads to a 2-
regular distribution (i.e., Λ2(x) = x2). The threshold derived
according to (6) is G∗ = 0.5. In this specific case, the actual
threshold matches with equality the condition (7).

Example 3 (IRSA with distribution Λ3(x)). The distribution
optimization has been obtained by differential evolution [24].
The maximum degree has been fixed to 8 due to practical
considerations, i.e. to limit the number of pointers in the
burst header.12 The distribution is given by Λ3(x) = 0.5x2 +
0.28x3 + 0.22x8, and the corresponding threshold is G∗ =
0.938. The evolution iteration after iteration of the probability
q, according to the equation qi+1 = λ(1 − exp (−qiGΛ′(1))
obtained by combining (1), (2) and (5), is presented in Fig. 3.

In Figure 4, the asymptotic (n → ∞) performance for
the three distributions is presented in terms of MAC burst
loss probability, PL (i.e., the probability that a transmission
attempt does not succeed) vs. the normalized offered traffic.
The relation between throughput and burst loss probability is
given by T (G) = G (1− PL(G)). The burst loss probability
has been obtained by iterating (for each value of G) equations
(1) and (2) for a maximum of Imax = 1000 times, and by
finally setting PL = Λ(p).13 The gain achievable by adopting

12In practical implementations, the overhead due to the inclusion of pointers
in the header of the burst may be reduced by adopting more efficient
techniques. One may include in the header the repetition degree for the burst
together with a random seed, out of which it is possible to reconstruct (by
a pre-defined pseudo-random number generator) the positions of the burst
replicas.

13In fact, the probability that a burst is lost after a certain amount of
iterations is given by the probability that all the edges connected to the
corresponding BN are unrevealed. Assuming a node with l connections,
such probability is pl. By averaging on the BNs distribution, we get PL =∑

l Λlp
l = Λ(p).
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Fig. 3. Evolution of the probability q for the case of Λ3(x) according to the
equation qi+1 = λ(1− exp (−qiGΛ′(1)), when operating at the threshold,
i.e. with G = G∗ = 0.938.

the irregular distribution Λ3(x) is evident in this asymptotic
setting. According to the threshold definition, all the offered
traffic for G ≤ G∗ = 0.938 turns in useful throughput (i.e., the
burst loss probability is essentially 0). For the approach of [9],
this holds just for G ≤ 0.5. Simulation results for short frames
and a reasonable number of iterations, presented in Section
VI, will confirm the validity of the proposed asymptotic
optimization criterion.
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the irregular distribution Λ3(x) = 0.5x2 + 0.28x3 + 0.22x8.

In Table I, degree distributions (obtained by differential
evolution [24]) for different maximum repetition rates are pre-
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sented. The use of repetition rates higher than 8 allows achiev-
ing thresholds close to 1. With a maximum repetition rate to
16, it is possible to get G∗ = 0.965. Even when the maximum
repetition rate is limited to a low value, large threshold values
are achieved. To say, with a maximum repetition rate 4, a
threshold G∗ = 0.868 is reached. For the sake of comparison,
we computed the threshold of a 4-regular distribution, i.e.
a distribution with constant repetition rate 4 [14], which is
G∗ = 0.772. Thus, asymptotically the irregular distribution
with maximum repetition rate equal to 4 permits to enhance the
throughput of roughly 12% w.r.t. the 4-regular CRDSA case.
Similarly, the optimized distribution with maximum repetition
rate 5 reaches a threshold G∗ = 0.898, while for the 5-regular
CRDSA case [14] the threshold is G∗ = 0.701. In this case,
the throughput gain is nearly 28%.

TABLE I
THRESHOLDS COMPUTED FOR DIFFERENT DISTRIBUTIONS

Distribution, Λ(x) G∗

0.5102x2 + 0.4898x4 0.868

0.5631x2 + 0.0436x3 + 0.3933x5 0.898

0.5465x2 + 0.1623x3 + 0.2912x6 0.915

0.5x2 + 0.28x3 + 0.22x8 0.938

0.4977x2 + 0.2207x3 + 0.0381x4 + 0.0756x5+
0.0398x6 + 0.0009x7 + 0.0088x8 + 0.0068x9+

0.0030x11 + 0.0429x14 + 0.0081x15 + 0.0576x16 0.965

V. REMARKS ON THE NORMALIZED EFFICIENCY

The comparisons carried out so far assume the same phys-
ical layer configuration (i.e., modulation and coding) and the
same peak transmitting power for all the analyzed schemes
(SA, CRDSA, IRSA). This assumption is correct for many
concrete applications, where the peak power available for
the terminal transmissions is bounded by practical reasons
(e.g. performance of the amplifiers and/or by regulations on
the spectrum usage). In this condition, the choice of the
modulation/coding scheme used for protecting each burst is
tailored to the signal-to-noise ratio (SNR) with which the
bursts are received. Hence, SA, CRDSA and IRSA would
transmit with the same spectral efficiency, and the throughput
comparison among the different schemes reflects the actual
amount of information that is conveyed by them.

It is nevertheless clear that CRDSA/IRSA require on aver-
age more power than SA. This is due to the average number
of packet repetitions required by the schemes, which is (by
neglecting the retransmissions due to unresolvable collisions)
1 for SA, 2 for CRDSA (as in its original setting [9]) and
in general Λ′(1) for IRSA. Following the approach proposed
in [3], one can compute the efficiency of a MAC scheme
normalized to the capacity of the multiple access Gaussian
channel under the constraint on the overall received signal
power (normalized efficiency). Given the average aggregate
signal power P (P =

∑m
i=1 Pi with Pi being the aver-

age power for the i-th terminal) and the noise power N ,

the sum-rate multiple access channel capacity is given by
Cref = log (1 + P/N) [25]. Following [3], for a generic
ALOHA-based access scheme the capacity can be evaluated
as Ci = Ti(G) log (1 + P/(ND)), where D denotes the ratio
between the average transmitted power and the power used
for the transmission of a burst (replica). For SA, D = G
and C1 = Ge−G log (1 + P/(NG)). For CRDSA, D = 2G
and hence C2 = T2(G) log (1 + P/(2NG)), while for IRSA,
D = Λ′(1)G and C3 = T3(G) log (1 + P/(Λ′(1)NG)),
where T2(G) and T3(G) are the throughput vs. offered traffic
functions of CRDSA and IRSA, for which a closed-form ex-
pression is not available. By fixing the overall received signal
power, and hence the signal to noise ratio P/N = Es/N0,
it is possible to compare the efficiency of the schemes w.r.t.
the channel capacity limit in terms of normalized efficiency
as η̃i = Ci/Cref .

VI. NUMERICAL RESULTS

Simulation results are presented next. The simulations have
been carried out at two levels. A first type of simulations
deals with the MAC layer only. In this case, we consid-
ered that a burst is recovered if and only if there is no
interference contribution in the corresponding slot (i.e., no
collision happened or the contributions of all the colliding
bursts have been cancelled). A second type of simulations
included a complete implementation of the signal waveform
received at the burst demodulator (comprising, apart from the
Gaussian noise, random phase/frequency/timing offsets) and of
the physical layer receiver algorithms. In this case, an actual
IC mechanism has been used (details in the Appendix B)
and complemented by the forward error correcting scheme
included in the last version of the DVB-RCS standard [4],
[26]. A comparison between the results obtained by the two
approaches is presented, which shows that the first (MAC
layer) approach, despite of its simplicity, tightly matches the
results obtained through a complete simulation of the physical
layer algorithms (which is indeed much more complex), at
least down to moderate-low packet loss rates.14 In the follow-
ing, unless otherwise stated, by “simulations” we will denote
MAC layer simulations. No capture effect, which may lead
to throughput gains, is considered. For IRSA, we adopted the
distribution Λ3(x) introduced in Section IV-B.

A first set of simulations assumes a fixed frame size of
n = 200 slots, which is considered among the typical values
for CRDSA and IRSA in interactive satellite systems [9].
Recall that the number of users attempting a transmission
within the frame is given by m = Gn. In Fig. 5, the
reference throughput curve for SA and the asymptotic curves
(obtained by the iterative IC analysis) for CRDSA and IRSA
are provided for G ∈ [0, 1]. Focusing on the simulation results,
with Imax = 100 iterations, IRSA achieves a throughput close
to 0.8, while CRDSA does not exceed T = 0.55. By limiting
the iteration count to 10 (a case of interest for low-complexity
implementations [9]), IRSA shows a small throughput degra-
dation with respect to the case of Imax = 100. The relation

14Similarly, the analysis provided in [9, Sec.V] showed that the performance
obtained by MAC layer simulations is very close to that achieved by
simulating the entire IC process, down to Es/N0 = 5 dB.
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throughput vs. load is linear almost up T = 0.7. Up to such
values, most of the traffic turns into throughput. The behavior
of IRSA when G approaches 1 deserves further comments.
While for values of G that are quite below the threshold G∗

the advantage of CRDSA and IRSA with respect to SA is
evident, at higher traffic values SA outperforms the contention
resolution schemes. This is due to the threshold phenomenon
related to the iterative IC process. For G < G∗ the iterative
burst recovery works well and most of the collisions are
resolved. As G > G∗, the IC process gets stuck in an early
stage, when number of burst replicas (i.e. the physical load)
within the frame is much larger than the number of bursts of
a SA scheme, resulting in a high packet loss rates.
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Fig. 5. Simulated and asymptotic throughput for SA, CRDSA, and for IRSA
with Λ3(x) = 0.5x2 +0.28x3 +0.22x8. n = 200. The results obtained by
simulating the actual IC mechanism (specified in the Appendix B) are denoted
by the marker ′□′, and are referred to a SNR at Eb/N0 = 2 dB.

Note that for the IRSA case the peak throughput with a
frame of n = 200 slots is lower than that predicted by
the iterative IC analysis. It is however reasonable that the
asymptotic performance shall be approached by considering
larger frames. The results in Fig. 6 confirm this fact. Here,
the performance of IRSA are depicted, assuming 20 iterations,
for different frame sizes n = 50, 200, 1000. The chart shows
that the scheme benefits from adopting longer MAC frames.
For CRDSA the phenomenon is less visible, and already with
n = 200 the gap from the asymptotic prediction is negligible.

In Fig. 7 the packet loss rates (PLRs) for SA and different
CRDSA/IRSA schemes are compared. The simulations were
performed for frames with n = 200 slots and with Imax = 20
iterations. Targeting a PLR = 10−2, one can note how SA
would need to operate at low loads (G ≃ 0.01), while as
already observed in [9] CRDSA with two repetitions would be
able to sustain a traffic close to G ≃ 0.35. The IRSA scheme
based on the Λ3(x) distribution is able to double the load w.r.t.
to CRDSA for the same target PLR. In fact a PLR = 10−2

is achieved at a channel traffic G ≃ 0.7. The IRSA scheme
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Fig. 6. Simulated and asymptotic throughput for SA and IRSA with Λ3(x) =
0.5x2 + 0.28x3 + 0.22x8. Various MAC frame sizes. Imax = 20.

tends to show a flooring effect at low offered traffic regimes.
More specifically, the PLR curve shows a remarkable loss
in the steepness just below PLR = 10−2, i.e. for G < 0.7.
Interestingly, also the CRDSA scheme with only 2 repetitions
suffers for a lack of steepness in its PLR performance curve.
As already observed in [14], the adoption of a CRDSA scheme
with a larger regular repetition brings to lower error floors. The
result for a 4-regular CRDSA is also provided in Fig. 7. Re-
markably, the floor disappears, at least down to PLR ≃ 10−4,
while a performance loss of the 4-regular CRDSA scheme can
be observed w.r.t. the Λ3(x)-based IRSA case at moderate-
high PLRs. In fact a PLR = 10−1 is achieved with G ≃ 0.72
for the 4-regular CRDSA, while IRSA allows achieving that
loss rate at G ≃ 0.83. The high error floors of the Λ3(x)-
based IRSA scheme and the poor PLR performance of the
2-regular CRDSA can be related to specific combinations of
collisions which block the iterative IC process. In terms of
graph representations, such collision patterns are inherently
related to (short) cycles in the bipartite graph, leading to so-
called stopping sets. In the LDPC codes context, a stopping set
is any set of variable nodes such that any check node connected
to this set is connected to it at least twice [27]. In analogy to
that, in the CRDSA/IRSA context we shall re-define a stopping
set as any set of BNs such that any SN connected to this set is
connected to it at least twice. Assuming that no capture effect
is adopted, it follows that such graph configurations lead to
unresolvable burst collisions. In the case of LDPC codes for
erasure correction, it is well known that the impact of small
stopping sets in the finite-length code performance is strictly
related to the fraction of degree-2 variable nodes in its bipartite
graph [28], [29]. We conjecture that in the CRDSA/IRSA case
a similar role is played by degree-2 BNs. This conjecture is
strengthened by the observation that the distribution Λ3(x)
is based on a large fraction (0.5) of degree-2 BNs, while in
the 2-regular CRDSA case the totality of the BNs possesses
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a degree 2. We designed hence a new BN distribution, in
which we limited the fraction of degree-2 burst nodes to 0.25.
The resulting distribution is denoted by Λ4(x) and is given
by Λ4(x) = 0.25x2 + 0.60x3 + 0.15x8. The corresponding
threshold is G∗ = 0.892, slightly less than that of Λ3(x).
The simulation results provided in Fig. 7 confirm that the
limitation of degree-2 BNs allows reducing the error floor,
which is lowered w.r.t. the Λ3(x) case by nearly one order of
magnitude. Indeed, if the PLR is used as a metric for selecting
the BN distribution, a different choice of the distribution shall
be applied depending on the target loss rate. To say, when
the target is PLR ≃ 10−2 or PLR ≃ 10−3, the distribution
Λ4(x) shall be used. When the PLR requirement is relaxed to
PLR ≃ 10−1, Λ3(x) represents the best choice. When there
is a demand for very low PLRs, the best choice could be a
4-regular CRDSA. These considerations hold for the frame
size considered in this example (i.e., n = 200 slots), and may
change for different frame sizes. For very large frames the
error floors would be much lower, and the asymptotic results
of Fig. 4 could be considered as a first estimation of the actual
PLR performance of the different schemes.
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markers ′▲′ and ′•′ for Λ3(x) and Λ4(x) respectively. Eb/N0 = 2 dB.

Further results were obtained by simulating the entire IC
process (details in the Appendix B). The bursts have been
encoded via the (4096, 1992) concatenated extended Bose-
Chaudhuri-Hochquenghem (BCH) - structured irregular repeat
accumulate (S-IRA) code [30], [31] included in the last
version of the DVB-RCS standard [4], [26], and transmitted
with QPSK modulation. The throughput with actual IC and
SNR at Eb/N0 = 2 dB (being Eb the energy per informa-
tion bit and N0 the one-sided noise power spectral density)
is depicted in Fig. 5. The results are provided for G =
0.75, 0.8, 0.85 and 0.9. The throughput loss w.r.t. the MAC
layer simulation case is inappreciable. In Fig. 7, the results
obtained through simulation of the IC process are compared
to those obtained through the MAC layer simulations for both

the Λ3(x) and Λ4(x) distributions. We collected results for
G = 0.5, 0.7, 0.75, 0.8, 0.85, 0.9 in the Λ3(x) case, and for
G = 0.5, 0.7 in the Λ4(x) case. The results at Eb/N0 = 2
dB confirm what was observed before. The performance
degradation with the actual IC algorithm is negligible in both
the low and the high PLR regimes.

In Figure 8, the normalized efficiency is provided for the
various schemes at different SNRs, for the case of n = 200
and Imax = 50. The overall received signal power has been
fixed in a way that Es/N0 = 0, 6, 12 and 15 dB (with
Es = EbRc log2 M being Es the energy per symbol, Rc

the channel coding rate and M the modulation order). The
normalized efficiency of a scheme is then computed as the
ratio between the capacity Ci (with i = 1, 2, 3 for SA, CRDSA
with 2 replicas and IRSA based on Λ3(x) respectively) of the
scheme under such received power constraint, and the capacity
of the corresponding multiple access channel, Cref [3]. The
normalized efficiency of the schemes strongly depends on
the SNR: at very low SNRs (e.g. 0 dB) SA shows better
performance than both CRDSA/IRSA. At high SNRs, CRDSA
and IRSA outperform SA, with an increasing gap in favor
of IRSA as the SNR becomes higher. In between, there is a
significant SNR range where CRDSA outperforms both SA
and IRSA. Nevertheless, for many of the systems where SA
is used (e.g., satellite systems) the actual limitation resides in
the peak transmission power. In this case, the results to be
considered for a performance comparison are those presented
in Figs. 5, 6 and 7.
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Fig. 8. Normalized efficiency for SA, CRDSA, and for IRSA with Λ3(x) =
0.5x2 + 0.28x3 + 0.22x8. Various Es/N0 values. n = 200.

VII. CONCLUSIONS

In this paper, an enhancement of the SA approach for
MAC has been introduced. The proposed approach, named
IRSA, represents an improvement of the CRDSA introduced
in [9], allowing variable-rate burst repetition according to a
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given probability distribution. The probability distribution is
optimized by means of a novel bipartite graph representation
of the IC process. Large gains in terms of throughput are
achieved with respect to both conventional SA and CRDSA.
It has been shown that IRSA is able to achieve a throughput
close to T ≃ 0.97 in an asymptotic setting and near to T ≃ 0.8
in practical implementations, resulting in a throughput gain
of ∼ 45% with respect to CRDSA. An analysis in terms
of normalized efficiency has been introduced, allowing com-
parisons under the assumption of equal average transmission
power. Design criteria for the probability distribution are also
introduced, which permit to achieve low floors for the packet
loss rate. Simulation results, including an actual IC mechanism
described in the Appendixes, substantiate the validity of the
presented analysis and confirm the high efficiency of the
proposed approach down to a signal-to-noise ratio as a low
as Eb/N0 = 2 dB. The introduced graph representation con-
stitutes a novel application of bipartite graphs to the analysis
iterative receiver algorithms.

APPENDIX A
ANALYSIS IN PRESENCE OF IMPAIRMENTS AND CAPTURE

EFFECT

The analysis developed in Section IV relies on the hy-
pothesis that a burst can be recovered with probability 1
whenever the l − 1 bursts colliding in the same slot have
been revealed. Nevertheless, the proposed analysis can be
adapted to take into account more general conditions. To do
so, let us first introduce the weights wl, l = 1 . . .∞, such
that wl represents the probability that a burst is successfully
decoded after removing the interference contribution of the
l − 1 colliding bursts [32]. We keep on denoting by 1 − q
the probability that one among the l − 1 colliding bursts has
been revealed elsewhere. It turns that the probability that the
remaining burst is successfully decoded is

1− p = wl(1− q)l−1. (8)

It follows that (2) can be rewritten as

pi =
∑
l

ρl

(
1− wl (1− qi)

l−1
)
= 1− ρ̃ (1− qi) , (9)

where ρ̃(x) ≜
∑

l ρlwlx
l−1. Being from (5) ρ(x) =

exp (−GΛ′(1)(1− x)) =
∑

l ρlx
l−1, we thus derive the

coefficients ρl of the Taylor series around x0 = 0, resulting in

ρl =
1

(l − 1)!
(GΛ′(1))l−1e−GΛ′(1). (10)

Recalling that ρ(x) = Ψ(x) and that ρ(x) =
∑

l ρlx
l−1,

Ψ(x) =
∑

l Ψlx
l, we have ρl = Ψl−1. It turns that (10)

can be alternatively obtained by noting that for large n the
number of collisions in a slot follows a Poisson distribution,
Ψl = (1/l!)(GΛ′(1))l exp(−GΛ′(1)). The coefficients given
by (10) can be used in (9) together with (1) to analyze the
iterative IC process for a given choice of the probabilities
{wl}. As an example, one could analyze the case where
wl = 1 for l ≤ l, while wl = 0 for l > l. This setting
represents the case where a non-linear effect (e.g. clipping,

saturation) jeopardizes the success of the IC process whenever
too many collisions take place in a slot. In this case, ρ̃(x) is
the truncation of the Taylor series of ρ(x) at the l-th term, i.e.

ρ̃(x) =

l∑
l=1

ρlx
l−1 = e−GΛ′(1)

l∑
l=1

1

(l − 1)!
(xGΛ′(1))l−1.

In a similar manner, an eventual capture effect can be taken
into account in the analysis. To do so, it is sufficient to
generalize the above-presented approach. We introduce the
weight wl,t, which denotes the probability that a burst replica
can be decoded in a slot with l colliding packets, after re-
moving t interference contributions. Considering a slot where
l collisions took place, the probability to decode one burst is
hence given by

1− p = wl,l−1(1− q)l−1 +

l−2∑
t=0

wl,t

(
l − 1

t

)
(1− q)tql−1−t,

where the term wl,l−1(1 − q)l−1 corresponds to (8) (case of
no capture effect) and the term

∑l−2
t=0 wl,t

(
l−1
t

)
(1− q)tql−1−t

accounts for the capture effect. By averaging over the BN
distribution we finally get the modification of (9) as

pi = 1−
∑
l

ρl

l−1∑
t=0

wl,t

(
l − 1

t

)
(1− qi)

tql−1−t
i . (11)

APPENDIX B
IMPLEMENTATION OF THE IC MECHANISM

Let’s consider the case where l users attempt a transmis-
sion within the same slot. We stick to the case of perfect
power control and equal channel condition (gain) among the
users. We denote by u(i)(t) the complex baseband pulse
amplitude modulation (PAM) signal transmitted by the i-
th user, i.e. u(i)(t) =

∑ns

k=1 b
(i)
k γ(t − kTs), where ns is

the number of symbols composing the burst, {b(i)k } is the
sequence of such symbols and Ts is the symbol period. By
γ(t) = F−1

{√
CR(f)

}
we denote the pulse shape, being

CR(f) the frequency response of the raised-cosine filter.
Each contribution is received with a random delay ϵi, a

random frequency offset fi ∼ U [−fmax, fmax] and a random
phase offset ϕi ∼ U [0, 2π).15 The received signal after
the matched filter (MF) is given by r(t) =

∑l
i=0 z

(i)(t) ∗
h(t) + n(t) where n(t) is the Gaussian noise contribution,
h(t) = γ∗(−t) is the MF impulse response and z(i)(t) =∑ns

k=1 b
(i)
k γ(t − kTs − ϵi) exp(j2πfit + jϕi). Assuming fre-

quency shifts that are small w.r.t. the signal bandwidth (i.e.,
fmaxTs ≪ 1), the received signal can be approximated by

r(t) ≃
l∑

i=1

ũ(i)(t− ϵi)e
j2πfit+jϕi + n(t). (12)

Here, ũ(i)(t) is the response of the MF to u(i)(t). We assume
next that the contribution to be recovered is the one for i = 1,
and the residual l−1 contributions ũ(2)(t), ũ(3)(t), . . . , ũ(l)(t)

15U [a, b] denotes the uniform distribution over the closed interval [a, b],
while U [a, b) denotes the uniform distribution over the left-closed right-open
interval [a, b).
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represent the interference to be cancelled. We consider more-
over that the l−1 interfering signals correspond to bursts that
have been correctly decoded in other slots.

To proceed with the IC, it is necessary to estimate the set of
parameters {ϵi, fi, ϕi}, for i = 2 . . . l. As discussed in [9], we
consider the case where ϵi and fi can be accurately estimated
on the corresponding burst replica that have been already
recovered, and that their values remain constant through the
frame. As pointed out in [9], this argument does not hold for
the phase rotation terms ϕi, which may not be stable from
a slot to another one. We need therefore to estimate ϕi for
each burst directly on the slot where we want to eliminate its
contribution. An estimator for ϕi is suggested in [9], which
takes advantage of a training sequence included in each burst.
A finer estimation can be obtained by a data aided (DA)
approach. Recall in fact that the symbol sequences {b(i)k }
(for i = 2 . . . l) are known at the receiver, since they can
be reconstructed from the twin packets decoded in other slots.
The IC works as follows. We denote by y(i)(t) the signal at
the input of the phase estimator for the i-th contribution. In
the first step, the input signal is given by y(2)(t) = r(t) and
the phase of the first interfering user (i = 2) is estimated as

ϕ̂2 = arg

{
ns∑
k=1

y
(2)
k

(
b
(2)
k

)∗
}

with
y
(2)
k = y(2)(kTs + ϵ2)e

−j2πf2(kTs+ϵ2).

After the estimation of the phase offset for the first in-
terferer, the corresponding signal can be reconstructed as
ũ(2)(t − ϵ2)e

j2πf2t+jϕ̂2 and its contribution can be removed
from (12), i.e.

y(3)(t) = y(2)(t)− ũ(2)(t− ϵ2)e
j2πf2t+jϕ̂2 .

The IC proceeds serially.16 For the generic i-th contribution,

ϕ̂i = arg

{
ns∑
k=1

y
(i)
k

(
b
(i)
k

)∗
}

(13)

with y
(i)
k = y(i)(kTs + ϵi) exp (−j2πfi(kTs + ϵi)) and

y(i)(t) = y(i−1)(t)− ũ(i−1)(t− ϵi−1)e
j2πfi−1t+jϕ̂i−1 .

After the cancellation of the l − 1 contributions, the residual
signal will be denoted by y(1)(t) and is given by the 1-st user’s
contribution, the noise n(t), and a residual interference term
ν(t) due to the imperfect estimation of the interferers’ phases
(causing imperfect IC), i.e.

y(1)(t) = ũ(1)(t− ϵ1)e
j2πf1t+jϕ1 + n(t) + ν(t). (14)

The estimation of {ϵ1, f1, ϕ1} is then performed on the signal
of (14). After sampling, soft-demodulation takes place, and
the log-likelihood ratios for the codeword bits are derived.17

16Due to the perfect power control, we proceed with the successive IC
without any specific ordering of the users. In case of power unbalance, the IC
may be enhanced by proceeding in the order of decreasing received powers
[10]–[13].

17An accurate estimation of {ϵ1, f1, ϕ1} can be obtained by iterating
decoding and estimation [33].

The advantage of this solution stems from the length of
the sequence used for the phase estimation in (13). In [9]
it was proposed to use a training sequence, which typically
is few tens of symbols long. A burst can be composed by
some hundreds (or thousands) symbols. This DA approach
works if the cross-correlation between the sequences {b(i)k },
i = 1 . . . d, is on average low. This is indeed the case if
each user encodes sequences whose bits {Xk} can be modeled
as independent and identically-distributed (i.i.d.) random vari-
ables, with Pr{Xk = 0} = Pr{Xk = 1} = 1/2. Alternatively,
one may use for the estimation just the parity part of the
codeword, which under certain conditions (e.g. the use of a
channel code with good distance spectrum properties) presents
sufficient randomness.

We simulated the IC process for slots with various numbers
of collisions. The information sequences were randomly gener-
ated, then encoded through the (4096, 1992) code of the DVB-
RCS standard [4], [26] which is obtained by the concatenation
of an outer (2048, 1992) extended BCH code with an inner
(4096, 2048) S-IRA code [30], [31]. QPSK modulation was
considered for the simulations. It follows that each sequence
{b(i)k } is made by 2048 QPSK symbols. For each transmission
attempt we generated the parameters {ϵi, fi, ϕi} according to
the distributions presented before. The maximum frequency
shift has been set such that fmaxTs = 0.01. The received
signal r(t) has been then oversampled at a rate Ms/Ts

with Ms = 8, and the IC algorithm has been applied to
the oversampled digital signal. Once the l − 1 interference
contributions have been cancelled, log-likelihood ratios for the
codeword bits have been input to the channel decoder. In Fig. 9
the impact of the IC process on the packet error rate (PER) for
the burst to be recovered (i.e., the signal for i = 1) is shown in
terms of PER vs. Eb/N0 for l = 2, 4, 8 burst collisions. The
performance on the additive white Gaussian noise (AWGN)
channel without collisions is provided as reference. Note that,
up to l = 8 collisions, the performance degradation due to the
imperfect estimation of the phase offsets is small, i.e. less than
0.1 dB at PER ≃ 10−3. Considering a SNR as Eb/N0 = 1.8
dB, after removing l − 1 = 7 interference contributions we
have PER ≃ 10−3.
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