4th HYPER-I-NET Summerschool 2010

General introduction to CHB

P. Gege, DLR, 13 Sept. 2010
Introduction

- Funded partly by ESA to establish **Calibration Home Base (CHB)** for APEX

- Designed for hyperspectral sensors similar to APEX
 - Mass: 170 kg (excl. adapter)
 - λ-range: 380–2500 nm
 - Bandwidth: 5–10 nm
 - IFOV: 0.48 mrad
 - FOV: $\pm 14^\circ$

- Operational since 2007.
Premises

- Close to airfield of DLR Oberpfaffenhofen
- Suited for bulky and heavy instruments up to 500 kg (incl. adapter)
- Sensor in same position as in aircraft
- Sensor stable on vibrationally isolated calibration bench
 - Spectral calibration
 - Geometric calibration
Folding mirror concept

1. Pillar bearing instrument + adapter
2. Folding mirror
3. Assembly for geometric measurement
4. Assembly for spectral measurement
Flat-field measurements

Large integrating sphere
- Ø 1.65 m
- Aperture 55 x 40 cm²
- Inhomogeneity < 0.5 % rms
- 18 lamps
- Various radiance levels (57 – 1524 W m⁻²)

1. Frame
2. Small integrating sphere
3. Large integrating sphere

AISA (Kuhlbach 2008)
Radiometric calibration

Small integrating sphere
- \(\Phi 0.50 \) m
- Aperture 4 x 20 cm\(^2\)
- Traceable to PTB
- Uncertainty (k=2) 1 % in VIS
Absolute radiometric calibration of radiance sources

Relative radiance
1. Calibrated halogen lamp
2. Calibrated diffuser
3. Spectrometer

Absolute radiance
4. 5 Filter radiometers

Uncertainty (1σ)
- 1.5 % at 0.35-1.7 µm (2011)
- 2.5 % at 1.7-2.5 µm (2012)
Spectral measurements

1. Monochromator Oriel MS257
 - Range: 0.38–14 µm using 7 gratings
 - Uncertainty: ± 0.1 nm
 - Spectral bandwidth: > 0.1 nm
 (depending on grating and slit width)

2. Parabolic mirror
 - f = 119 mm
 - Beam divergence ~ 0.8 x 8 mrad²
 - Beam cross section ~ 3 x 4 cm²
Spectral measurements: Tunable laser

Specifications
- Range: 0.4 – 2.5 µm
- Resolution: 3 – 7 cm\(^{-1}\)
- Repetition rate: 10 Hz

Advantages
- High energy
- No sensor alignment
- All pixels simultaneous

Disadvantages
- High safety requirements
- Fix bandwidth
- Pulsed (not suited for scanners)
Geometric measurements

1. Slit wheel
 - 3 horizontal + 3 vertical slits
 - Widths: 50, 100, 1000 µm

2. Collimator
 - f = 750 mm
 - Divergences: 0.067, 0.13, 1.3 mrad
 - Beam cross section: \varnothing 12 cm

3. Angle stepping
 - Across track: 0.0017 mrad
 - Along track: 0.0076 mrad

LSFs of AISA pixel no. 192
(adapted from Suhr 2008)

Diagram:

- Lamp
- Slit
- Collimator
- Sensor

Graph:

- Normalized signal vs. Illumination angle ($^\circ$)
Auxiliary measurements

- Detector linearity
 - Small sphere and neutral density filters

- Spectral stray light
 - Monochromator
 - Small sphere and bandpass filters
 - New: Tunable laser

- Spatial stray light
 - From inside FOV: set-up for geometric measurements (LSF)
 - From outside FOV: large sphere and reflectance targets

- Polarisation
 - 3 linear polarisers 0.47 – 2.5 µm
Computer control

- **CHB Slave**
 - Controls CHB hardware components

- **CHB Master**
 - Measurement concept
 - Commands sensor
 - Commands CHB slave
Summary and schedule

- Facility for characterisation of airborne imaging spectrometers and field spectrometers
 - Bulky and heavy instruments up to 500 kg
 - Spectral range: 380 – 2500 nm
 - Radiometry
 - Spectroscopy
 - Geometry

- Continuously upgraded
 - Tunable laser
 - Transfer radiometer

- Visit: Today 13:00 – 14:15 h (4 groups; C. Schwarz, DLR)

- Round-robin experiment for field spectrometers: Tuesday and Wednesday (4 groups; L. Suarez, RSL + C. Schwarz, DLR)