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Abstract 

 Nowadays Digital terrain models play very crucial role in many applications, 
including engineering to design heavy construction project such as dams, tunnels and 
highways as well as orthophoto production and modeling and visualization in military 
applications. While new techniques such as LIDAR are available for almost instant 
Digital Surface Model generation, the use of stereoscopic high-resolution satellite 
imagery (HRSI), coupled with image matching, affords cost-effective measurement of 
surface topography over large coverage area. 

However automatic filtering algorithms should be used to extract the bare lands 
without vegetation canopy and buildings and classify surface to terrain and off 
terrains points. Additionally blunders may occur throughout DSM and DTM 
generation. 

At the department of photogrammetry and image processing at German 
Aerospace Center (DLR) a novel algorithm for automatic DTM generation from high 
resolution satellite images has been developed.  It consists of two major steps: DSM 
generation and DTM generation. In the first step, Digital Surface Models (DSMs) are 
created from stereo scenes with emphasis on fully automated georeferencing based 
on semi-global matching. In the second step which is dedicated to DSM filtering, the 
DSM pixels are classified into ground and non-ground using the algorithm motivated 
from the gray-scale image reconstruction to suppress unwanted elevation pixels. In 
this method, non -ground regions, i.e., 3D objects are hierarchically separated from 
the ground regions. 

However this technique implies the risk of error and ill determined areas. The 
objectives of this thesis are to identify performance of the filtering algorithm and 
make a comparison with some others well known filtering algorithms and also type 
and magnitude of errors and corresponding contributions in generated DSM to 
mitigate the errors and outliers as much as possible. Additionally A method based on 
robust statistical estimation is presented to detect gross errors in DTMs. 

In the end it is concluded that general performance of filter algorithm is quite well 
in particular for vegetation areas. However, some difficulties in filtering are observed 
in complex landscape especially those that located on steep slopes. In the case of 
DSM generator algorithm computed accuracy respect to LASER data sets for region 
with hilly grass property is poor.  Conversely it is observed that corresponding 
accuracy for DSM generated from area with residential and hilly bared characteristics 
follow the accuracy of LIDAR datasets very well. 
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1. Introduction 

     A model of the terrain surface is often a necessary requirement in identifying, 
analyzing and mitigating problems in many fields including hydrology, 
geomorphology, and environmental modeling.   

In representing of the terrain surface, the Digital Terrain Model (DTM ), has been 
one of the most important concepts with the development of computing technology, 
modern mathematics, and computer graphics.  The idea of generating DTMs is 
proposed nearly 50 years ago by Miller at the Massachusetts Institute of Technology, 
Boston, USA (kraus et al., 2004). They selected and measured from stereo models the 
3-D coordinates of the terrain points along the designed roads and formed the digital 
profiles in the computer to assist road design. Accordingly they defined the concept 
of DTM as follows (Miller and La Flamme, 1958): 

"The digital terrain model is simply a statistical representation of the continuous 
surface of the ground by a large number of selected points with known X, Y, Z 
coordinates in an arbitrary coordinate field". 

Digital Terrain Models have found wide applications in various disciplines such as 
mapping, remote sensing, civil engineering, mining engineering, geology, 
geomorphology, military engineering, land planning , and communications since their 
origin in the late 1950s(Catlow, 1986; Petrie and Kennie, 1990; Maune et al., 2001). 
Today several techniques are available for generating elevation data such as SAR 
remote sensing, photogrammetric techniques and airborne laser scanning as a 
powerful technology for automated elevation data collecting from the Earth's 
surface. 

Built-up and forested areas, however, need automated filtering and classification 
for separating terrain and off-terrain regions in order to generate DTMs. For DTM 
generation from elevation data the automatic elimination of off-terrain points is 
employed by means of filtering. The filtering procedure is to distinguish between 
points which belong to the elevation objects and those that belong to the bare earth. 
Filtering is an important procedure, because the quality of filtered points has a direct 
impact on the quality of the DTM. In other words, errors in the filtered points lead to 
the production of a false digital terrain model (Sithole, 2005). 

However, all of these corresponding techniques to generate DTM imply random, 
systematic and gross errors and thus, including inherent errors in DTMs which 
constitute uncertainty to achieve the desirable precision in interested applications. 
Consequently some procedures or methodologies for quality management and 
control of the DTMs are required. In this manner several methods have been 
developed to assess the quality of produced DTMs within the recent years. Root 
Mean Square Error (RMSE) is the most common way to quantify the difference 
between the generated DTM and ground truth (Prodobnikar, 2009). Additionally 
other statistical parameters such as arithmetic mean of height differences, terrain 
slope, standard deviation, covariant function for heights (Osman, 1987), 
autocorrelation analysis (Lee and Marion, 1994) as well as enhanced visual 
techniques can be utilized for quality assessment. 
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Nevertheless for derivation of accuracy measurements it should be noted that  
outliers may exists and the distribution of errors might not be normal. These facts 
are well known and mentioned in recently published textbooks and manuals such as 
(Heohle and Heohle, 2009; Li et al, 2005; Maune, 2007). Consequently, as first step 
for DTM quality assessment normality of data and considering the existing blunders 
which introduce non-normal distribution and advocate robust statistical methods for 
accuracy assessment are taken into account. 

  The accuracy of a DTM is a result of many individual factors which are 

(1) Attributes of the source data as accuracy, density, and distribution. 

(2) Characteristics of the terrain and finally  

(3) the methods used for the construction of DTM surface, i.e. DTM generation 
algorithms and interpolation techniques (Li, 1992). 

As result of above discussion this study is driven by three main objectives: 

(a) Analyze the accuracy of the DTMs with statistical and visual methods. For that, 
the DTMs are generated from High resolution satellite images from different regions   
(residential and hilly forested areas are processed).  

(b) Propose an algorithm based on robust statistical methods to detect gross errors. 

(c) Determine the comparative performance of filtering algorithms and their 
corresponding problems that still require further attention.  
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1.1 Motivation and objectives 

The accuracy of digital terrain models is of concerns to both DTM users and DTM 
producers.  It has been considered as a key research topic in International Society of 
Photogrammetry and Remote Sensing(ISPRS), commission III (Li, 1993) about quality 
analyze of DTM. The subject is still believed to be as a hot topic in this area and 
perhaps as a major factor to be considered, because if the accuracy of a DTM does 
not meet the requirement then the whole project needs to be repeated(Li, 2005).  

Automated processing of the raw data to generate DTMs is not always successful 
and systematic errors and many outliers may still be present in the final product. 
Distribution of accuracy in DTMs depends on the spatial variation of the accuracy, 
density of the height data, suitability of the interpolation methods and finally the 
accuracy of the original observations as described in (Karel et al., 2006).   

Unlikely most DTM users are not fully aware of DTM accuracy and it might be for 
number of reasons. For example few software tools have been developed for such 
specific purpose and also lack of corresponding research in this area. Accordingly, 
quality assessment and estimation of the DTM accuracy based on contribution and 
magnitude of different kinds of errors such as random, systematic and gross errors 
are taken into account. However quality assessment of DTM relies heavily on 
statistical methods. In contrast visual methods are generally neglected despite their 
potential for improving DTM quality, (Podobnikar, 2009). Furthermore, visualization 
as an effective tool for analyzing elevation model accuracy and its convenience for 
users is considered. 

Another point has to be highlighted here is the specification of the accuracy 
measures based on the assumption that the errors follow a Gaussian distribution and 
that no outliers exist. This assumption is not true in most cases and the derivation of 
accuracy measures has to adapt to the fact that outliers may exist and the 
distribution of the errors might not be normal. Therefore there is a need for accuracy 
measures, which are not being influenced by outliers (Li et al., 2005and Maune, 
2007) 

Moreover the objective of this research is to propose robust statistical and 
visualization methods to detect the kinds of errors and corresponding magnitudes in 
produced DTMs. However because of the broad range of DTM generation algorithms, 
it should be noted that the magnitude of errors pertaining to different algorithms is 
different. In this study we focus on DTM generation algorithm developed at German 
Aerospace Center (DLR). In this manner different circumstances such as areas with 
disparate properties for both steps of DTM generation algorithm, namely Filter and 
DSM generator algorithm are considered.  

  

 

 

 



 

4 
 

1.2  Thesis Outlines  

The thesis is organized in six chapters. The first chapter describes the introduction 
to rationale of the project and it provides the background information on the Digital 
Terrain Models and DTM accuracy assessment. Chapter2 provides theoretical 
background on data sources and corresponding accuracy for DTM generation. 
Additionally process chain for automatic DTM generation from high resolution 
satellite images developed at German Aerospace Center for DTM generation is 
explained.  

In the third chapter, the measurements for the accuracy assessment of DTMs that 
rely on statistical and visual methods are discussed. Chapter4 concentrates on the 
second step of the DTM generation algorithm which is dedicated to DSM filtering. In 
this chapter quantitative and qualitative assessment of the algorithm pertaining to 
performance of the algorithm is carried out. 

Chapter5 analyzes the three types of errors and their magnitudes, namely 
random, systematic and gross errors in DTMs for corresponding different high 
resolution satellite images. In this chapter a new method for fast gross error 
detection from DSMs generated from matching algorithms is proposed and finally in 
chapter6 the conclusion of the project and some outlook for the future work is 
described. 
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2 Theoretical Background 

 

    This chapter provides a short overview on the theory of the DTM generation 
algorithm implemented at DLR. This algorithm consists of two major steps: DSM 
generation and DTM generation. In the first step, Digital Surface Models (DSMs) are 
created from stereo scenes with emphasis on fully automated georeferencing based 
on semi-global matching (Section2.2). In the second step which is dedicated to DSM 
filtering, the DSM pixels are classified into ground and non-ground using the 
algorithm motivated from the gray-scale image reconstruction to suppress unwanted 
elevation pixels. In this method, non-ground regions, i.e., 3D objects are 
hierarchically separated from the ground regions (Section 2.3). 

However initially an overview of data sources for digital terrain modeling and 
corresponding accuracies is necessary and is portrayed in the first section of this 
chapter.   

2.1 Data Sources for Digital Terrain Models 

For terrain surfaces with different type of coverage, different measurement 
techniques for data acquisition may be used. However to chose the effective 
technique, tradeoff between accuracy and production cost always has to be 
considered. The cost for generating DTMs can become significant for increased 
resolution, accuracy, and especially number of elevation points. Figure2.1 shows a 
comparison of the cost of producing 1km² against the accuracy of the different data 
acquisition techniques ( Mercer, 2004). 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.1 Comparison cost of different data acquisition techniques 



 

6 
 

 

2.1.1 Traditional Surveying Techniques 

Traditional surveying techniques determine the position of a point through the 
measurement of distance and angles. The traditional instruments are theodolites and 
computerized total stations. In the term of accuracy measurement, a millimeter-level 
can be reached by ground surveying. In the term of efficiency, ground surveying is 
more labor intensive and therefore is only suitable for modeling small area. 

 

2.1.2 Aerial and Space images 

Arial images are the most effective way to produce and update topographic maps. 
It has been estimated that 85% of all topographic maps have been produced by 
photogrammetric techniques using aerial photographs. Aerial photographs are also 
the most valuable data source for large-scale production of high-quality DTMs. The 
accuracy of photogrammetric data depends on the images used. In the case of space 
photogrammetry using satellite images, the accuracy could be lower, depending on 
resolution. In the terms of efficiency, most of the processes in photogrammetric 
technique have been automated nowadays and thus data acquisition is more 
efficient.  

 

2.1.2 Cartographic Data Sources   

Most of the DTMs currently available have been interpolated from counters by 
sampling designs and computer algorithms that add artifacts and other distortions 
inherent in the processing (Shortridge, 2001). This analog data may be digitized 
through manual digitization or by means of automatic raster scanning and 
vectorization. The accuracy of this method is relatively low. In the terms of efficiency 
the speed of operation for map digitization is very slow. Conversely the raster 
scanning process which can easily be automated but human interference is still 
needed during the raster and vector conversions. 

 

2.1.3 Airborne Laser Scanning (ALS) 

     During the past few years airborne laser scanning has become a reliable technique 
for data capture from the earth surface. Using a laser scanner for data acquisition 
will yield to a 3D point cloud that consists of quasi randomly distribution points. The 
exterior orientation can be accomplished by GPS and INS ( Lohr, 1999). The reduction 
of costs for DSM production and increase of reliability, precision and completeness 
play a major role in preferring laser altimetry as the acquisition method above 
analytical or digital photogrammetry( Vosselman and GerdMaas,2001). The two 
major problems in this field are the detection and correction of systematic errors in 
the lasescanner data and separation of ground points from points resulting from 
reflections on buildings, vegetation or other object above the ground. (Schardt et al., 
2000). 
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The elevation accuracy of LIDAR data is usually in the 15 to 25 cm range, making it 
suitable for some applications that require accurate 3-D data in urban areas such as 
3-D city Modeling. Because LIDAR systems generate 3-D coordinates of terrain points 
directly, the production cycle is shorter than photogrammetric methods. 

 

2.1.4 Radargrammetry and SAR Interferometry 

RADAR (RAdio Detection and Ranging) are active remote sensing systems. Radio 
waves are the part of the electromagnetic spectrum that has wavelengths 
considerably longer than visible light. In practice, Synthetic Aperture Radar (SAR) is 
widely used to acquire images. Images acquired by SAR are very sensitive to terrain 
variation. This is the basis for three types of techniques, which are, radargrammetry, 
interferometry, and radarclinometry ( Polidori, 1991). Interferometric Synthetic 
Aperture Radar(InSAR) is an established technique that allows the estimation of 
elevation from the phase difference between two overlapping images acquired from 
slightly different sensor positions (Bamler and Hartl, 1998). InSAR is an appropriate 
technique for deformation measurement (i.e. relative change) with  accuracy of 
about 1cm. However, for DTM data acquisition (i.e., absolute heights on terrain 
surface), the accuracy is only about 5m.  Radargrammetry acquires DTM data using 
the measurement of parallax shifts between two echoes. Radarclinometry acquires 
DTM data through shape from shading. Radarclinometry makes use of a single image 
and the height information is not accurate enough for DTM production. 

 

2.2 Digital Surface Model generated by stereo matching 

As mentioned in prior section DSMs can be provided from broad range of data 
sources. Herein generation of DSMs from high resolution satellite imageries is 
desired and considered. These DSMs may be provided in a number of ways. Stereo 
image matching is the central technique for DSM generation from stereo images 
(D'Angelo, 2010). In place of automatic processing methods, matching processing or 
procedures based on computer vision are common. In the following two sections 
correlation based image matching and semiglobal matching algorithms are 
explained. The later is utilized as powerful algorithm for stereo matching as part of 
our DTM generation chain.  

2.2.1 Correlation image matching algorithm 

    In the past, DSM generation using satellite imagery at medium resolutions was 
associated with across-track stereo geometry and unreliable image matching due to 
large time lags between data acquisition of images. However at the present time 
with employing new techniques in imagery collected by high resolution satellite 
image sensors allows consistent imaging conditions and substantially increases image 
matching success (Poon et al.,2005). Correlation or Image matching algorithm refers 
to the automatic identification and measurement of corresponding image points that 
are located on the overlapping area of multiple images. This method determines the 
correspondence between two image areas according to the similarity of their gray 
level values. It uses correlation windows. These windows consist of a local 
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neighborhood of pixels. One example of correlation windows is square 
neighborhoods (e.g., 3x3, 5x5, 7x7). In practice the windows vary in shape and 
dimension based on the matching techniques. Area based correlation uses the 
characteristics of these windows to match the ground feature locations in one image 
to ground features on the other. Cross correlation and least squares are two 
common techniques used in correlation image matching method.  

Cross correlation computes the correlation coefficient of the gray values between 
template window and the search window according to the flowing equation: 
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Where: 

          correlation coefficient. 

  rcg ,   gray value of the pixel  rc,  

rc 11
,    pixel coordinates of the left image. 

rc 22
,   pixel coordinates on the right image. 

N         =  total number of pixels in the window.  

I, j         = pixel index into the correlation window.  

When using the cross correlation, it is necessary to have a good initial position for 
the two correlation windows. If the exterior orientation parameters of the images 
being matched are known, a good initial position can be determined. Also, if the 
image contrast in the windows is very poor, the correlation can fail.   

Least square estimation is used to derive the parameters that best fit a search 
window to a reference window. It accounts for both gray scale and geometric 
differences, making it especially useful when ground features on one image look 
somewhat different on the other image. 

 

2.2.2 Semiglobal image matching algorithm (Hirschmueller, 2008) 

Semiglobal image matching algorithm (SGM) avoids using matching windows, and 
is thus able to reconstruct sharp object boundaries. Instead of strong local 
assumption on the local surface shape, a global energy function E is minimized for all 
disparities (local shift between stereo pair) D . SGM performs a semiglobal 
optimization by aggregation cost from 16 directions and find an image D which lead 
to the low energy E :  
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The function C defines the matching cost (mutual information) between the 
image pixels for each pixel location p and possible disparity pD  in the first image. 

These cost functions adapt to brightness changes in the stereo images and allow 
matching of images with large viewing angle differences. The second and third terms 
of E penalize disparity changes in the neighborhood pN  at each position p . The 

penalty 1p  is added for all disparity changes equal to one pixel. At larger 

discontinuities, fixed cost 2p is added. This cost function favors similar or slightly 

changing disparities between neighboring pixels, and thus stabilizes the matching in 
image areas with weak contrast, but also allow large disparity jumps in areas with 
high contrast. 

 

 2.3 Separating of Terrain and off-Terrain based on morphological 
Reconstruction (Arefi, 2009) 

 

To generate a high quality DTM from DSM data, 3D non-ground points have to be 
separated from the ground points.  Several algorithms have been developed to 
automatically detect the bare land from DSM and they are generally referred as 
filtering algorithms. Morphological grayscale reconstruction plays the key role in 
DTM generation algorithm and is described here.     

Morphological grayscale reconstruction based on geodesic dilations involves two 
input images. These two images are called marker and mask . Both images must have 
the same size and the mask image must have intensity values greater or equal to the 
marker image. In geodesic dilation the marker image is dilated by an elementary 
isotropic structuring element and the resulting image is forced to remain below the 
mask image. This means, the mask image acts as a limit for the dilated marker image. 

In the following the marker image is denoted by J and the mask image by I . Both 

images are identical in size, and IJ  . 

The classical grayscale dilation of J  with structuring element B is given by 

                                 BJJ )(                                                                    3.2                  

The symbol  is used for the dilation operation. The geodesic dilation of size 1 of 
the marker image J with respect to mask image I is defined as: 

                            ,)()(1 IBJJI                                                                      4.2  

Where   denotes point wise minimum, BJ   is the dilation of J with the 
elementary isotropic structuring element B . The geodesic dilation of size n of the 
marker image J with respect to a mask image I is obtained by performing n 
successive geodesic dilation of size 1 of J  with respect to I  
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Equation 2.5 defines the morphological reconstruction by geodesic dilation of the 
mask I from the marker J . The desired reconstruction is achieved by carrying out 
geodesic dilations until stability is reached (Vincent, 1993). In other words, 
morphological reconstruction can be thought of conceptually as repeated dilations of 
the marker image until the contour lines of the marker image fits under the mask 
image. Each successive dilation operation is forced to lie underneath the mask. When 
further dilations do not change the marker image any more, the processing is 
finished. The final dilation creates the reconstructed image. Figure 2.2 illustrates the 
morphological reconstruction by means of geodesic dilations of D1 signal I from a 
marker signal .hIJ   

  By subtracting the reconstructed image from the mask image the normalized DSM 
(nDSM) is obtained.  

A first classification of terrain and off-terrain points is carried out by binarising the 
nDSM. Any point (in the nDSM) above zero is collected as an off-terrain point.  

 

 

 

 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

Figure 2.2 Morphological reconstruction by 

geodesic dilation of  D1  mask signal I  from a 

marker signal .hIJ  . (From  H.Arefi 2009) 
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3  DTM quality assessment 

With the upcoming of new technologies for the acquisition of terrain data and 
new developments in the area of digital photogrammetry due to automatic image 
matching techniques and revolution of laser scanning for capture of topographic data 
the question of quality" how accurate is DTM?" has to be studied new.  

In this manner several methods have been already proposed based on statistical 
methods or visual interpretation. 

In the first section of this chapter several enhanced visual techniques for quality 
assessment are described. Second part is dedicated to measures for accuracy 
assessment of DTMs based on robust statistical methods. 

3.1 Visual methods for DTM quality assessment 

Visual methods can be very important for the evaluation of DTMs and can balance 
some weakness of statistical methods. 

The usage of visual methods depends on the expertise and experience of the 
operator. Visual methods actually offer the first assessments of DTMs ( Prodobnikar, 
2009). In the following some of the visualization techniques and corresponding 
performance for DTM quality are introduced. 

(1) 2D raster rendering 

One of the most common ways to display DTMs is to associate each elevation with 
a color band. The resulting image broadly indicates topography and might also impliy 
any blunder in the elevation models.(Figure 3.1). The only form of data error likely to 
be detected using this method is that of blunders which significantly are observed by 
localized deviations in elevation value. 

(2) Bi-polar difference maps 

Two elevation surfaces are available, one of which is known to be of higher 
accuracy than the other, a difference map is produced using simple map algebra. 

(3) Pseudo-3D projection: it represents the surface topography by two sets of 
orthogonal lines that follow the shape of the surface (Figure 3.2). In this method a 3 

dimensional viewing location in polar coordinates  r,,  and surface location of 
 zyx ,,  are given. Next the screen coordinates  YX ,  using homogeneous matrices 
can be calculated based on these data as follows: 
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                  1.3  

where  eee zyx ,,  are the 3-dimensional viewing coordinates. 
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dX  ,    Where d is a scaling coefficient that represents the distance 

from viewpoint to screen. 

This method produces a realistic rendering of the elevation model surface and 
does not suffer from the quantization of elevation into bands. 3D projections offer 
more intuitive views than 2D rendering, but changes in parameters like viewing 
distance, field of view and vertical exaggeration can be misleading. 

(4) Shaded relief maps: Generally processes that work based on local neighbors 
are more likely sensitive to the types of internal errors. One such process is 
calculating local shaded relief (Yeoli, 1967; Brassel, 1974). Principally, gray values 
depend on slope and aspect which are both calculated from the DEM. Then the 
illumination model determines the gray value of each pixel by calculating the cosine 
of the angle between the surface normal and the light vector (Foley et al., 1990)  

This local operator provides a more discriminating way of looking at local 
variation. The disadvantage of this method is a danger of only selectivity highlighting 
parts of the elevation model in specific direction. For example considering only 
southeast and northeast slopes only (Wood 
and Fisher, 1993) 

 

 

 

 

 

Figure 3.1: solid colored 2D raster s 

are built with assigning elevation 

classes to different colors 

Figure 3.2: pseudo 3D projection of the same 

area for figure 3.1. They represent the model 

as 3D projection of intersecting orthogonal 

lines 

Figure 3.3:  a shaded relief map for 

the same area as preceding figures. 

Clearly local topographic variation is 

intuitive.  
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3.2 Accuracy measurement using robust statistical methods 

Many of the statistical procedures assume that data are normally distributed. 
Unfortunately, when there are outliers in data, classical statistical methods often 
have very poor performance and large deviations from the normal distribution can 
cause problems (Heohle and Heohle, 2009). 

As a simple example, let us consider n independent measurements of the same 
quantity, the question arises which value should be taken as the best estimate of the 
unknown true value. This question is answered if the error distribution is known and 
the arithmetic mean is accepted as a good estimator for unknown true value as long 
as normal distribution is considered as the distribution of error (Huber, 1972).   

However empirical investigations show that the distribution of errors  are slightly 
but clearly longer tailed because of this fact that  real data normally contain outliers 
and their fraction is typically between 1 and 10 percent (Hampel et al, 1986). 
Therefore considering of outliers is crucial since they can play havoc with standard 
statistical methods. 

Robust statistical measurements provide an alternative approach to classical 
statistical methods. The motivation is to produce estimators which are 
nonparametric and independent of error distribution (free distribution). 

This chapter is organized in 2 sections; first section outlines statistical test and 
visual statistical methods as a component of good data analysis for investigating 
normality. In the second chapter robust accuracy measures suited for non normal 
error distributions are portrayed  

3.2.1 Graphical Methods for test of normality 

1. Histogram: The distribution of errors can be visualized by a histogram of the 
sampled errors, where the number of errors (frequency) within certain predefined 
interval is plotted and it is an estimate of the probability distribution of a continuous 
variable. Such a histogram gives a first impression of the normality of the error 
distribution. A better diagnostic to check the normality of error distribution is relied 
on two significant characteristics of histogram, namely skewness and kurtosis  

Skewness is referred to asymmetry of the distribution. A distribution with an 
asymmetric tail extending out to the right is referred to as positively skewed or 
skewed to the right, while a distribution with an asymmetric tail extending out to the 
left is referred to as negatively skewed or skewed to the left. Skewness can range 
from minus infinity to positive infinity.  

 

 

 

 

 

Figure 3.4: These figures depict the concept 

of skwness in error histogram. Above  figure 

indicates that probability distribution has 

fewer right values and longer right 

tai(positive skewness),  while figure below 

shows a longer left tail, (negative skewness). 
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Kurtosis is introduced as a measure of how flat is the top of a symmetric 
distribution when compared to a normal distribution of the same variance (Pearson, 
1905). It is actually more influenced by scores in the tails of the distribution than 
scores in the center of a distribution (De Carlo, 1967). Distribution with the positive 
kurtosis is fat in the tails. In contrast negative kurtosis depicts that distribution of 
errors is thin in the tails.  

2. quantile-quantile plot: A better diagnostic plot for checking a deviation from the 
normal distribution is the so-called quantile-quantile(Q-Q)plot. 

The Q-Q plot provides a more precise graphical test of whether a set of data could 
have come from a particular distribution. The data points, 

                                      d  Tnddd ,..., 21                                                 2.3  

are first sorted in numerical order from smallest to largest into a vector y, which is 
plotted versus  

                                     )/)5.0((1 niFxi        ),...,2,1( ni                  3.3   

Where )(xF  is cumulative distribution function ( CDF ) of the distribution against 
which we wish to compare our observations. 

If we are testing to see if the elements of d could have come from the normal 
distribution, then )(xF is the  CDF  for the standard normal distribution 

                                     dzexF

x
z

N 





2

2

1

2

1
)(


                                    4.3   

If the element of d is normally distributed, the points ),( ii xy will follow a straight 

line. 

 

 

 

 

 

 

Figure 3.5: these figures describe 

the notion of kurtosis. The 

distribution of errors on the right 

histogram has higher kurtosis than 

the left one. It is more peaked at 

the center, and it is has fatter tails. 

Figure3.3: the Q-Q plot for a sample 

dataset. A strong deviation from a straight 

line is obvious which indicates the 

distribution of dataset is not normal.   
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3.2.2 Statistical Tests for Normality 

Many procedures for testing the normality of data samples have been posed in 
the literature. Considering only tests with composite null hypothesis, the goodness-
of-fit statistic tests for normality can be grouped into four categories. The first one 
consists of measuring the distance between the theoretical distance function and the 
empirical distribution function. The second class of statistics is derived by skewness 
and kurtosis. The third family is based on generalization of the classical Pearson's 2 . 

The last class relies on regression tools (D'Agostino and Stephens, 1986; Thode, 
2002). In this study Chi-Square Goodness-of-fit in third category is portrayed to 
compare the observed sample distribution with the expected probability distribution 
function.   

3.2.2.1  Chi-Square Goodness-of-Fit 

This test establishes whether or not an observed frequency distribution differs 
from a theoretical distribution. A chi square test is applicable as long as sample data 
consists of these assumptions: 

1. Random samples: A random sampling of the data from a population is provided. 

2. Sample size: A sample with a sufficiently large size is assumed. 

3. Independence: the observations are assumed to be independent of each other. 

The chi square test is defined for hypothesis 0H , namely data follow a specific 
distribution and 1H , which means data don't follow a specific distribution. For the 
chi-square goodness-of-fit computation, the data are divided into k bins and the test 
statistic is defined as: 

                                         
i

i

k

i i

E

EO 2

12
)( 


                                                         5.3  

Where iO  is the observed frequency for bin i and iE  is the expected frequency for 

bin i. The expected frequency is calculated by: 

                                              iui YFYFNE                                                       6.3      

Where F is the cumulative Distribution Function for the distribution is being tested, 

uY  is upper limit for class i, lY is the lower limit for class I and N  is sample size. 

The test statistics follows approximately, a chi- square distribution with ck  degree 
of freedom where k is the number of non-empty bins and c is the estimated 
parameters for the distribution plus 1. 

Therefore the hypothesis that data are from a population with the specific 
distribution is rejected if: 

                                          2

),(

2

ck                                                                          7.3  
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3.2.3 Robust accuracy measures suited for non-normal error distributions. 

If the distribution of errors is significantly non-normal because of a considerable 
amount of outliers, another approach has to be taken into account for deriving 
accuracy measures. That is a sample quantile of distribution of errors. The quantile of 
a distribution is defined by inverse of its cumulative distribution function (CDF)          
(Heohle and Heohle, 2009): 

     
                            

   PFPQ 1                                                   8.3  

                                                                   With  1 PO  

   As an example a quantile 50% is equal to the median of the distribution.  

In addition to quantile, the Median Absolute Deviation (MAD) is introduced as a 
result of heavy tail of distribution of errors due to a large amount of outliers. The 
MAD is a measure of statistical dispersion and an alternative approach to estimate 
the scale of the error distribution rather than the sample variance or standard 
deviation. 

 

                                                    
  jjii XmedianXmedianMAD            

                                     
 9.3  

   where iX denotes the individual errors  and  jj Xmedian is  the median of the 

errors. 
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4 Evaluation of filtering efficiency as a part of DTM generation algorithm. 

As mentioned before several methods for generation of Digital Surface Model 
have been proposed and executed. However, it should be noted that DSMs include 
many 3D objects such as buildings, trees and cars, therefore classification and 
extraction of bare earth is needed for DTM generation. To evaluate the accuracy of 
produced DTM it is also vital to assess the performance of filtering algorithm for 
separating ground and non-ground pixels.  

As stated in chapter 2, the filtering algorithm implemented in the  DTM  
generation procedure is based on mathematical morphology; corresponding 
techniques were discussed. This chapter is dedicated to determine the performance 
of this filtering algorithm and make a comparison with some others well known 
filtering algorithms based on presented datasets in ISPRS-commission III, working 
group III/3 "3D reconstruction from Airborne Laser Scanner and InSAR Data". 

This chapter comprises in two sections. In the first section datasets and 
corresponding areas are presented and some terms relevant to this work are 
described. In the second part a brief review of the algorithm compared to the DLR 
algorithm is given first. Afterwards the filter data is compared to the reference that 
was generated by manual filtering of the DSM data and the output of the filter 
algorithm is compared against reference data. For evaluation of Type I and type 2 
errors for feature in landscape, the cross-matrices are produced and the size of the 
error between the reference and filtered DSM is computed and analysis.  

4.1 Test data. 

 To determine the filter difficulties pertaining to outliers, object complexity, 
attached objects, vegetation and discontinuities in the bare Earth, fifteen samples 
were extracted from eight datasets .These test data which were provided for this 
assessment are LIDAR dataset with resolution of 1-1.5 meter point spacing and are 
acquired from Vaihingen/Enz test field and Stuttgart city center. These areas are 
comprised of diverse feature content such as open fields, vegetation, buildings, 
roads, railroads, rivers, bridges, power lines, water surfaces. The properties of these 
selected sites are summarized in table 4.1.  

Site Special features 

1 Steep slopes, mix of vegetation and building in hill sides 

2 Large building, irregularly shaped buildings, road with bridge and small tunnel 

3 Density packed building with vegetation between them, open space with mixture of 
low and high features 

4 Railway station with trains 

5 Steep slopes with vegetation quarry, vegetation on river bank 

6 Large building, road with embankment 

7 Bridge, Underpass, road with embankments. 

8 High bridge, break-line, vegetation on river bank 

Table 4.1 properties of selected sites. 
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Figure4.1 Outlier in LIDAR dataset 

Figure 4.3 a sample of complex object 

 

Before proceeding to examine of filter algorithm it should be cited here that input 
data for the filtering algorithm have to be in a grid format. Therefore regularly 
spaced elevation grid points are founded by nearest neighbor interpolation of raw 3D 
laser points. The nearest neighbor interpolation is used to avoid smoothing over 
discontinuities given in the raw data.  

For more clarification, some of the terms used for description of properties of 
selected area and are applied in continuation of this chapter defined as follow: 

(1) Landscape: it consists of bare earth and 
any other features such as buildings, trees, 
power lines, etc.  

(2) Detached objects: objects that stand on 
the bare Earth vertically on all sides such as 
trees or buildings. 

(3) Attached objects: they pose on the bare 
earth vertically on some sides but not all e.g., 
bridges, ramps etc.     

(4) Outliers: the term of outliers is addressed  

to such points that normally are not part of  

landscape. 

(5) Large objects: herein if the size of objects 
goes beyond the test neighborhood, such 
objects are large objects. 

(6) Small objects: the objects with 10 LIDAR 
data points or less are classified as small 
objects. For instance cars are prominent 
example of such objects. 

(7) Very low objects- the objects that are very close to the bare earth are classified as 
very low objects and generally are difficult to 
detect in filtering algorithms. 

(8) Complex objects: this term is assigned to 
features with complexity in shape, and 
configuration. 

(9) Disconnected terrain- the reason for 
occurrence of this situation is enclosing bare 
earth with surrounded objects.  

(10) Very low vegetables: like very low 
objects which are very close to the bare 
Earth. 

Figure 4.2 Large, Small and Low objects 



 

19 
 

(11) Preservation (steep slopes)- these 
situations occur when the bare earth is 
piecewise continuous and produce 
misleading for those filtering algorithms 
that work with assumption of the objects 
are appears as discontinuities in landscape. 

 

 

 

 

 

 

4.2 Assessment of filtering performance 

As stated in beginning of the chapter, for performance  evaluation of filtering  
algorithm, cross matrices are generated for different areas and then these matrices 
are used to evaluate type 1 (classify bare Earth points as object points) and type 2 
errors (classify object point as bare earth pints) for corresponding areas. Before 
proceeding with this section a brief overview and description of compared 
algorithms with DLR algorithm is summarized in table 4.2 

 

 

 

 

 

Developer(s) Filter description 

M. Elmqvist-FOI(Swedish Defense Research 
institute), Sweden  

Active Contour- Elmqvist(2001) 

G. Sohn- University College London(UCL) Regularization method- Sohn(2002) 

M. Roggero- Politecnico di Torino Modified slope based filter- Roggero (2001) 

M.Brovelli- Politecnico di Milano  Spline interpolation- Brovelli(2002) 

R. Wack, A.Wimmer- Joanneum Research 
institute of Digital image processing 

Hierarchical Modified Block Minimum- 
wack(2002) 

P.  Axelsson – DIGPRO Progressive TIN densification- Axelsson(1999-
2000) 

G. Sithole, G.Vosselman- TU Delf Modified Slope Based filter- wosselman(2000), 
Sithole(2001) 

N. Pfeifer, C. Briese- TU Vienna  Hierarchic robust interpolation – Pfeifer et. 
al.(1998), Briese et al.(2001) 

Figure 4.4 Steep slopes which courses that 

discontinuities in bare Earth are lost. 

Table 4.2: structures and corresponding developer of different filtering algorithms  (from 

Sithole,2003).  
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To calculate the type 1 and type 2 errors, process of generating of cross matrices is 
presented as follow: 

 

 

Table 4.3 Cross-matrices  

The parameters that are indicated in above table are portrayed follow as: 

 a, is the number of Bare Earth points that have been correctly identified as 
Bare Earth. 

 b, is the number of Bare Earth points that have been incorrectly identified as 
objects 

 c, is the number of object points that have been incorrectly identified as Bare 
Earth. 

 d, is the number of object points that have been correctly identified as object. 

 e, is the total number of points which are tested. 

 a+b, c+d are total number of Bare Earth and object points in the reference 
data respectively. 

 a+c, b+d, are the total number of Bare Earth and object points in filter data 
respectively. 

 f,g are the proportions of Bare Earth and object points in the reference data in 
relation to the tested data respectively. 

 h, i are the proportions of Bare Earth and object points in filter data in relation 
to the tested data respectively. 

 K, ratio of number of type 1 and type 2 errors. 

To present the type 1 and type 2 another table based on the values of cross-
matrices is needed which is shown as follow: 

 

 

 

Table 4.4 this table show s the error type 1 and 2 and corresponding distribution of them 
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Table 4.5: Cross –matrix for sample points 1-1 

Table 4.6 Corresponding error type 1 and 2 for sample points 1-1 

% Min% Max% Mean% Std Dev

0.126

26.42199

Type2

Total

30.86845 1.2 34.2 15.01

20.45118 1 49.6 16.6

TypeI1 0.112

 %, is the percentage of type 1, type 2, or total error 

 L, m is the magnitude of the minimum and maximum type 1 error respectively 

 N,  is the mean of the type 1 errors 

 P, is the standard deviation of the type 1 errors 

 q, r, is the magnitude of the minimum and maximum type 2 error respectively 

 s, is the mean of the type 2 errors 

 t, is the standard deviation of the type 2 
errors  

Moreover for fifteen samples from 8 sites 
which have been already mention in preceding 
section their corresponding cross-matrices are 
created and relevant errors type 1 and type 2 
are computed. 

Site1- the spesific properties of this area are 
steep slopes, mix of vegetation and building in 
hillsides. Two sorts of sample points are 
extracted from this area.  

 

(1-1) Sample points 1 with properties of vegetation and building on sleep slopes.  
Corresponding cross matrices and error types are shown as follow:  

 

 

 

  

 

 

 

 

  

Figure 4.5: 3D visualization of site 1. 
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  (1-2) Sample points 2 with property of small object.  Corresponding cross 
matrices and error types are shown as follow: 
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Figure 4.6: Comparison of error type 1 for DLR algorithm (Arefi) respect to other 

different algorithm for sample points 1-1  

Table 4.7: Cross –matrix for sample points 1-2 

 

Table 4.8: Corresponding error type 1 and 2 for sample points 1-2 
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Site 2 – this area is composed of features 
with properties of large building, irregularly 
shaped buildings, road with bridge and 
small tunnel. Four different types of sample 
datasets with disparate characteristics are 
identified  from this area as follow: 

(2-1) Sample points 1 with property of 
Narrow building. Corresponding cross 
matrices and error types are shown as 

follow:  

 

 

 

 

 

Figure 4.7: Comparison of error type 1 for DLR algorithm (Arefi) respect to other 

different algorithm for sample points 1-2  

 

Table 4.8: Cross –matrix for sample points 2-1 

 

Table 4.9: Corresponding error type 1 and 2 for sample points 2-1 

 

Figure 4.8: 3D visualization of site 2. 
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(2-2) Sample points 2 with features of bridge (south west)/gang way (North East). 
Corresponding cross matrices and error types are shown as follow: 
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Figure 4.9: Comparison of error type 1 for DLR algorithm (Arefi) respect to other 

different algorithm for sample points 2-1  

 

Table 4.10: Cross –matrix for sample points 2-2 

 

Table 4.11: Corresponding error type 1 and 2 for sample points 2-2 
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(2-3) Sample points 3 with features of large building, complex building and 
disconnected terrain. Corresponding cross matrices and error types are shown as 
follow: 
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Figure 4.10: Comparison of error type 1 for DLR algorithm (Arefi) respect to 

other different algorithm for sample points 2-2  

 

Table 4.12: Cross –matrix for sample points 2-3 

 

Table 4.13: Corresponding error type 1 and 2 for sample points 2-3 
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(2-4) Sample points 4 with features of ramp. Corresponding cross matrices and error 
types are shown as follow:  
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Figure 4.11: Comparison of error type 1 for DLR algorithm (Arefi) respect to 

other different algorithm for sample points 2-3 

 

Table 4.14: Corresponding error type 1 and 2 for sample points 2-4 

 

Table 4.15: Corresponding error type 1 and 2 for sample points 2-4 
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Site 3- this region comprises of areas 
with density packed building and 
vegetation between them and open space 
with mixture of low and high features. 
Therefore the sample datasets possess the 
characteristics of disconnected terrain and 
low objects. Corresponding cross-matrices 
and error types are presented as follow:  
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Figure 4.12: Comparison of error type 1 for DLR algorithm (Arefi) respect to 

other different algorithm for sample points 2-4 

 

Figure 4.13: 3D visualization of site 3. 

 

Table 4.16: Cross –matrix for sample points 3-1 
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Table 4.17: Corresponding error type 1 and 2 for sample points 3-1 

 

Figure 4.14: Comparison of error type 1 for DLR algorithm (Arefi) respect to 

other different algorithm for sample points 3-1 
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Site4- This area consists of 
Railway station with trains and 
two different sample datasets 
with following characteristics 
are taken out.  

 

 

 

 

(4-1) Sample points 1 with clump of low points (multi path errors). Corresponding 
cross matrices and error types are shown as follow:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.15: 3D visualization of site 4 

 

Table 4.19: Corresponding error type 1 and 2 for sample points 4-1 

 

Table 4.18: Cross –matrix for sample points 4-1 
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(4-2) Sample points 2 with elongated objects, low objects and high frequency 
variation in the landscape. Corresponding cross matrices and error types are shown 
as follow:  
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Figure 4.16: Comparison of error type 1 for DLR algorithm (Arefi) respect to other 

different algorithm for sample points 4-1 

 

Table 4.20: Cross –matrix for sample points 4-2 

 

Table 4.21: Corresponding error type 1 and 2 for sample points 4-2 
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Site 5- Steep slopes with vegetation 
quarry and vegetation on river bank are 
characteristics of this area. Based on these 
properties three different sorts of datasets 
are extracted.  

(5-1) Sample points 1 from area with 
vegetation on slopes. Corresponding cross 
matrices and error types are shown as 
follow: 
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Figure 4.17: Comparison of error type 1 for DLR algorithm (Arefi) respect to other 

different algorithm for sample points 4-2 

 

Figure 4.18: 3D visualization of site 5 

 

Table 4.22: Cross –matrix for sample points 5-1 

 

Table 4.23: Corresponding error type 1 and 2 for 

sample points 5-1 
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(5-2) these sample datasets are from areas with low vegetation, discontinuities 
and sharp regions. Corresponding cross matrices and error types are shown as 
follow: 
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Figure 4.19: Comparison of error type 1 for DLR algorithm (Arefi) respect to 

other different algorithm for sample points 5-1 

 

Table 4.23: Cross –matrix for sample points 5-2 

 

Table 4.24: Corresponding error type 1 and 2 for sample points 5-2 
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(5-3) these sample datasets are from areas with discontinuities in the bare earth 
with low Vegetation, discontinuities and sharp regions. Corresponding cross matrices 
and error types relevant to such region are shown as follow: 
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Figure 4.20: Comparison of error type 1 for DLR algorithm (Arefi) respect to other different 

algorithm for sample points 5-2 

 

Table 4.25: Cross –matrix for sample points 5-3 

 % Min% Max% Mean% Std Dev

Total
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Type2
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Table 4.26: Corresponding error type 1 and 2 for sample points 5-3 
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 (5-4) these sample datasets are acquired from areas consist of low resolution 
buildings. Corresponding cross matrices and error types are shown as follow: 
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Figure 4.21: Comparison of error type 1 for DLR algorithm (Arefi) respect to other different 

algorithm for sample points 5-3 

 

Table 4.25: Cross –matrix for sample points 5-4 

 

Table 4.26: Corresponding error type 1 and 2 for sample points 5-4 
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Site6- The predominant 
characteristic of this area is large 
buildings and roads with embankment. 
Based on these properties sample 
datasets are acquired from areas with 
discontinuities and sharp ridges.  
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Figure 4.22: Comparison of error type 1 for DLR algorithm (Arefi) respect to other different 

algorithm for sample points 5-4 

 

Figure 4.23: 3D visualization of site 6 

 

Table 4.27: Cross –matrix for sample points 6-1 
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Site7- This region includes 
bridge, Underpass, and road with 
embankments. Corresponding 
cross matrices and error types for 
sample datasets acquired from this 
region are shown as follow:  
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Figure 4.24: Comparison of error type 1 for DLR algorithm (Arefi) respect to other different 

algorithm for sample points 6-1 

 different algorithm for sample points 5-4 

 

Figure 4.25: 3D visualization of site 7 

 

Table 4.28: Corresponding error type 1 and 2 for sample points 6-1 
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Table 4.29: Cross –matrix for sample points 7-1 

 

Table 4.30: Corresponding error type 1 and 2 for sample points 7-1 

 

Figure 4.26: Comparison of error type 1 for DLR algorithm (Arefi) respect to other 

different algorithm for sample points 7-1 
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 Interpretation of results:  

 According to above results the performance of the algorithm is interpreted based 
on the properties of the areas under study, namely steep slopes, discontinuities, 
complex scene, vegetation on slopes, low bare earth count and bridges. A significant 
remark regarding to the DLR filtering approach (Arefi,2009) needs to be considered 
about the 3D objects connected to the image borders.  According to this filtering 
approach that is based on the hierarchical filtering of the non-ground pixels, only the 
objects which are entirely located inside the image will be filtered. Therefore, if any 
parts of 3D objects such as buildings are connected to the image border they will be 
filtered by this approach. Accordingly, to process on a special area it is suggested by 
the author that a larger area be considered for filtering to be sure all the 3D objects 
on desired region are filtered. This limitation increases the rate of errors comparing 
to the other algorithms.    

Steep slopes- sample datasets 1-1, 5-1 belongs to such areas with property of 
steep slope.  As might be seen there is significant bias towards type 1 errors and less 
towards type 2 errors, namely 30.86 and 20.45 % respectively for sample 1-1. In 
contrast   for data samples 5-1 and 5-2 the error type 1 declines considerably to 4.84 
and 1.24 % respectively and this is the least type 1 error in comparison with other 
mentioned algorithms for datasets 5-1. This means that filtering algorithm operates 
quite well for vegetation areas even though they lie on the steep slope but there is 
still problem for buildings areas.   

Discontinuities – discontinuity is presented in datasets 2-2, 2-3, and 5-3. In 
according to corresponding type 1 errors for these datasets, namely 11.85, 13.30 and 
1.69, general performance of the filtering algorithm for such areas is well especially 
for vegetation area.  It should be noted that the performance of the filtering 
algorithm for sample points 5-3 acquired to examine the behavior of filter algorithms 
for discontinuity preservation is excellent in comparison with other filtering 
algorithms. 

Complex scene- complex senses are presented in sample datasets 1-1, and 2-3 
with corresponding errors type 1, 30.86, 11.85, and 13.30 respectively. As might be 
seen the performance of filtering algorithm for complex buildings lied on the steep 
slope areas( with error type30.86) is worse for those areas(datasets 23) with complex 
structures building  located in nearly flat area.   

Bridges and ramps - approximately all filters are blind to distinguish between 
objects that stand clear of the bare earth and those that are attached to the bare 
earth (Sithole,2003), and thus DLR filter algorithm is not exempt from this fact. By 
considering datasets 2-1, 2-4 and 7-1 pertaining to areas with bridge and ramp, and 
their respective errors 15.88, 15.20 and 15.34 corresponding of this error for other 
algorithms, it is concluded that the performance of filter is well and base on the 
visual result more and less all the bridge and ramp removed .  However as already 
mentioned there are some problems in beginning and end of bridges. 

Vegetation on slopes- datasets 5-1 and 5-2 are examples of vegetation on slopes.  
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As can be seen the functionality of filter algorithm for these areas based on 
respective 4.84 and 9.13 errors type1, is quite well, in particular identification of 
filter for low vegetables with only 1.21 % error type 1 and 4.34 % total errors in 
comparison with other errors is outstanding. However, the accuracy of filter for 
vegetation on slope is a little less than flat area.  

Low bare earth point count- In general it is crucial there be enough sample points 
for bare earth for identification of this area by filter algorithm. This circumstance 
occurs in datasets 4-2 belong to railway station. According to type 1 error (34%) for 
this data the efficiency of filter algorithm in this situation is poor. Therefore, 
adequate number of points acquired from bare earth is crucial for efficiency of filter 
algorithm. 

Conclusion - initially it has to be emphasized that general performance of filter 
algorithm is quite well in particular for vegetation areas. However, some difficulties 
in filtering were observed in complex landscape especially those that located on 
steep slopes. In general, from type 1 and 2 errors, for areas corresponding to sample 
points 12,31 and 4-2 with significant error type 1 the filter algorithm focuses on 
minimizing type 2 errors. This means that functionality of filtering algorithm is based 
on to remove the objects as many as possible even though if the valid terrain is also 
removed. The suppression of the effect might be appeared by choosing appropriate 
filter parameters for such areas. Finally, it should be mentioned that all comparisons 
are made without considering the limitation of the DLR filtering about the 3D objects 
connected to image borders. This has particularly a negative effect on the filtering of 
the sites 1, 2, 3, and 4 where many large buildings are connected to the image 
border.   
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5 DTM Accuracy Assessments 

As it was already mentioned in preceding chapters, nowadays several techniques 
are available for generation of DSMs and corresponding DTMs that they represent 
the bare earth at some level of details and in fact demands on DTMs are still growing 
continuously. While new techniques such as LIDAR are available for almost instant 
DSM generation, the use of stereoscopic high-resolution satellite imagery (HRSI), 
coupled with image matching, affords cost-effective measurement of surface 
topography over large coverage area(Poon et al.,2005).However all these techniques 
imply the risk of error and ill determined areas. The objective of this chapter is to 
identify type and magnitude of errors, contribute in DTMs. It should be stressed here 
that as already cited DTM generation algorithm which is used in this study is based 
on semiglobal matching technique to produce the DSM and the rational of the filter 
used to separate the off terrain is pertaining to Mathematical morphology. 

In general uncertainty in DTMs originates from two sources: 1) Gross, Systematic 
and random errors in lattice points, and 2) accuracy loss due to lattice representation 
of the terrain (Li et al., 2005). This chapter outlines the contribution and magnitude 
of errors in stage of data acquisition and processing data. This chapter is organized as 
follow: the first section introduces the stereo datasets which are open for 
benchmarking and the reference datasets. Second part of this chapter the 
contribution of random errors and corresponding magnitude is examined. In third 
part the cause of systematic errors and amount of such errors for different areas is 
evaluated.  On the fourth part an algorithm based on robust statistical methods to 
determine the gross errors is proposed. The fifth chapter is dedicated to assess the 
amount of such errors for different sensors which are used for data acquisition. 
Through the entire chapter the fact of existing outlier is taken to account and robust 
statistical methods as an alternative for classical statistical methods are employed. 

5.1 Study areas and data acquisition. 

   The test region in Catalonia, near Barcelona has been selected due to availability of 
several stereo satellite data and a high quality reference dataset provided by the 
Institute Cartografic de Catalunya(ICC). They consist of color orthoimages with a 
spatial resolution of 50 cm as well as an airborne laser scanning  point cloud with 
approximately0.85 and 0.4 point per square meters for Lamola and Terrassa region 
respectively. The four ISPRS datasets are used for the test region. (ISPRS-Commission 
I, working group I /4, Benchmarking and quality analysis of DEM). The characteristics 
of these datasets and properties of selected test areas are described in table 1 and 2.  

 

 

 

 

 

Figure 5.1 these images showing the two test areas, left image is Terrassa Region and right image 

indicates Lamola area  
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The systematic errors of measured LIDAR points in according to (Husing et al., 
1998) for flat, flat gross, hilly and hilly gross areas are 5-20, 20-200, 5-20 and 20-200 
centimeter respectively. 

Respective random errors for LIDAR data point for these areas are 10-20, 10-50, 
20-200 and 20-200 centimeter. 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

Area 
Properties of selected test area  

Height  

Range 

Mean Slope 

degree   
Terrain 

Description 

Area 

Size  

Terrassa 281-311 
12 City ,Industrial 5X5Km 

La Mola 596-792 
24.5 

Mountainous 

forest 

5X5Km 

Dataset 
Description of datasets 

Image resolution(m) Generated DEM resolution(m) 

Worldview -1 0.5 
2.5 

Table5.2   Properties of source datasets 

 
Table 5.2 Terrains descriptive statistics  

Figure 5.2: these images show the return density represented by each pixel area. Cells with 

point densities falling within the .5 to 1 piont per square meter  are colored green ,above this 

range are colored blue and below are colored red corresponding to Lamola area(left) and 

Terrassa area (right) 

  

Figure 5.3 corresponding slope maps for Terrassa(left) and Lamola(right ) areas 

Table 5.1  Properties of selected test area 
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The availability of very dense LIDAR data points gives the possibility of checking 
the generated DSM and thus In following generated DSMs by semiglobal stereo 
matching of World view-1 satellite images are compared with the first pulse laser 
points . More than 19 and 10million random LIDAR points for Lamola and Terrassa 
region respectively contribute to detect errors. it should be stated here that derived 
accuracy error for DSM is relative error respect to the accuracy of the LIDAR 
datasets. For evaluation of distribution errors, corresponding histograms and Q-Q 
plots for terrassa and lamola regions are shown in figure 1 and 2. 

The both histograms show that the kurtosis of the errors distribution is positive, 
i.e. the distribution has a sharp peak around the mean and fatter and longer tails 
than normal distribution. Values for skewness of both error distributions indicate 
that deviation from the mean by outliers is going to be positive. 

Alternatively to test of normality of distribution errors as stated in chapter 3, chi-
square goodness-of-fit test is carried out. The computed chi values for corresponding 
areas as well as kurtosis and skewness are tabulated in table 3   

 

 

 

 

 

 

 

 

Figure 5.4  Corresponding normalized histograms of  h  between Laser points and DSM for 

Terrassa( Left) and Lamola(Right) 

Figure 5.5 Corresponding Q-Q plots for Lamola(right) and Terrassa(Left) regions. 
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Figure 5.5 shows the Q-Q plots for corresponding regions.  Both Q-Q plots   
diverge from straight line and it also can be seen there are more positive outliers 
than negative ones for Lamola region.  In addition the bootstrap distribution of mean 
and median based on 50 bootstrap samples have been computed and shown in 
figure 5.6.  It can be clearly seen that the distribution of   mean in comparison to 
median is erratic as a result of outliers. According to the values of statistical 
parameters shown in table 5.33 and preceding discussion for presented graphs it can 
be concluded that there is an excessive amount of outliers in the observations. 
Furthermore robust statistical method which is resistant to outlier has to be applied. 

Consequently median, 90 and 95 % sample quantiles of absolute errors and  
Median Absolute Deviation(MAD) as stated in chapter 3 are employed to estimate 
the accuracy of DSM respect to LIDAR datasets. And results are summarized in table 
5.4  for corresponding areas. 

 

 

Area 

Statistical Measures   

Skewness Kurtosis    
Computed chi-square 

value 

Chi square distribution value 

α=%95,   

Degree of freedom 

Terrassa 00111 
16.31 41877000 22.36 13 

La Mola 6.50 
74.61 183970000 42.56 29 

Area 
Accuracy Measure  

Mean Standard Deviation RMSE 50% quantile 
∆h (m) 

MAD ∆ (m) 
68.3%quantile 

|∆h| (m) 

95%quantile 

|∆h|(m) 

Terrassa 
0.349 4.23 4.25 

0.116 
2.43 2.16 9.72 

La Mola 
-0.306 10.49 10.50 

-1.59 8015 
4.966 14.17 

  Table 5.3.     Statistical measures to describe the distribution of observed errors for investigation 
areas. 

 

Figure  5.6 This figure shows the bootstrap distribution of the    mean (left) and median (left) 

based on 50 bootstrap samples for each estimator. 

Table 5.4 Accuracy measure of DSM generated by World views images respect to LIDAR 

datasets 
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    The plot in figure 5.7 shows the solid colored raster of difference between 
generated DSM by semiglobal matching and DSM derived by laser scanning.  Grid 
surface for generated DSM by LIDAR points is created through bilinear interpolation. 
Additionally shaded relief map for DSM generated by semiglobal matching is also 
represented. It can be noted that outliers in shaded relief map are obvious. However, 
unlikely application of contour maps for outlier visualization in DSMs reduces due to 
surface discontinuity.  

 

 

 

 

 

 

 

 

 

 

Figure 5.7 solid raster color error map for Terrassa area. As can be seen outliers are identified by  a distinguish 

color  from their neighborhoods. 

Figure 5.8 shaded relief map of generated DSM for Terrassa area by semiglobal matching.  Outliers can be 

detected directly without comparison to ground truth. 
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5.2 Random and systematic errors in generated DSM. 

    The word of random error indicates that they are inherently unpredictable and 
tend to have null arithmetic mean when the measurement is repeated several times 
and they have a normal distribution. Random errors are also referred to as white 
noise in statistics. For such errors, improvement of DSM quality is conducted by 
applying a low pass filtering (Li, 1990). A low-pass filter removes the high frequency 

noise with the resulting output being a smoother grid.  In this manner a 33  
Gaussian low-pass filter is employed.   With the Gaussian Low-pass filter, the weights 
fall-off with increased distance. Table 5.5 and 5.6  show  the accuracy of DSM   and 
amount of improvement  percentage after filtering respectively.   

   33 Gaussian low pass filter 
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   However, according to above results and achieved accuracy, necessity of applying 
filtering processes completely depends on magnitude of the random error occurring 
during the measurements. For example (Kubic and Roy, 1980) suggested 0.05% of 
flying height for photogrammetric measurement might be appropriate threshold.  

Systematic errors are bias in the measurements caused by the situation where the 
mean of many separated measurements are different from the actual value of 
measured attributes.  Systematic errors usually occur due to lack of adequate 
adjustment of instruments, and misalignment in georeferencing due to datum or 
processing errors. herein median of differences with o.112 and -1.586 meter for 
Terrassa and Lamola regions respectively are interpreted as systematic errors which 
are the values for systematic shift between the DSM and LIDAR datasets.   

Area 
Accuracy Measure  

Mean Standard Deviation RMSE 50% quantile 
∆h (m) 

MAD ∆ (m) 
68.3%quantile 

|∆h| (m) 

95%quantile 

|∆h|(m) 

Terrassa 
0.3492 4.161 4.176 

0.1128 
2.398 2.153 9.516 

La Mola 
-0.306 10.266 10.271 

-1.586 
5.115 4.927 13.845 

Area 
Accuracy improvement with random noise filtering(percentage)  

Mean Standard Deviation RMSE 50% quantile 
∆h (m) 

MAD ∆ (m) 
68.3%quantile 

|∆h| (m) 

95%quantile 

|∆h|(m) 

Terrassa 
0 1.6 1.7 

2.8 
1.3 0.3 1.9 

La Mola 
0 2.1 1.23 1.25 1.3 1.79 1.63 

Table 5.5 Accuracy measure of DSM respect to LIDAR datasets after random noise filtering 

 

Table 5.6 Accuracy improvement with random noise filtering 
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5.3 Outlier detection and removal in Digital Surface Model 

Gross errors which are also called blunders, in fact can be any size in nature. 
Compared with random and systematic errors, they occur with small probability 
during measurements. In DSM generation Gross errors often occur in automatic 
image matching due to mismatching of image points. 

It is obvious from Q-Q plot and also statistical measures from table 5.3, outliers 
exist and from table 5-4 this fact is deduced that they have a great influence on the 
estimated standard deviation. From this table for both areas 68.3% quantile and 
median absolute deviation are very close. However it should be noted that the 95% 
quintile for both regions are greater than two times the 68.3 % quantile due to fat 
tails of both distribution that clearly show the non-normality of errors. 

To classify the outlier for accuracy measurements initially 3 times RMSE is 
considered and results are tabulated in table 5.7. with this threshold 1.5 and 2.5 
percentage of data for Lamola and Terrassa regions are classified as outliers   

 

 

 

 

 

 

As can be seen from table 5.7 the standard deviation and RMSE after removal of 
outliers are much lower as with outliers included. Additionally a improvement is 
observed in MAD and 68.3%  quantle. 

However ,  the condition of three times RMSE based on observed 95% quantiles  
for both areas are not completely fulfill our desire to achieve appropriate accuracy. 
Therefore in this project a new method to gain an appropriate threshold is proposed. 

The methodology which is used here to detect the gross errors is based on the 
robust statistical measures and consists of four steps: 

Area 
Accuracy Measure  

Mean Standard Deviation RMSE 50% quantile 
∆h (m) 

MAD ∆ (m) 
68.3%quantile 

|∆h| (m) 

95%quantile 

|∆h|(m) 

Terrassa 0.206 3.124 3.131 10100 
2.114 2.113 7.54 

La Mola -1.13 
5.892 

6.004 -1.636 
4.02 4.81 12.522 

Area 
Accuracy  improvement with removing outliers by 3.RMSE(percentage)  

Mean Standard Deviation RMSE 50% quantile 
∆h (m) 

MAD ∆ (m) 
68.3%quantile 

|∆h| (m) 

95%quantile 

|∆h|(m) 

Terrassa 69 33 25 14 
21 7 26 

La Mola 
-73 74 

71 -3 
24 3 11 

Table 5.7 Accuracy measure of DSM.  Herein outlier are classified by 3times of RMSE. 

 

Table 5.8 Accuracy improvement with removing outliers by 3.RMSE (results are shown as 

percentage). 
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(1) quantile .5  till quantile 1 are computed in sequence. 

 (2) Since linear least-squares estimators are badly affected by outliers, a robust 
regression estimator such as Least Median Square(LMS) is utilized to acquire 
regression parameters for computed quantiles and identify which quantiles are 
emerging as outlieres. 

(3) Recording the index of first quantile which is recognized as an outlier. In this 
manner all quantiles are compared to corresponding estimated values by LMS. 
Corresponding quantile of first difference which is bigger than median absolute 
deviation is chosen. For example if quantile( .92) is recognized as outlier by least 
median square then.92 is saved as index of this quantile. 

(4) Computing an appropriate threshold to remove the outliers. In this manner a 
certain confidence interval is proposed showing that observations (dh) lie within the 
interval  based on Vysochanskij–Petunin theory[Vysochanskij,1980].  

 

                                                               
 

29

4


 uxp                                              (5.2) 

 
 

For example based on this theory   for any unimodal data sample, about 5% of the 
values are further than three standard deviations from the mean. However, as stated 
before, 3 times standard deviation doesn't fulfill our desire and cannot be an 
appropriate threshold. Moreover based on the sequence of the algorithm quantile 
0.5 till 0.9 are computed. Figures 5.9 and 5.10 show that the values of corresponding 
quantile for both areas increase exponentially and relationship between the 
quantiles is not linear due to the fact of outliers. In these graphs corresponding Least  
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Quantile Analysis for Terrassa Region

quantile 50% to 100% for |dh| 
in Lamola

LMS regression

Ordinary Least Square

Figure 5.9 this graph shows the amount of quanties from 0.5 to 0.99 of dh errors and 

corresponding   Least median square and ordinary least square for  Terrassa  area. 
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median square regression and ordinary least square line are plotted. It is obvious 
that the least square estimation is completely inefficient to estimate the true values 
of quantiles.  

Conversely least median of square(LMS) regression as a robust estimator can 
resist the effect of nearly 50% of contamination in datasets (Rousseeuw,1984) and 
this mater can be noted clearly in these figures. In LMS the different approach is 
introduced in which the sum is replaced by median of the square residuals. 

According to step 3, quantile 0.91 and 0.96 for terrassa and lamola are recognized 
respectively as outliers and their index 0.91 and 0.96 are saved. Finally based on (5.2) 
corresponding values of λ namely 2.22 and 3.3 for both areas are computed. 
Consequence respective 7.81 and 24.69 figures for Terrassa and Lamola are utilized 
as thresholds. Results of accuracy measure and corresponding percentage of 
improvement with considering the new value of thresholds for both areas are 
tabulated in table  5.7 and shown in figure 5.11 and 5.12 
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Quantile  analysis for Lamola area 

Quantile
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Area 

 Accuracy Measure  

Mean Standard 

Deviation 

RMSE 50% 

quantile 
∆h (m) 

MAD ∆ (m) 

Normalized 

MAD 

68.3%quantile 

|∆h| (m) 

95%quantile 

|∆h|(m) 

Terrassa 0.129 2.342 2.345 0.086 
1.622 2.41 1.795 4.40 

La Mola -1.21 5.57 5.70 -1.636 
3.89 5.75 4.77 12.16 

Figure 5.10 this graph shows the amount of quanties from 0.5 to 0.99 of dh errors and 

corresponding   Least median square and ordinary least square for  Lamola  area. 

 

Table 5.9 Accuracy measure of DSM by applying new threshold computed by proposed method. 
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By applying the appropriate threshold   for Terrassa and Lamola areas , 4.5 and 1.9 
percentage of datasets are removed . 

In the end the accuracy measures are computed by considering the thresholds 
based on proposed appropriate removal outliers   method except that corresponding 
quantiles of first difference which are start to deviate  from least median square line 
are chosen namely, quantiles of 81% and 80%  and respective values of  1.52 and 
1.49 are computed as threshold  for Lamola and Terrassa areas correspondingly. 
However it has to be noted here Vysochanski theory functions for any λ>1.632. 
therefore λ=1.633 is chosen. Hence 5.79 and 12.12 are computed as  appropriate 
thresholds for both areas and results are tabulated in table 5.7. 
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Figure 5.11 Accuracy improvement after applying appropriate threshold for Terrassa area.  

 

Figure 5.11 Accuracy improvement after applying appropriate threshold for Lamola  area.  
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The standard deviation after removal of outliers for Terrassa area by applying 7.81 
and cost of losing 4.5 percentage of dataset differ slightly from normalized MAD, 
namely 5.5 cm indicates that outliers removed very well. Additionally for Lamola area 
with value of 12.12  as threshold  the cost of losing data is 7.37%. however as can be 
seen from table 5.7  standard deviation with normalized median and  68.3 quantile 
differs  47 and 5.6 cm respectively which is also very good indicator for successful 
outliers removal.  

5.4 summary and discussion  

In accuracy measures of DSM based on represented plots for histograms and Q_Q 
plots and corresponding skewness and kurtosis and also based on statistical chi-
square goodness-of-fit results, the fact of existing outliers must be taken in account. 
In order to derive reliable value for systematic errors and standard deviation 
different approaches based on using all the data and also outlier removal according 
to three times RMSE threshold were used. Additionally a new methods based on 
quantile analysis to acquire appropriate threshold was proposed. 

According to (Kraus, 2004) a formula that describes the height accuracy of 
topographic measurement by ALS is given in 5.3. Additionally quantification of 
systematic and random errors for LIDAR point is summarized in table 5.8. 

 

Area 

 Accuracy Measure  

Mean Standard 

Deviation 

RMSE 50% 

quantile 
∆h (m) 

MAD ∆ (m) 

Normalized 

MAD 

68.3%quantile 

|∆h| (m) 

95%quantile 

|∆h|(m) 

Terrassa 0.099 1.938 1.941 0.0782 
1.401 2.178 1.63 4.382 

La Mola -1.39 4.33 4.55 -1.668 
3.246 4.80 4.386 9.482 

Table 5.8  Quantification of systematic and random errors based on theoretical consideration. 

(from Husing 1998) 

5.10 Accuracy measure of DSM with λ=1.6.33 and respective thresholds 7.81 and 12.12 for Terrassa 

and Lamola 
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For wooden area in (5.3) factor 0.25 has to be multiplied to n. consequently 
respective height accuracy of topographic measurements are 20.11 and 36 cm for 
Terrassa and Lamola regions. In addition the accuracy of source datasets indicated in 
table 5.8 has to be taken in account. Therefore computed accuracy for generated 
DSM respect to LASER data sets for Lamola region which is a hilly grass area is poor 
(RMSE 4.55 and NMAD 4.80) and also characteristics of  such area influence the 
systematic error  which is -1.39 and -1.69  for mean and 50% quantile .   

However accuracy of DSM for Terrassa region comprised of regions with 
residential and hilly bared characteristics is much better namely, with RMSE 1.94 and 
NMAD 2.07m. In this area systematic error is small, around 0.8 centimeter.  
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 6 conclusion and future recommendation  

To measure the accuracy of DTMs and to improve it, the attributes of errors and 
their magnitudes have to be considered. Moreover we classified error characteristics 
as random, systematic and gross errors and evaluated significance of them.   

it was concluded that general performance of filter algorithm is quite well in 
particular for vegetation areas. However, some difficulties in filtering were observed 
in complex landscape especially those that located on steep slopes. 

     Quality control of DSM by means of Visual inspection was introduced and 
concluded that such methods are able to detect and remove the outliers as many as 
possible. 

 The accuracy measures for generated DSM should not be influenced from outliers 
and non-normality of the error distribution. To avoid influence of outliers in error 
assessment robust statistical methods were proposed and based on them a method 
for gross error detection by analysis of quantile errors was proposed.  

In the end according to final values obtained for two test areas it can be concluded 
that the performance of the DSM algorithm for mountainous wooden areas respect 
to the accuracy of LIDAR datasets is poor. Nevertheless in according to relative 
accuracy of urban area it can be concluded that DSM accuracy is able to  follow the 
accuracy of LIDAR datasets.  

Moreover in comparison to cost of using LIDAR system and according to this fact 
there is a possibility that some remained outliers removed by filter algorithm and 
consequently the accuracy of generated DTM is higher than DSM. Therefore by 
employing an appropriate interpolation method, generating DTM from high 
resolution satellite images in urban area can be an appropriate alternative for LIDAR 
systems. 
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