
Hindawi Publishing Corporation
Journal of Applied Mathematics
Volume 2010, Article ID 494070, 17 pages
doi:10.1155/2010/494070

Research Article
Asymptotic Behavior of the Likelihood Function of
Covariance Matrices of Spatial Gaussian Processes

Ralf Zimmermann

German Aerospace Center (DLR), Lilienthalplatz 7, 38108 Braunschweig, Germany

Correspondence should be addressed to Ralf Zimmermann, ralf.zimmermann@dlr.de

Received 16 April 2010; Revised 3 November 2010; Accepted 28 November 2010

Academic Editor: F. Marcellan

Copyright q 2010 Ralf Zimmermann. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

The covariance structure of spatial Gaussian predictors (aka Kriging predictors) is generally
modeled by parameterized covariance functions; the associated hyperparameters in turn are
estimated via the method of maximum likelihood. In this work, the asymptotic behavior of the
maximum likelihood of spatial Gaussian predictor models as a function of its hyperparameters
is investigated theoretically. Asymptotic sandwich bounds for the maximum likelihood function
in terms of the condition number of the associated covariance matrix are established. As a
consequence, the main result is obtained: optimally trained nondegenerate spatial Gaussian processes
cannot feature arbitrary ill-conditioned correlation matrices. The implication of this theorem on Kriging
hyperparameter optimization is exposed. A nonartificial example is presented, where maximum
likelihood-based Kriging model training is necessarily bound to fail.

1. Introduction

Spatial Gaussian processing, also known as best linear unbiased prediction, refers to a statistical
data interpolation method, which is nowadays applied in a wide range of scientific fields,
including computer experiments in modern engineering context; see, for example, [1–5]. As a
powerful tool for geostatistics, it has been pioneered by Krige in 1951 [6], and to pay tribute to
his achievements, the method is also termed Kriging; see [7, 8] for geostatistical background.

In practical applications, the data’s covariance structure is modeled through
covariance functions depending on the so-called hyperparameters. These, in turn, are
estimated by optimizing the corresponding maximum likelihood function. It has been
demonstrated by many authors that the accuracy of Kriging predictors relies both heavily
on hyperparameter-based model training and, from the numerical point of view, on the
condition number of the associated Kriging correlation matrix. In this regard, we relate to
the following, nonexhaustive selection of papers: Warnes and Ripley [9] and Mardia and
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Watkins [10] present numerical examples of difficult-to-optimize covariancemodel functions.
Ababou et al. [11] show that likelihood-optimized hyperparameters may correspond to ill-
conditioned correlation matrices. Diamond and Armstrong [12] prove error estimates under
perturbation of covariance models, demonstrating a strong dependence on the correlation
matrix’ condition number. In the same setting, Posa [13] investigates numerically the
behavior of this precise condition number for different covariance models and varying
hyperparameters. An extensive experimental study of the condition number as a function
of all parameters in the Kriging exercise is provided by Davis and Morris [14]. Schöttle and
Werner [15] propose Kriging model training under suitable conditioning constraints. Related
is the work of Ying [16] and Zhang and Zimmerman [17], who prove asymptotic results on
limiting distributions of maximum likelihood estimators when the number of sample points
approaches infinity. Radial basis function interpolant limits are investigated in [18]. Modern
textbooks covering recent results are [19, 20].

In this paper, the connection between hyper-parameter optimization and the condition
number of the correlation matrix is investigated from a theoretical point of view. The setting
is as follows. All sample data is considered as fixed. An arbitrary feasible covariance model
function is chosen for good, so that only the covariancemodels’ hyperparameters are allowed
to vary in order to adjust the model likelihood. This is exactly the situation as it occurs in
the context of computer experiments, where, based on a fixed set of sample data, predictor
models have to be trained numerically.We prove that, underweak conditions, the limit values
of the quantities in the model training exercise exist. Subsequently, by establishing asymptotic
sandwich bounds on the model likelihood based on the condition number of the associated
correlation matrix, it is shown that ill-conditioning eventually also decreases the model likelihood.
This result implies a strategy for choosing good starting solutions for hyperparameter-based
model training. We emphasize that all covariance models applied in the papers briefly
reviewed above subordinate to the theoretical setting of this work.

The paper is organized as follows. In the next section, a short review of the basic theory
behind Kriging is given. The main theorem is stated and proved in Section 3. In Section 4, an
example of a Kriging data set is presented, which illustrates the limitations of classical model
training.

2. Kriging in a Nutshell

Kriging is a statistical approach for estimating an unknown (scalar) function

y : �d ⊇ U −→ �, x �−→ y(x), (2.1)

based on a finite data set of sample locations x1, . . . , xn ∈ U ⊂ �
d with corresponding

responses y1 := y(x1), . . . , yn := y(xn) ∈ � obtained from measurements or numerical
computations. The collection of responses is denoted by

YT =
(
y1, . . . , yn

) ∈ �n . (2.2)

The function y : U → � to be estimated is assumed to be the realization of an underlying
random process given by a regression model and a random error function ε(x) with zero
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mean. More precisely

y(x) = f(x)β + ε(x) =
(
f0(x), . . . , fp(x)

)

⎛

⎜
⎜⎜
⎝

β0

...

βp

⎞

⎟
⎟⎟
⎠

+ ε(x), (2.3)

where the components of the row vector function f : �d → �
p+1 are the basis functions of the

regression model and β = (β0, . . . , βp) is the corresponding vector of regression coefficients.
By assumption,

E[ε(x)] = 0 ∀x. (2.4)

The component functions of f can be chosen arbitrarily, yet they should form a function basis
suitable to the specific application. The most common choices for practical applications are

(1) constant regression (ordinary Kriging): p = 0, f : �d → �, x �→ 1, f(x)β = β ∈ �,
(2) linear regression (universal Kriging): p = d, f : �d → �

d+1 , x �→ (1, x1, . . . , xd), f(x)β =
β0 + β1x1 + · · · + βdxd ∈ �,

and higher-order polynomials.
Introducing the regression design matrix

F :=

⎛

⎜⎜⎜
⎝

f
(
x1)

...

f(xn)

⎞

⎟⎟⎟
⎠

=

⎛

⎜⎜⎜
⎝

f0
(
x1) f1

(
x1) · · · fp

(
x1)

...
... · · · ...

f0(xn) f1(xn) · · · fp(xn)

⎞

⎟⎟⎟
⎠

∈ �n×(p+1) , (2.5)

the vector of errors at the sampled sites can be written as

Σ :=

⎛

⎜⎜
⎜
⎝

ε1

...

εn

⎞

⎟⎟
⎟
⎠

=

⎛

⎜⎜
⎜
⎝

ε
(
x1)

...

ε(xn)

⎞

⎟⎟
⎟
⎠

=

⎛

⎜⎜
⎜
⎝

y1 − f
(
x1)β

...

yn − f(xn)β

⎞

⎟⎟
⎟
⎠

= Y − Fβ. (2.6)

Note that the first column of F equals 1 ∈ �n for all polynomial regression models.
The Kriging predictor ŷ estimates y at an untried site x as a linear combination of the

sampled data

ŷ(x) = 〈ω(x), Y〉 =
n∑

i=1

ωi(x)yi. (2.7)
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For each x ∈ �
d , the unique vector of weights ω(x) = (ω1(x), . . . , ωn(x)) that leads to

an unbiased prediction minimizing the mean squared error is given by the solution of the
Kriging equation system

(
C F

FT 0

)⎛

⎝
ω(x)

1
2
μ(x)

⎞

⎠ =

(
c(x)

f(x)T

)

∈ �n+(p+1) . (2.8)

Here,

C :=
(
Cov

(
ε
(
xi
)
, ε
(
xj
)))

i,j≤n
∈ �n×n , c(x) :=

(
Cov(ε(xi), ε(x))

)

i≤n
∈ �n (2.9)

denote the covariance matrix and the covariance vector, respectively, and the entries of the
vector μ = (μ0, . . . , μp) are Lagrange multipliers. Solving (2.8) by Schur matrix complement
inversion and substituting in (2.7) leads to the Kriging predictor formula

ŷ(x) = f(x)β + cT (x)C−1(Y − Fβ
)
, (2.10)

where β = (FTR−1F)−1FTR−1Y is the generalized least squares solution to the regression
problem Fβ � Y . For details, see, for example, [20, 21].

For setting up Kriging predictors, it is therefore mandatory to estimate the covariances
based on the sampled data set. The two most popular approaches to tackle this problem are
variogram fitting (the geostatistical literature, see [7]) and application of spatial correlation
functions (computer experiments, see [4, 20]). The latter ones are usually of the form

Cov
(
ε
(
xi
)
, ε
(
xj
))

= σ2r
(
θ, xi, xj

)
= σ2

d∏

k=1

scfk
(
θ, xi, xj

)
. (2.11)

Here θ = (θ1, . . . , θd) ∈ �
d is a vector of distance weights, which models the influence of the

coordinate-wise spatial correlation on the prediction. The correlation matrix is defined by

R(θ) =
(
r
(
θ, xi, xj

))

i,j
∈ �n×n . (2.12)

In order to avoid ambiguity due to different parameterizations of the correlation models, we
fix for the rest of the paper the following.

Convention 1

Large distance weight values correspond to weak spatial correlation, and small distance weight values
correspond to strong spatial correlation. More precisely, we assume that feasible spatial correlation
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functions are always parameterized such that

r
(
θ, p, q

) −→
⎧
⎨

⎩

1, for ‖θ‖ −→ 0,

0, for ‖θ‖ −→ ∞,
(2.13)

at distinct locations p /= q.
All correlation models applied in all the papers briefly reviewed in the introduction

can be parameterized accordingly. A collection of spatial correlation functions is given
in several publications on Cokriging/Kriging, including [21, Table 2.1]. For example, the
Gaussian correlation function parameterized with respect to the convention above is given by

scfk
(
θ, xi, xj

)
= exp

(
−θk
∣∣
∣xi

k − x
j

k

∣∣
∣
2
)
,

r
(
θ, xi, xk

)
= exp

(

−
∑

k

θk
∣∣∣xi

k − x
j

k

∣∣∣
2
)

.

(2.14)

The results and proofs presented below hold true without change for every admissible spatial
correlation model, assuming that the sample errors are normally distributed and that the
process variance is stationary; that is, σ is independent of the locations xi, xj . In this setting,
hyper-parameter training for Kriging models consists of optimizing the corresponding
maximum likelihood function

MaxL
(
σ, β, θ

)
=

1

2π
√
det(σ2R(θ))

exp
(
− 1
2σ2

(
Y − Fβ.

)T
R(θ)−1

(
Y − Fβ.

)
)
. (2.15)

For θ fixed, optima for σ = σ(θ) and β = β(θ) can be derived analytically, see [20], so
that hyper-parameter training for Kriging models is reduced to the following optimization
problem:

min
{θ∈�d,θj>0}

ML(θ) :=
(
σ2(θ)

)n
det(R(θ)), (2.16)

where the dependency on θ is as follows:

σ2(θ) =
1
n
ΣT (θ)R(θ)−1Σ(θ), (2.17)

Σ(θ) = Y − E[Y] = Y − Fβ(θ), (2.18)

β(θ) =
(
FTR−1(θ)F

)−1
FTR−1(θ)Y. (2.19)
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Because the logarithm is monotonic, this is equivalent to minimizing the so-called condensed
log-likelihood function

min
{θ∈�d,θj>0}

LogML(θ) := n ln
(
σ2(θ)

)
+ ln(det(R(θ))), (2.20)

often encountered in the literature.

3. Asymptotic Behavior of the Maximum Likelihood Function—Why
Kriging Model Training Is Tricky: Part I

The condition number of a regular matrix R ∈ �n×n with respect to a given matrix norm ‖ ·‖ is
defined as cond(R) := ‖R‖ · ‖R−1‖. For the matrix norm induced by the euclidean vector norm,
one can show that

cond(R) =
λmax

λmin
, (3.1)

where λmax, λmin are the largest, the smallest eigenvalue of R, respectivley. In order to prevent
the solution of the Kriging equation system (2.8) from being spoiled by numerical errors, it
is important to prevent the covariance matrix from being severely ill-conditioned. However,
the next theorem shows that eventually, when the condition number approaches infinity, so
does the associated likelihood function. (Keep in mind that we have formulated likelihood
estimation as aminimization problem; see (2.16).) Throughout this section, we will assume that
the regression design matrix F from (2.5) features the vector 1 ∈ �

n as first column. This is
the case of the highest practical relevance and, in fact, is of particular difficulty, since in this
case the first column of F coincides with a limit eigenvector of the correlation matrix as will
be seen in the following.

Theorem 3.1. Let x1, . . . , xn ∈ �d , Y := (y(x1), . . . , y(xn)) ∈ �n be a data set of sampled sites and
responses. Let R(θ) be the associated spatial correlation matrix, and let Σ(θ) be the vector of errors
with respect to the chosen regression model. Furthermore, let cond(R(θ)) be the condition number of
R(θ). Suppose that the following conditions hold true:

(1) the eigenvalues λi(θ) of R(θ) are mutually distinct for small 0 < ‖θ‖ ≤ ε, θ ∈ �d ,

(2) the derivatives of the eigenvalues do not vanish in the limit: (d/dτ)|τ=0λj(τ1) = λ′
j(0)/= 0

for all j = 2, . . . , n,

(3) Σ(0)/∈ span{1}, Σ(0)/∈ 1⊥.

Then,

cond(R(θ)) −→ ∞ for ‖θ‖ −→ 0, (3.2)

and there exist constants c1, c2 ∈ � such that

c1 cond(R(θ)) ≤ ML(θ) ≤ c2 cond(R(θ)), (3.3)

for θ ∈ �d , 0 < ‖θ‖ ≤ ε. The constants c1, c2 are independent of θ.
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Remark 3.2. (1) The conditions given in the above theorem cannot be proven to hold true
in general, since they depend on the data set in question. However, they hold true for
nondegenerate data set. In Appendix A, a relationship between condition 2 and the regularity
of R′(0) is established, giving strong support that condition 2 is generally valid. Concerning
the third condition, it will be shown in Lemma 3.4, that the limit Σ(0) exists, given conditions
1 and 2. Note that the set span{1} ∪ 1⊥ is of Lebesgue measure zero in �

n . In all practical
applications known to the author, these conditions were fulfilled.

(2) It holds that lim‖θ‖→∞(R(θ))i,j = I ∈ �
n×n . Hence, the likelihood function

approaches a constant limit for ‖θ‖ → ∞ and lim‖θ‖→∞cond(R(θ)) = 1. The corresponding
predictor behavior is investigated in Section 4.

(3) Even though Theorem 3.1 shows that the model likelihood becomes arbitrarily bad
for hyperparameters ‖θ‖ → 0, the optimum might lie very close to the blowup region of
the condition number, leading to still quite ill-conditioned covariance matrices [11]. This fact
as well as the general behavior of the likelihood function as predicted by Theorem 3.1 is
illustrated in Figure 1.

(4) Figure 2(b), provides an additional illustration of Theorem 3.1.
(5) Theorem 3.1 offers a strategy for choosing starting solutions for the optimization

problem (2.16): take each θk, k ∈ 1, . . . , d as small as possible such that the corresponding
correlation matrix is still (numerically) positive definite.

(6) A related investigation of interpolant limits has been performed in [18] but for
standard radial basis functions.

In order to support readability, we divide the proof of Theorem 3.1 into smaller units,
organized as follows. As a starting point, we establish two auxiliary lemmata on the existence
of limits of eigenvalue quotients and of errors vectors. Subsequently, the proof of the main
theorem is conducted relying on the lemmata.

Lemma 3.3. In the setting of Theorem 3.1, let λi(θ), i = 1, . . . , n be the eigenvalues of R(θ), ordered
by size. Then,

lim
‖θ‖→ 0

λi(θ)
λj(θ)

= const. > 0 ∀i, j = 2, . . . , n. (3.4)

Proof. Because of (2.13), it holds that (R(0))i,j = 11T ∈ �
n×n for every admissible spatial

correlation function. Since (11T)1 = n1 ∈ �
n and (11T)W = 0 for all W ∈ 1⊥ ⊂ �

n , the limit
eigenvalues of the correlation matrix ordered by size are given by λ1(0) = n > 0 = λ2(0) =
· · · = λn(0).

Under the present conditions, the eigenvalues λi are differentiable with respect to θ.
Hence, it is sufficient to proof the lemma for � � τ �→ θ(τ) = τ1 ∈ �

d and τ → 0. Now,
condition 2 and L’Hospital’s rule imply the result.

Lemma 3.4. In the setting of Theorem 3.1, let Σ(θ) be defined by (2.18) and (2.19). Then,

lim
‖θ‖→ 0

Σ(θ) = Σ(0) (3.5)

exists.



8 Journal of Applied Mathematics

−20
0

20

40

60

Ordinary kriging prediction

θ1 = 0.0478480

x
1

0
20

40
60

80
100 0

20
40

60
80

100

θ2 = 0.270674

y

x 2

Hyperparameters:

(a)

Analytical test function

−20
0

20

40

60

x
1

0
20

40
60

80
100 0

20
40

60
80

100

y

x 2

(b)

x

y
z

θ1

0

0

0.5
0.5

1

1

θ 2
Scaled Log-MLE

(c)

x
y

z

θ 1
0

0

0.5
0.5

1 1θ2

Scaled Log-MLE

(d)

Figure 1: Ordinary Kriging estimation (a) of a two-dimensional analytical test function (b) based on
15 samples points. ((c) and (d)) Two views of the associated LogML, scaled by a factor of 1/100. This
example shows that hyperparameter optima might lie very close to the blowup of the LogML due to ill-
conditioning, that is proved to occur by Theorem 3.1. Model function and sample locations are listed in
Appendix B.

Proof. We prove Lemma 3.4 by showing that lim‖θ‖→ 0β(θ) exists.
Remember that β = (β0, . . . , βp)

T ∈ �
p+1 , with p ∈ �0 depending on the chosen

regression model. As in the above lemma, we can restrict the considerations to the direction
τ �→ θ(τ) = τ1.

Let λi(θ), i = 1, . . . , n be the eigenvalues of R(θ) ordered by size with corresponding
eigenvector matrix Q(θ) = (X1, . . . , Xn)(θ) such that Q(θ)R(θ)QT (θ) = Λ(θ) = diag(λ1, . . . ,
λn). For brevity, define Xi(τ) := Xi(θ(τ)) = Xi(τ1) and so forth.
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Figure 2: Kriging of data stemming from reduced-order modeling of solutions to the Navier-Stokes
equations via POD coefficient interpolation; see, for example, [23]. (a) Kriging predictors for different
choices of the distance weight θ. (b) Corresponding condensed log-likelihood function, showing the limit
behavior as predicted by Theorem 3.1. Numerically, the function features no local minimum. Thus, it is
impossible to say which one of the estimator functions in the left picture is the most likely.

It holds that X1(0) = (1/
√
n)1; see Lemma 3.3. Hence, 〈1, Xj(τ)〉 → 0 for τ → 0

and j = 2, . . . , n. In the present setting, the derivatives of eigenvalues and (normalized)
eigenvectors exist and can be extended to 0; see, for example, [22]. By another application
of L’Hospital’s rule,

lim
τ → 0

〈1, Xj(τ)〉
λj(τ)

exists for j = 2, . . . , n. (3.6)

Introducing

L(τ) =

⎛

⎜⎜⎜
⎜⎜
⎝

λ1 0 · · · 0

0 λ2
...

...
. . . 0

0 · · · 0 λ2

⎞

⎟⎟⎟
⎟⎟
⎠

(τ) ∈ �(p+1)×(p+1) , (3.7)

we can restate (2.19) as

β =
(
FTQΛ−1QTF

)−1(
L−1L

)
FTQΛ−1QTY

=
(
LFTQΛ−1QTF

)−1(
LFTQΛ−1QT

)
Y.

(3.8)

It is sufficient to show that limτ → 0(LFTQΛ−1)(τ) exists.
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Writing columnwise (F0, F1, . . . , Fp) := F, a direct computation shows

(
LFTQΛ−1

)
(τ) =

⎛

⎜⎜⎜
⎜⎜⎜
⎜⎜⎜⎜
⎝

λ1

λ1
〈F0, X1〉 λ1

λ2
〈F0, X2〉 · · · λ1

λn
〈F0, Xn〉

λ2

λ1
〈F1, X1〉 λ2

λ2
〈F1, X2〉 · · · λ2

λn
〈F1, Xn〉

...
...

...

λ2

λ1
〈Fp, X1〉 λ2

λ2
〈Fp, X2〉 · · · λ2

λn
〈Fp, Xn〉

⎞

⎟⎟⎟
⎟⎟⎟
⎟⎟⎟⎟
⎠

(τ) ∈ �(p+1)×n . (3.9)

Note that F0 = 1 =
√
nX1(0) for the default choices of regression basis functions, such that

〈F0, X1(0)〉/= 0 and 〈F0, Xj(0)〉 = 0 for j = 2, . . . , n. The desired result follows from (3.6) and
Lemma 3.3.

Remark 3.5. Actually, one cannot prove for (LFTQΛ−1) to be regular in general, since this
matrix depends on the chosen sample locations. It might be possible to artificially choose
samples such that, for example, F has not full rank. Yet if so, the whole Kriging exercise
cannot be performed, since (2.19) is not well defined in this case. For constant regression,
that is, F = 1, this is impossible. Note that F is independent of θ.

Now, let us prove Theorem 3.1 using notation as introduced above.

Proof. As shown in the proof of Lemma 3.3

cond(R(θ)) =
λmax(θ)
λmin(θ)

−→ ∞ for ‖θ‖ −→ 0. (3.10)

Because the correlation matrix is symmetric and positive definite, a decomposition

R(θ)−1 = Q(θ)Λ(θ)−1QT (θ), (3.11)

with Q orthogonal and Λ−1 = Diag(1/λi)i={1,...,n}, exists.
If necessary, renumber such that λmax = λ1 ≥ · · · ≥ λn = λmin. Let W(θ) =

(W1(θ), . . . ,Wn(θ)) := Q(θ)Σ(θ). By Lemma 3.4, W(0) := Q(0)TΣ(0) exists. Condition 3
insures that W1(0)/= 0.

Case 1. Suppose that Wi(0)/= 0 for all i = 1, . . . , n.
By continuity, Wi(θ)/= 0 for 0 ≤ ‖θ‖ ≤ ε and ε > 0 small enough. Since {θ ∈ �

d , 0 ≤
‖θ‖ ≤ ε} is a compact set,

W2
m := min

0≤‖θ‖≤ε

{
W2

i (θ), i = 1, . . . , n
}

(3.12)
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exists. Then, for ‖θ‖ ∈ [0, ε],

ML(θ) =
1
nn

(
ΣT (θ)R(θ)−1Σ(θ)

)n
det(R(θ))

=
1
nn

(
∑

i

W2
i (θ)

λi(θ)

)n∏

i

λi(θ)

≥
(

W2
m

n

)n(
n − 1

λmax(θ)
+

1
λmin(θ)

)n

λn−1
min(θ)λmax(θ)

≥
(

W2
m

n

)n((
n − 1

λmax(θ)

)n

+
(

1
λmin(θ)

)n)
λn−1
min(θ)λmax(θ)

≥
(

W2
m

n

)n(
(n − 1)n

cond(R(θ))n−1
+ cond(R(θ))

)

≥
(

W2
m

n

)n

cond(R(θ)).

(3.13)

Case 2. Suppose that Case 1 does not hold true.
From Σ(0)/∈ span{1}, it follows that

W(θ) = Q(θ)TΣ(θ)/∈ span
{
(1, 0, . . . , 0)T

}
, (3.14)

for ‖θ‖ sufficiently small. Let J := {i ∈ {1, . . . , n} | Wi(0)/= 0}. Then, nJ := |J | ≥ 2.
Define

W2
m := min

0≤‖θ‖≤ε,j∈J

{
W2

j (θ)
}
. (3.15)

For the index m̃ defined by λm̃ := minj∈J{λj}, it holds that m̃ ∈ {2, . . . , n}.
By Lemma 3.3,

L := min
0≤‖θ‖≤ε

{
λmin(θ)
λm̃(θ)

}
> 0 (3.16)

exists. Using

n∑

i=1

W2
i (θ)

λi(θ)
≥
∑

j∈J

W2
j (θ)

λj(θ)
≥ W2

m

(
nJ − 1
λmax(θ)

+
1

λm̃(θ)

)
, (3.17)
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together with

λmax

λm̃
(θ)
(
λmin

λm̃

)n−1
(θ) =

λmax

λmin
(θ)
(
λmin

λm̃

)n

(θ) ≥ Lncond(R(θ)), (3.18)

the result can be established as in Case 1.

The estimate of the upper bound of ML is obtained in an analogous manner. Let

W2
M := max

0≤‖θ‖≤ε

{
W2

i (θ) | Wi(θ)/= 0, i = 1, . . . , n
}
> 0,

LM := max
0≤‖θ‖≤ε

{
λ2(θ)
λmin(θ)

}
> 0.

(3.19)

Then,

ML(θ) =
1
nn

(
ΣT (θ)R(θ)−1Σ(θ)

)n
det(R(θ)) =

1
nn

(
∑

i

W2
i (θ)

λi(θ)

)n∏

i

λi(θ)

≤
(

W2
M

n

)n(
n − 1

λmin(θ)
+

1
λmax(θ)

)n

λmax(θ)λn−1
2 (θ)

=

(
W2

M

n

)n(
n − 1

λmin(θ)

)n(
1 +

1
n − 1

λmin(θ)
λmax(θ)

)n

λmax(θ)λn−1
2 (θ)

(∗)
≤
(
W2

M

)n(
1 − 1

n

)n

cond(R(θ))
(

λ2(θ)
λmin(θ)

)n−1(
1 +

n

(n − 1)cond(R(θ))

)

≤ W2n
M

e
Ln−1
M (cond(R(θ)) + 2) ≤ 3

W2n
M

e
Ln−1
M cond(R(θ)),

(3.20)

where we used Bernoulli’s inequality at (∗), Lemma 3.3, and the fact that n/(n − 1) ≤ 2.

Remark 3.6. The extension of the main theorem to Cokriging prediction [7, 20] is a
straight-forward exercise, since the limit eigenvectors of the Cokriging correlation matrix
corresponding to nonzero eigenvalues can also be determined explicitly.

4. Why Kriging Model Training Is Tricky: Part II

The following simple observation illustrates Kriging predictor behavior for large-distance
weights θ. Notation is to be understood as introduced in Section 3.

Observation 1. Suppose that sample locations {x1, . . . , xn} ⊂ �
d and responses yi = y(xi) ∈

�, i = 1, . . . , n are given. Let ŷ be the corresponding Kriging predictor according to (2.10).
Then, for �d � x/∈ {x1, . . . , xn} and distance weights ‖θ‖ → ∞, it holds that

ŷ(x) −→ f(x)β. (4.1)
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Table 1: Sampled sites corresponding to the example displayed in Figure 2.

x = α: 0.0 2.0 4.0 6.0 8.0
y(x): −0.229334 0.277018 0.455534 −0.769558 0.26634

Put in simple words: if too large distance weights are chosen, then the resulting
predictor function has the shape of the regressionmodel, x �→ f(x)β, with peaks at the sample
sites, compare Figure 2, dashed curve.

Proof. According to (2.10) it holds that

ŷ(x) = f(x)β + cTθ (x)C
−1
θ

(
Y − Fβ

)
, (4.2)

where C = σ2R. By (2.13), it holds that R(θ) → I, for ‖θ‖ → ∞ for every admissible spatial
correlation model of the form of (2.11). By Cauchy-Schwartz’ inequality,

∣∣∣cTθ (x)C
−1
θ

(
Y − Fβ

)∣∣∣ =
∣∣∣
〈
cθ(x), C−1

θ

(
Y − Fβ

)〉∣∣∣ ≤ ‖cθ(x)‖‖C−1
θ

(
Y − Fβ

)‖, (4.3)

where ‖cθ(x)‖ → 0 and ‖C−1
θ
(Y − Fβ)‖ → const. for ‖θ‖ → ∞.

Remark 4.1. The same predictor behavior arises at locations far away from the sampled sites,
that is, for dist(x, {x1, . . . , xn}) → ∞. This has to be considered, when extrapolating beyond
the sample data set.

Figure 2 shows an example data set for which the Kriging maximum likelihood
function is constant over a large range of θ values. This example was not constructed artificially
but occured in the author’s daily work of computing approximate fluid flow solutions
based on proper orthogonal decomposition (POD) followed by coefficient interpolation as
described in [23, 24].

The sample data set is given in Table 1. The Kriging estimator given by the dashed
line shows a behavior as predicted by Observation 1. Note that from the model training point
of view, all distance weights θ > 1 are equally likely, yet lead to quite different predictor
functions. Since the ML features no local minimum, classical hyperparameter estimation is
impossible.

Appendices

A. On the Validity of Condition 2 in Theorem 3.1

The next lemma strongly indicates that the second condition in the main Theorem 3.1 is given
in nondegenerate cases.

Lemma A.1. Let �d � θ �→ R(θ) ∈ �n×n be the correlation matrix function corresponding to a given
set of Kriging data and a fixed spatial correlation model.

Let λi(θ), i = 1, . . . , n be the eigenvalues of R ordered by size with corresponding eigenvector
matrix Q = (X1, . . . , Xn), and define θ : � → �

d , τ �→ θ(τ) := τ1. Suppose that the eigenvalues are
mutually distinct for τ > 0 close to zero.
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Denote the directional derivative in the direction 1 with respect to τ by a prime ’, that is,
(d/dτ)R(τ1) = R′(τ) and so forth. Then, it holds that

λ′
i(0) = XT

i (0)R
′(0)Xi. (A.1)

If R′(0) is regular, then

λ′
i(0)/= 0, (A.2)

for all i = 1, . . . , n, with at most one possible exception.

Proof. For every admissible spatial spatial correlation function r(θ, ·, ·) of the form (2.11) and
x /= z ∈ �d , it holds that

r(θ(τ), x, z) −→ 1, for τ −→ 0. (A.3)

Thus, (R(0))i,j = 11T ∈ �n×n .
It holds that (11T)1 = n1 ∈ �

n and (11T)W = 0 for all W ∈ 1⊥ ⊂ �
n ; therefore, the

limits of the eigenvalues of the correlation matrix ordered by size are given by λ1(0) = n >
λ2(0) = · · · = λn(0) = 0. The assumption, that no multiple eigenvalues occur, ensures that the
eigenvalues λi and corresponding (normalized, oriented) eigenvectors Xi are differentiable
with respect to τ . Let Q(τ) = (X1(τ), . . . , Xn(τ)) ∈ �

n×n be the (orthogonal) matrix of
eigenvectors, such that

Λ(τ) := diag (λi(τ))n1 = QT (τ)R(τ)Q(τ). (A.4)

Then,

Λ′(τ) = Q(τ)TR′(τ)Q(τ) +Q′(τ)TR′(τ)Q(τ) +Q(τ)TR(τ)Q′(τ),

Λ′(0) = Q(0)TR′(0)Q(0)

+

⎛

⎜
⎜⎜⎜
⎜⎜
⎝

0 λ1(0)〈X′
2(0), X1(0)〉 · · · λ1(0)〈X′

n(0), X1(0)〉
λ1(0)〈X′

2(0), X1(0)〉 0 · · · 0

...
...

...

λ1(0)〈X′
n(0), X1(0)〉 0 · · · 0

⎞

⎟
⎟⎟⎟
⎟⎟
⎠

,

(A.5)

where Q(0) is the continuous extension of Q(τ); see, for example, [22].
Hence,

λ′
i(0) = eTi Λ

′(0)ei = XT
i (0)R

′(0)Xi(0). (A.6)
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Table 2

Location x1 x2 y(x1 , x2)
1 84.0188 39.4383 −15.0146
2 78.3099 79.844 53.5481

3 91.1647 19.7551 20.0921

4 33.5223 76.823 13.506

5 27.7775 55.397 2.10686

6 47.7397 62.8871 5.07917

7 36.4784 62.8871 −1.23344
8 95.223 51.3401 26.5839

9 63.5712 71.7297 27.5219

10 14.1603 60.6969 4.74213

11 1.63006 24.2887 5.00422

12 13.7232 80.4177 6.48784

13 15.6679 40.0944 4.24907

14 12.979 10.8809 5.16235

15 99.8925 21.8257 22.8288

Let us assume, that there exist two indices j0, k0, j0 /=k0 such that λ′
k0
(0) = 0 = λ′

j0
(0).

LetW := (0, . . . ,−λ1〈X′
j0
(0), X1(0)〉, . . . ,−λ1〈Xk0′ (0), X1(0), . . . , 0)T ∈ �n . Then,

⎛

⎜⎜
⎜
⎝

0

...

0

⎞

⎟⎟
⎟
⎠

= Λ′(0)W = Q(0)TR′(0)Q(0)W, (A.7)

contradicting the regularity of R′(0), if W /= 0.

IfW = 0, replaceW by W̃ := (0, . . . ,
j0
1, . . . ,

k0
1 , . . . , 0) and repeat the above argument.

For most correlation models, the derivative R′(0) can be computed explicitly.

B. Test Setting Corresponding to Figure 1

In order to produce Figure 1, the following test function has been applied:

y : [0, 100] × [0, 100] −→ �, (x1, x2) �−→ 5 +
x2
1 · x2

10, 000
sin
(
x2

10

)
. (B.1)

The Kriging predictor function displayed in this figure has been constructed based on
the fifteen (randomly chosen) sample points shown in Table 2.
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Nomenclature

d ∈ �: Dimension of parameter space
n ∈ �: (Fixed) number of sample points
xi ∈ �d : ith sample location
yi ∈ �: Sample value at sample location xi

I ∈ �n×n : Unit matrix
1 := (1, . . . , 1)T ∈ �n : Vector with all entries equal to 1

ei = (0, . . . , 0,
i
1, 0, . . . , 0)T : ith standard basis vector

V ⊥ ⊂ �n : Subspace of all vectors orthogonal to V ∈ �n

R ∈ �n×n : Correlation matrix
C ∈ �n×n : Covariance matrix
cond(R): Condition number of R ∈ �n×n

〈·, ·〉: Euclidean scalar product
e = exp(1): Euler’s number
p + 1 ∈ �: Dimension of regression model
β ∈ �p+1 : Vector of regression coefficients
f : �d → �

p+1 : Regression model
ε : �d → �: Random error function
E[·]: Expectation value
σ =

√
Var: Standard deviation

θ ∈ �d : Distance weights vector, model hyperparameters.
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