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Abstract—In this paper we present the synchronization and
driver architecture of the DLR LWR-III, which supplies an easy
to use interface for applications. For our purpose we abstracted
the robot hardware entirely from the control algorithms using
the common device driver concept of modern operating systems.
The software architecture is split into two modular parts. On
the one side, there are device drivers that communicate with the
hardware components. On the other side, there are realtime ap-
plications realized as Simulink Models, which provide advanced
control algorithms. This ensures a clean separation between the
two modules and provides a communication over a common
and approved interface. Furthermore we investigated how we
can ensure synchronization to the hardware over the device
driver interfaces and how we can ensure that it meets hard
realtime requirements. The main result of this paper is to realize
a synchronization between LWR-III hardware and Simulink
control applications while targeting small latencies with respect
to hard realtime requirements. The design is implemented and
verified on WindRiver™ VxWorks™.

I. INTRODUCTION

Implementing various control features of complex mecha-
tronic robotic systems is a challenging task by itself and
necessitates well designed tools as Matlab™/Simulink™.
The theory and its realization concentrate on a system view
and it is of large benefit to have a design that decouples the
robot system from the control implementation. In current
systems the robot hardware is controlled by a standard pc-
hardware on which the control application is running. In
the past when computers got more and more complicated,
operating systems were developed which abstract the hard-
ware from the software. The goal of our work was to take
advantage of such mechanisms, that means to implement an
abstract view to the underlying LWR-III hardware. Figure 2
corresponds to the classic view of control systems. Our goal
is to produce highly modular, robust, and reusable code. In
order to realize such features, we need an operating system
that supplies distinct functionalities.

Nowadays operating systems mostly separate between
kernel and user space. Kernel space is the place where
the system kernel executes and provides its services. It has
direct access to all hardware components of the system.
The user space is remotely located from the hardware,
which can only be accessed from the user space via system
calls to the kernel. Its main benefit is to gain memory
protection for applications running in the user space, thus
increasing their robustness significantly. In this paper we use
the aforementioned separation concept and implement it for
the LWR-III robot control in order to logically, as well as
from an architectural point of view separate our Simulink
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The LWR-III based Space Justin

control applications entirely from the respective hardware.
This makes it possible to encapsulate them from each other.
In realtime control there exist two common problems.

o How to abstract the real hardware from the control
application?

« How to ensure synchronization among those applica-
tions, so that they are running in time with the hard-
ware? In other words they have to be hard-realtime
conform.

In robotic systems these requirements should be carefully
considered, since they heavily influence the system perfor-
mance.

In many existing designs the robot control applications
are located in the same layer as drivers and/or the kernel.
The main benefit of such a system is very small latencies,
however, at the cost of lacking protection mechanisms. In
case of failure, any program may crash the entire system.
Thus, a way has to be found, to run the robot control
in a more protected environment, fully detached from the
hardware components. The control applications do not need
any particular information about the LWR-III hardware any-
more and the developer can focus on the pure algorithmic
implementation. The only information required is how the
attached system can be accessed and altered. Therefore we
need a common and approved interface to the hardware that
allows synchronized access for the control algorithms.

To cover the second problem current systems use common
synchronization concepts like semaphores, events, or mes-
sage queues. This is straightforward if we consider that all
application programs run in kernel space and have access to
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Fig. 2. Target structure for control implementation

each other. In this paper we mitigate the control application
to user space and need other synchronization methods, as we
cannot access the hardware driver directly.

The paper is organized as follows. Section II introduces
the requirements for the interface to the underlying hardware.
In Section III the state of the art is discussed to point out
the used techniques. This includes basics about operating
systems and the used POSIX device driver concept. In
Section IV we apply that knowledge to our synchronization
approach suitable for the LWR-III. Finally, in Section V
and VI we give some programming examples and two
of our implemented sample applications, showcasing the
effectiveness of our implementation.

II. ROBOT INTERFACE REQUIREMENTS

For our concept we specified some few requirements for
the interface to the robot.

o Abstract view of the real robot hardware
o Ensure synchronized access to robot data
o Deliver an interface for control purposes
o Ensure hard realtime requirements

To fit these requirements a common interface operating
systems has to be found. One of the possibilities is to use the
interface supplied by device drivers. These deliver an abstract
view of the underlying hardware. The question now is, how
to fit the other requirements when using device drivers to
access the robot hardware.

III. STATE OF THE ART
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Fig. 3. Exemplary architecture of realtime robot control

Usually, in realtime operating systems all application
programs run in kernel space and have therefore access

to the entire system hardware and software. As described
in [4][5][6] it is very difficult to clearly distinguish RTOS
applications from drivers, even though such distinctions exist.
The overall synchronization depends on the accessibility of
every program part from any other process running on the
target system. Such a cross-linked situation is of course
potentially hazardous in case of software faults and is not
well suited for maximum robustness.

As already mentioned, current control applications are
usually embedded as depicted in Figure 3. Development of
control applications is straightforward for this design and
implements the device driver for the fieldbus and interface
cards as part of the application (1), or provides direct access
between each other (2).

The control algorithms run as a kernel task inside the oper-
ating system kernel and have direct access to the underlying
hardware. This is definitely a non-ideal situation for complex
mechatronic applications, potentially leading to an entire
crash of the system with all its consequences. This is due to
the fact that in kernel space protection of memory and system
resources is usually not provided, causing a severe weakness
and conflicting with many modularity requirements. This
means that control applications need to be implemented such
that they do not interfere with other tasks that are accessing
the same hardware and drivers. This aspect cannot be derived
from a control point of view, since it is typically desired
to implement module control components with well defined
interfaces that correspond to the particular system theoretical
aspects.

Other typical tasks can for example be monitoring or
parametrization tools. Most existing work discussing such
aspects[1][2][3] covers more theoretical approaches to the
existing problems as e.g. control engineering aspects of how
to ensure deterministic delays in the control loop. However,
they do not cover how to gain synchronized hardware access
for robots in principle.

In the next section we introduce some of the required
operating system concepts necessary to fully outline the
presented concept.

A. Operating systems

In order to realize the aimed separation, an operating
system is required that distinguishes between kernel- and
user-space. The main reason to mitigate robot control to user-
space is the aforementioned need for a significant increase
in stability of the entire system. Examples for those systems,
which are commonly used in realtime applications, are
VxWorks™developed by WindRiver™[7] and QNX™from
QNX Software SystemSTM[IO]. VxWorks serves as the
demonstration system in the present work.

A well suited operating system also needs to provide some
common system features. On the one hand, it should be
possible to provide standard operating system independent
interfaces like POSIX. This ensures code reusability on
other operating systems due to a common interface when
using synchronization and communication features. On the
other hand, it has to supply a device driver concept for our
requirements. This concept is described in the next section.



B. POSIX Device Driver Concept

The purpose of device drivers is to obtain a clear separa-
tion of kernel- from user-space. Therefore, a common device
driver interface is defined in most operating systems. One of
its major benefits is that the applications implemented on top
of the device interface may work system independent which
is especially useful for robotics due to the variety of tools
available for control design and implementations.
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Fig. 4. Device Driver Concept

Figure 4 depicts the system view for the device driver
concept in general. The hardware components as e.g. serial
interfaces, graphics cards or network interfaces are shown in
the hardware layer. The next petition implements the kernel
including the device driver to gain the hardware access. On
top of the kernel space the user space is located, where
all applications run entirely separated from the kernel and
therefore protected against each other. Between the kernel
and user space exists a common interface. In Unix like
systems as VxWorks the interface is accessed via so called
device files. These device files are created somewhere in the
file system (usually in /dev).

Fig. 5.

State Machine Device Driver

They provide only a well defined set of functionalities,
show in Figure 5, where the different states of the device
files are given. The states are the common sense in most
operating systems. The relevant transitions between the two
states closed and opened are described below. They are
common to all device drivers, so their access is unique and
therefore provides a common interface.

1) open/close: Opens or closes the device-file for ma-
nipulation. This has to be done before reading, writing, or
parameterizing the device-file. Open usually returns a file
descriptor to the corresponding file or device. Close takes
this file descriptor and ends all device-file access.

2) read/write: Reads or writes from, or to a stream-
based device. Usually, these calls are parametrized by the
previously received device-file descriptor and a memory
buffer for read or write.

3) ioctl: ioctl sends a special command to the device-file
as e.g. reset or mode selection. It requires the file handle, the
request code, and optionally a memory-buffer as argument.

4) select: This call allows every program to monitor
multiple device files. It can be useful if one needs to
know whether there is data available from more than one
device. The calling program is waken if one or more file
descriptors are readable, writable, or if any of them throwed
an exception. The program can also specify a timeout.

C. Mapping POSIX Device Driver to robot

We can map the POSIX Device Driver concept to our robot
as depicted in figure 6. On the left side we have our control
task which monitors the robot to detect violences of the hard
realtime and sends simple commands to it with ioctl. This
includes e.g. access to the robot state machine or exception
handling. On the right side we have our control loop, which
retreaves meassured data from the robot via read calls. After
it does all its calculations it sends the new values to the robot
with a write. After that it needs to get new meassured values
from the robot.

read only read/write

Control

Control

LWR-III Robot

Fig. 6. POSIX Device Driver mapping

To ensure the hard realtime requirements, the device driver
has to observe, if the control loop is sending new values every
clock cycle. If a violation is detected, the driver switches the
robot to a safe state. This can be configured and monitored
from the control. The synchronization to the robot is to be
discussed in the next section.

D. Summary

In realtime systems read/write can provide access to cyclic
data on the specific realtime hardware. This hardware can
be controlled with calls to ioctl. Its interface is designed for
gaining common access to different types of device drivers.
Special device features are handled via ioctl. For each of this
interface functions the operating system issues a system call.
This involves a context switch from user-space to kernel-
space and vice versa. This leads to some additional delay,
which role is discussed later in Section IV-D.

Next we present the hardware synchronization mechanism
for the LWR-III.



IV. HARDWARE SYNCHRONIZATION

Robot Control
]
<
a
g A A A A A
g2 =g = g12 =
- LR CEE
g | Kernel Interface | Interface Interface
< Node Node Node
a
£ Devicedriver Devicedriver
M 7 W \ 7 ¥
1] 1
Yy Y
g CPU Fieldbus Interface Card
—E A A
< A A
T
Robot ¥ Force-Torque ¥
Sensor
Fig. 7. New Synchronization Control Architecture for a robot

The mapping of the device driver concept to our realtime
robot control is a simple mapping. With calls to open
and close the specific control gains or looses access to
the underlying device. To receive current values from the
attached robot or sensor device, the control only calls read
on the previously opened device. Then, the current values are
copied into a buffer supplied by the robot control. After the
control finishes its calculations, the command values need
to be written back to the device. This is done by calling
write, which writes them to the underlying attached device.
The resulting synchronized control architecture is given in
Figure 7.

The common problem to be solved now is the synchroniza-
tion of control with hardware. This is of major importance,
since otherwise our control applications would need to incor-
porate latencies, leading to more complex theoretical analysis
and possibly unstable system behavior. The synchronization
can be implemented in three different ways by using blocking
system calls:

o blocking read
o blocking ioctl
o select

One benefit of such a hardware synchronization is the
support for multiple control or monitor applications. If more
than one application is in blocked state, all of them have
to be unblocked in case a new tick (that means new cyclic
data/actual values from the LWR-III) is received from the
device driver. This makes it possible to run some monitoring
tools in parallel to the main robot control application.

In the following we shortly describe the working principle
of the three synchronization schemes.

A. blocking read

If the device is opened in blocking mode, every call to read
will block the calling application until the next driver tick
is available. Figure 8 illustrates the synchronization scheme
with blocking read.
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Fig. 8. Synchronization blocking read

Usually the device driver receives a tick if new values
from the robot are available. In this case all attached control
applications are unblocked immediately, allowing them to
start calculations. The major benefit of this approach is that
the control application reads the most recent available data
for the next step of calculating e.g. new actuation variables
(torque).

B. blocking ioctl

The second possibility to synchronize our control with the
LWR-III hardware is a blocking ioctl call. This also blocks
the calling application until the next driver tick is available.
Its scheme is depicted in Figure 9.
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The resulting behavior is nearly the same as for blocking
read with one significant difference. If new robot values are
available from LWR-III, the driver immediately unblocks all
waiting applications which are blocked inside the ioctl. Then
they have to perform a read call to retrieve the new values.
This leads to a small overhead compared to the blocking read
consisting of one more system call. Alternatively, the ioctl
could be parametrized with a timeout value. If no device
driver tick occurs until this timeout, the ioctl unblocks and
returns an error code. Then, the application could react to
this timeout in a proper way.



C. select

The most promising possibility we implemented for syn-
chronization is to perform a select in order to synchronize to
more than one hardware device. This call blocks the control
until one of the given file descriptors is readable, writable, or
received an error. In most cases one would use select to wait
for a readable file descriptor, which means that new cyclic
data is available. The timing behavior looks very similar to
blocking ioctl, e.g. Figure 10.
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Fig. 10. Synchronization select

This also leads to a small overhead compared to blocking
read by one more system call.

The main criterion for choosing the preferred select syn-
chronization scheme is whether the time delay caused by a
system call produces significant latencies.

D. Time measurement

In order to determine the impact of system calls to the
realtime system behavior time measurements are performed.
These tests were carried out on VxWorks 6.7 running on a
Pentium 4 with 3.0 GHz.

time [us]
average time 1.108
average deviation 0.002
maximum deviation 0.035

TABLE I
SYSTEM CALLS TIME MEASUREMENT

Table I gives the quantitative results. The average time for
a system call is = 1 us, and the average and maximum jitter
are very low and fulfill hard realtime requirements.

In Figure 11 the measured times for system calls are shown
for 1000 test cycles. These tests were made a big ymount
The single peaks represent the maximum jitter of ~ 0.035 us.
The average jitter (exposed area) is around 2 nanoseconds.

These tests show that the impact of system calls is
negligible. For both synchronization methods - blocking read
and blocking ioctl we obtain a very low delay. The blocking
ioctl and the select need one extra system call, so 50 % more
system calls than for blocking read are required. Thus, one
calculation step needs extra 2.2 us in case of blocking read
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Fig. 11. Jitter measurement

and 3.3 us in case of blocking ioctl. The respective system
call count and the additional latencies are shown in Table II.

system calls | time [us]
blocking read 2 2.2
blocking ioctl 3 33
select 3 33

TABLE II
AVERAGE LATENCIES

E. Programming Concept

There are multiple ways of writing applications, that
are synchronized with the hardware. The first step would
be to open the device and acquire a file descriptor. For
example a device is opened for read/write access and called
”/dev/mydev”. There are mainly two common flags needed
for our concept. The Flag O_RDWR gains read/write access
to the device and O_NONBLOCK ensures that no blocking
operation during read is performed. If O_NONBLOCK is not
supplied, the device is opened in blocking mode.

fd = open("/dev/mydev", O_RDWR);

Now, the application is synchronized to the hardware by
simply performing blocking reads. This can be done by
supplying a buffer to store the actual cyclic data from the
attached robot. This call returns the number of bytes actually
read. This call will block until new data from the robot is
available. Calculated cyclic data could also be written to
the device. The write call looks similar to the read call,
which would send the data to the attached robot and return
afterwards immediately. The device driver monitors if a write
call is made every clock cycle. Otherwise the robot will be
switched to a safe state.

bytes_read = read(fd, buf, size);
bytes_written = write (fd, buf, size);

Asynchronous access to the hardware is also possible
if the device is opened with the O_NONBLOCK flag. The



synchronization should be done with blocking ioctl calls.
This call also blocks until new robot data is available as the
blocking read call does.

ioctl (fd, DEV_IOCTL_WAITTICK);

With this very simple chain of commands it is now
possible to write control applications that are synchronized
with the robot hardware.

FE. Comparision

The three presented synchronization schemes can be used
depending on the system requirements. Blocking read is
always usefull if just one device is used for synchronization
and is supplying sensor data to the control application. Block-
ing ioctl may be used in case that the device is supplying only
a clocktick and no sensor data. Synchronization to multiple
devices can be made with select, where the application will
be informed, if one or more of the selected devices are
signalling that they are ready. In Table III the comparision
between the different schemes is shown.

hardware sync | sensor data | multiple devices
blocking read yes yes no
blocking ioctl yes no no
select yes no yes
TABLE III

SCHEME COMPARISION

In the next section we show practical programming exam-
ples of our implementation.

V. USING THE POSIX INTERFACE

This section addresses some possible programming op-
tions. The most interesting method for control engineering is
the usability of modeling tools as Matlab™/Simulink™![8].
Furthermore, the implementation of synchronized utility
tools was carried out.

A. Command line Tools

A positive side effect of this device driver concept is the
possibility to use multiple applications simultaneously. As
mentioned before, we may run monitoring utilities in parallel
to the main control application. A very basic option to control
the realtime hardware we implemented are rudimentory
command line tools for parametrization and diagnosis. These
should allow to set or get parameters, modes, etc. from
the attached devices, or to supply monitoring features. The
utilities should run with low priority so they do not interfere
with the main robot control. A well known example for such
monitoring tools are file loggers or tcp loggers. The logged
data can then be processed and analyzed off time.

B. Matlab™/Simulink™ RealTime Workshop™

Matlab Simulink in combination with RealTime Work-
shop (RTW) allows the generation of universal code from
Simulink models. Access to hardware is granted by an
individual S-Function-Block. S-Functions offer the possibil-
ity to embed C/C++ code into Simulink. A S-Function is

implemented with a common interface, which consists of a
start and a terminate routine. The calculations steps are done
by the update routine.

1) Model start: The S-Function usually opens the hard-
ware device in his start-routine.
void mdlStart (SimStruct =*S)
{

fd = open ("/dev/mydev", O_RDWR) ;
}

In the start routine the device file is opened to acquire a file
descriptor to the device for later usage. This file descriptor
can be stored in one of the S-Function vectors.

2) Model terminate: The Simulink model terminates all
S-Functions with a call to their termination routine.
void mdlTerminate (SimStruct =*S)

{

close (fd);
}

At this point the acquired file descriptor should be closed.
3) Model update: In each Simulink calculation step the
model calls the update-routine of the S-Function. This
update-routine should at first write the last calculated values
to the driver and then read the current values from it. The
read blocks until new values are available as described in
section IV-A.
void mdlUpdate (SimStruct =S)
{

... get calculated values ...
write (fd, wbuf, sizeof (wbuf));

/* read from device (blocking) =*/
read (fd, rbuf, sizeof (rbuf));
. set actual values to model ...

The given examples show that it is possible to use nearly
the same code basis as for the command line tools in
order to embed synchronization structures into the interface
for control engineering tools as Matlab/Simulink. In the
next section we present some of our implented application
on top of this concept, resulting in a full separation of
synchronization schemes from the robot control.

VI. APPLICATION TO ROBOT CONTROL

At DLR we have implemented multiple applications, using
the presented synchronization architecture. They consist of
a standard pc hardware platform and a DLR LWR-III. The
LWR-III is connected via the serial fieldbus SERCOS to the
computer. This bus is running at a cycle time of 1 kHz and
triggers all the applications with its clock rate.

A lot of full scale applications were already implemented,
incorporating full robot control, external sensoring, and rea-
soning. We developed a co-worker scenario[12] and a robotic
billiard player[11] (both Figure 13). Furthermore we applied
this to concept to our Space Justin (Figure 1), to our newly
developed DLR Walker (Figure 13) and to a Brain Machine
Interface[13] (BMI, Figure 13).

As depicted in Figure 12 we implemented the target
scheme depicted in Figure 2. In this model we can switch
between the real robot and its full dynamic simulation at run-
time. This significantly accelerates development and testing
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Fig. 13.

times for the sophisticated control components. The target
scheme is integrated in the full robot control architecture.
The merit of this is to achieve a logical separation of the
control components and the attached robot hardware. This
Simulink example can be compared to Figure 2. The red line
shows the outputs () of the implemented controller (Control)
to the robot (Plant). The meassured sensor values (x, green
line) and the desired values (w, blue line) are connected to
the inputs of the controller.

VII. CONCLUSION

In this paper we implemented a synchronization to the
LWR-III hardware in consideration of a clean separation be-
tween kernel and user applications. With this implementation
it is possible to develop control algorithms hardware indepen-
dent and reduce development cycles. In our implementation
control applications run now in the protected user space and
cannot touch or be affected by other parts of the system.
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