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1 Introduction

We consider steady-state laminar viscous flows governedhbycompressible
Navier-Stokes equations. In the inviscid limit these degate to the compressible
Euler equations which are in many cases appropriate to ibesttow fields in the
presence of shocks.

Our discretization is based on a discontinuous Galerkin)(B@thod with the
symmetric interior penalty (SIPG) approach for viscousi®r see [7, 14] and the
references cited therein. The DG approach is a natural extenf the finite volume
method predominantly used in aerodynamics to higher omigp#ers a great flex-
ibility of the underlying meshes concerning both local magdhption with hanging
nodes and variable order discretizations, combindtoalgorithms. Being a finite
element method a substantial error estimation framewaakadable.

In the following we will consider constant polynomial degrapproximations
on quadrilateral and hexahedral meshes with local meskeraéint. Such a refine-
ment is often performed in an isotropic way by splitting allelement’s edges and
forming new children elements. However, flow phenomena maipé a strong di-
rectional behavior in boundary layers or interior layeke Bhocks. Highly stretched
elements should be used for an efficient resolution of theawifes. Starting from
a coarse initial mesh, such elements can be obtained by aatapgic refinement
which splits only some of an element’s edges.

Considerable work has been devoted to anisotropic refinefaetinear finite
elements on simplex meshes where the information of an appated Hessian—
based mesh metric field is used within re-meshing algorifisees [4, 5, 10, 16] for
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1 However, results similar to those presented here have akso dbtained with the second scheme
of Bassi and Rebay [2].
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example. Here, the metric field approximates the interjoiagrror of the solution
and is used to determine the local mesh density as well asthédlement rotation
and stretching in a re-meshing algorithm.

As opposed to a priori interpolation error estimates, aqrast estimates based
on an adjoint problem take into account error transpomadiod accumulation ef-
fects. Using thesgoal-orientedindicators to determine the local mesh density re-
sults in meshes which are specifically tailored to the adeumpproximation of a
target quantity like the aerodynamic lift or drag force. 18] the directional infor-
mation of the metric approach has been combined with a gchhsed on adjoint-
based error indicators, resulting in dual weighted metrics

Another approach to anisotropy detection in the contexteshent subdivision is
to use several trial refinements and selecting the case witites the error most
effectively, see [13, 17]. However, such approaches seaeagnonably expensive,
especially if they require solutions on globally refined hes Solving only local
problems and including goal-oriented refinement has bepsidered in [9].

The purpose of this work is to employ anisotropy indicatolsolv come com-
putationally almost for free, i. e. no auxiliary problemaBibe solved for obtaining
anisotropic refinement information. Furthermore, theghicetors shall be appli-
cable to higher order DG discretizations and they shall lsyeaombined with
different reliable error indicators.

We adopt the partitioned approach of using different inicafor selecting the
elements to be refined and for choosing the anisotropic reénécase. In particu-
lar, we employ residual-based and adjoint-based indisdtorgoal-oriented refine-
ment to select a certain fraction of all elements to be refifred second step, the
discrete solution is analyzed using one of two differensatmopic indicators to de-
cide upon a possibly anisotropic subdivision case. We ttloée the presented ideas
are only applicable to meshes with tensor-product elempiadrilaterals in 2D,
hexahedra in 3D), whereas other work based on metrics i ofiey applicable to
simplicial meshes.

2 Error Estimation and Error Indicators

Adjoint-based indicators Given a target functional(u), the error of the discrete
solutionuy, compared to the analytical solutienn terms of the target quantity can
be approximated employing a linearized adjoint problenis Torresponds to the
well known dual weighted residual (DWR) method by Becker &ahnacher [3],
see [14] for an application in the current context. In the @Gtext the residual and
thus this estimate can be decomposed into element-wisdlmaiins which serve
as local error indicators.

The total error estimate, i. e. the accumulated local coutions, can be used as
a reliable estimate of the discretization error. As thisnestes includes the sign of
the error it can even be used to improve the computed targeitity value.
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Residual-based indicators Assuming that the solution of the adjoint problem is
sufficiently smooth, an upper bound of the error in the taggeintity can be derived,
cf. [7]. The localized form of this estimate serves as regiidhased error indicator.
As the specific target quantity does not enter the definitfaihis indicator, it can
be used to resolve all flow features but will in general be édsient for any given
target quantity.

3 Anisotropy Indicators

Jump Indicator Assuming that the analytical solution is continuous thespnee
of discontinuities in the discrete solution indicates lomaors. We associate large
jumps of the solution over element interfaces with largerapimation errors or-
thogonal to the corresponding face. If the average jlmp
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over the two faces;! and fZ orthogonal to the directionon the tensor-product ref-
erence elementis small compared to the maximal value eteathin any direction
on the same element we do not refine the element along thatiditeHere," and

~ denote the traces of the functigntaken from within the current element and its
neighbor, respectively.

If the analytical solution exhibits a discontinuity, e. g.aashock, close to and
almost parallel to a particular face, this indicator wik@aldetect a large jump and
refine the element parallel to that face. This is what is neglito obtain an im-
proved location of the discontinuity in the numerical smnof thus this behaviour
is desirable. The probability that the discontinuity ekacbincides with the face is
vanishing for real applications.

Derivative Indicator After a transformation to the reference element to include
scaling effects the local interpolation or projection e a polynomial approxi-
mation of degree to a sufficiently smooth functiop € HP+1 is determined by the
(p+ 1) derivative tensor.

In the general case we compare the projected derivativegelom coordinate
axes of the reference element and do not refine the elemearg dicections which
feature a small derivative compared to other values on thatent. For second order
methods withp = 1 we evaluate the eigenvalues and eigenvectors of the tleeva
tensor (Hessian) and exclude directions from refinemeheif &re aligned with the
eigenvectors of small eigenvalues.

The underlying smoothness assumption is especially afifar higher order
methods and discontinuous solutions at shocks.
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Application to Vector Valued Solution Functions Several strategies for extending
the presented indicators from scalar valued solution fanstp to vector valued so-
lution functionsu have been investigated, see [14] for a comprehensive discus
For the jump indicator, we simply replace the jump of the ac&lnctiong in

(1) by the jump of thé2-norm of the vector-valued functiom For the derivative
indicator we differentiate between flow regimes: In inviscases we simply use
the Mach number as a representative scalar variable, wheredscous cases the
refinement indicator is evaluated separately for each coepoWe then default to
isotropic refinement but select an anisotropic subdivisiase if that is suggested
by a sufficient number of individual indicators and if thesend contradiction in the
predicted direction of anisotropy.

4 Numerical Examples

The basic performance of the proposed indicators will bédyaed using some two-
dimensional computations. After that, a three-dimendiexample will demon-
strate the applicability to flows of increased complexity.

NACA0012 Airfoil Sub-, trans- and supersonic flows around the NACA0012 air-
foil according to the flow conditions in Table 1 have been catad on sequences of
refined meshes using both adjoint-based and residual-lkeasgdndicators as well
as isotropic and anisotropic refinement.

Figure 1 plots the error in a selected target functionalhes number of elements
for the different refinement strategies. All reference ealhave been obtained by
fine grid computations. The subsonic case A uses adjoirgebasor estimation.
Comparing the second order solution of case Al with the thider solution of case
A2 shows the increased accuracy of the method, as a sigrificaduced number
of elements produces results of the same accuracy in thethater case. Apart
from that the behavior is similar — the jump-based anisgtingdicator significantly
reduces the number of elements required for a given accanadythe derivative-

Table 1: Freestream conditions for NACA0012 test cases

Case Mach number  angle of attack Reynolds number  polynatagake targét

M a Re p Ju)
Al 05 0 5000 1 Ca,
A2 0.5 (04 5000 2 Cdp
B 0.8 1.25 inviscid 1 Cy,
C 1.2 o 1000 1 Co

a Cd, and Cy, denote the pressure and friction part of the drag coefficignt= Ca, + Ca;,
respectively
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Fig. 1: Convergence of the error under different mesh refergralgorithms for the NACA0012
test cases

based indicator performs even better. As the solution iegmnooth in this subsonic
case this can be expected.

Similar results can be seen for the transonic case B. Hengetiermance of the
jump indicator is similar or even superior to the derivativéicator. This is probably
due to the reduced smoothness of the solution at the shoahwlointradicts the
assumptions of the derivative indicator. This effect isrestgonger in the supersonic
case C. In general, the simple jump-based criterion pedaamarkably well in all
flow regimes.

In transonic cases shocks are usually located in the wcafithe airfoil and
are of great importance for the computed aerodynamic fofides residual-based
indicator resolves these prominent features and thus mesfonly slightly inferior
to the goal-oriented error estimation, see Fig. 1c.

In contrast to that, the supersonic case C features a prométetached bow
shock in front of the airfoil. As the residual-based errdimeation initially resolves
mainly this feature whereas the boundary layer resolusoimproved only later
on we notice almost no reduction of the error. Goal-oriemefthement, however,
yields significant error reductions already on the first aedpnesh, see Fig. 1d.
This motivates the utilization of the adjoint problem intepif its additional cost.
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Fig. 2 Solution plot show-

ing streamlines and a Mach
number iso-surface over the
left half of the delta wing
immersed in a laminar flow at
high angle of attack as well as
Mach number slices over the
right half

Laminar Delta Wing As a second more complex example we consider a laminar

flow at Mach numbeM = 0.3, Reynolds numbedRe= 4000 and an angle of attack
o = 12.5° around a delta wing with sharp leading edge and a bluntricagidge.
Figure 2 illustrates the vortex dominated flow charactiessif this test case which
has been considered in the EU project ADIGMA [12] and in [8irailar case was
treated earlier in [11].

In the following we consider the error of different approstions of the lift
coefficientC. Similar results have been obtained for the drag coefficgnive
start by computing the lift from the second order flow solotan a sequence of
globally refined meshes starting from a very coarse initia68 elemental mesh
for the half domain with symmetry boundary conditions. Wertltonsider adaptive
local mesh refinement starting from the results on the Irdbarse mesh.

Figure 3 plots the error in the lift coefficient vs. the numlérelements for
various refinement strategies. Compared to global mesteraént, lift coefficients
of a specific accuracy are obtained with less elements faduasbased mesh re-
finement. We notice that the adjoint-based refinement proegdelds again better
results.

Additionally, in case of adjoint-based mesh refinementFiustrates the errors
of the enhanced lift coefficients obtained by adding the glaror estimate to
the computed lift coefficient. Already on the first adaptedsiméhe enhanced lift
coefficientis more accurate than the unmodified values ctoadmn the last adapted
meshes.

Finally, we note that anisotropic mesh refinement using tingpj indicator per-
forms better than isotropic mesh refinement with an imprceenby a factor of
almost two on the final mesh in the adjoint-based case. Inrgkrtbe gain im-
proves for increasing accuracy requirements. Here, treanpy indicator works
as a general aspect ratio optimizer.
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Fig. 3 Laminar delta wing:
Error in the computed lift
coefficient for sequences of
locally refined meshes using
different refinement indicators
and isotropic ¢pen symbo)s
as well as anisotropic refine-
ment (illed)
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5 Conclusion and Outlook

The presented anisotropy indicators have been succesapglied to a number of
aerodynamic test cases. Especially the very simple junipatal performs surpris-
ingly well and is thus a good candidate for applications wittreased complexity.

So far, only laminar flows with weak boundary layers have lmmsidered. Em-
ploying a RANS approach with a suitable turbulence modellmthaner and thus
stronger boundary layers dominate the flow field. Such casesfanore interest
to the aerodynamicist. For theses applications differanibles might be of dif-
ferent orders of magnitude, thus the question of how to sgstiems of equations
efficiently will arise again, perhaps a suitable scalinghef individual components
might be necessary.

The presented approach, especially the jump indicator,algb be combined
with anhp—adaptive algorithm. First experiments show promisingltesf the num-
ber of subdivided elements is not very small compared to theber of elements
treated with an increased polynomial order.

Finally, splitting error estimation and anisotropy deimctinto two distinct in-
dicators is reasonable in many cases but for the purposeaficg nearly optimal
meshes for the approximation of a given target functionaralined approach re-
specting anisotropy in both the primal and dual solution lvdoe ideal. Recently,
Richter [15] proposed a unified approach in the context otinapus FEM and a
reconstructed dual solution. Extending this approach tagpplication and to non-
tensor-product basis functions will provide an interegaitternative to the proposed
algorithm.
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