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1 Introduction

We consider steady-state laminar viscous flows governed by the compressible
Navier-Stokes equations. In the inviscid limit these degenerate to the compressible
Euler equations which are in many cases appropriate to describe flow fields in the
presence of shocks.

Our discretization is based on a discontinuous Galerkin (DG) method with the
symmetric interior penalty (SIPG) approach for viscous terms1, see [7, 14] and the
references cited therein. The DG approach is a natural extension of the finite volume
method predominantly used in aerodynamics to higher order and offers a great flex-
ibility of the underlying meshes concerning both local meshadaption with hanging
nodes and variable order discretizations, combined inhp-algorithms. Being a finite
element method a substantial error estimation framework isavailable.

In the following we will consider constant polynomial degree approximations
on quadrilateral and hexahedral meshes with local mesh refinement. Such a refine-
ment is often performed in an isotropic way by splitting all an element’s edges and
forming new children elements. However, flow phenomena may exhibit a strong di-
rectional behavior in boundary layers or interior layers like shocks. Highly stretched
elements should be used for an efficient resolution of these features. Starting from
a coarse initial mesh, such elements can be obtained by an anisotropic refinement
which splits only some of an element’s edges.

Considerable work has been devoted to anisotropic refinement for linear finite
elements on simplex meshes where the information of an approximated Hessian–
based mesh metric field is used within re-meshing algorithms, see [4, 5, 10, 16] for
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example. Here, the metric field approximates the interpolation error of the solution
and is used to determine the local mesh density as well as the local element rotation
and stretching in a re-meshing algorithm.

As opposed to a priori interpolation error estimates, a posteriori estimates based
on an adjoint problem take into account error transportation and accumulation ef-
fects. Using thesegoal-orientedindicators to determine the local mesh density re-
sults in meshes which are specifically tailored to the accurate approximation of a
target quantity like the aerodynamic lift or drag force. In [18] the directional infor-
mation of the metric approach has been combined with a scaling based on adjoint-
based error indicators, resulting in dual weighted metrics.

Another approach to anisotropy detection in the context of element subdivision is
to use several trial refinements and selecting the case whichreduces the error most
effectively, see [13, 17]. However, such approaches seem unreasonably expensive,
especially if they require solutions on globally refined meshes. Solving only local
problems and including goal-oriented refinement has been considered in [9].

The purpose of this work is to employ anisotropy indicators which come com-
putationally almost for free, i. e. no auxiliary problems shall be solved for obtaining
anisotropic refinement information. Furthermore, these indicators shall be appli-
cable to higher order DG discretizations and they shall be easily combined with
different reliable error indicators.

We adopt the partitioned approach of using different indicators for selecting the
elements to be refined and for choosing the anisotropic refinement case. In particu-
lar, we employ residual-based and adjoint-based indicators for goal-oriented refine-
ment to select a certain fraction of all elements to be refined. In a second step, the
discrete solution is analyzed using one of two different anisotropic indicators to de-
cide upon a possibly anisotropic subdivision case. We note,that the presented ideas
are only applicable to meshes with tensor-product elements(quadrilaterals in 2D,
hexahedra in 3D), whereas other work based on metrics is often only applicable to
simplicial meshes.

2 Error Estimation and Error Indicators

Adjoint-based indicators Given a target functionalJ(u), the error of the discrete
solutionuh compared to the analytical solutionu in terms of the target quantity can
be approximated employing a linearized adjoint problem. This corresponds to the
well known dual weighted residual (DWR) method by Becker andRannacher [3],
see [14] for an application in the current context. In the DG context the residual and
thus this estimate can be decomposed into element-wise contributions which serve
as local error indicators.

The total error estimate, i. e. the accumulated local contributions, can be used as
a reliable estimate of the discretization error. As this estimates includes the sign of
the error it can even be used to improve the computed target quantity value.
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Residual-based indicatorsAssuming that the solution of the adjoint problem is
sufficiently smooth, an upper bound of the error in the targetquantity can be derived,
cf. [7]. The localized form of this estimate serves as residual-based error indicator.
As the specific target quantity does not enter the definition of this indicator, it can
be used to resolve all flow features but will in general be lessefficient for any given
target quantity.

3 Anisotropy Indicators

Jump Indicator Assuming that the analytical solution is continuous the presence
of discontinuities in the discrete solution indicates local errors. We associate large
jumps of the solution over element interfaces with large approximation errors or-
thogonal to the corresponding face. If the average jumpKi
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i orthogonal to the directioni on the tensor-product ref-
erence element is small compared to the maximal value encountered in any direction
on the same element we do not refine the element along that direction. Here,+ and
− denote the traces of the functionφ taken from within the current element and its
neighbor, respectively.

If the analytical solution exhibits a discontinuity, e. g. at a shock, close to and
almost parallel to a particular face, this indicator will also detect a large jump and
refine the element parallel to that face. This is what is required to obtain an im-
proved location of the discontinuity in the numerical solution, thus this behaviour
is desirable. The probability that the discontinuity exactly coincides with the face is
vanishing for real applications.

Derivative Indicator After a transformation to the reference element to include
scaling effects the local interpolation or projection error of a polynomial approxi-
mation of degreep to a sufficiently smooth functionφ ∈ H p+1 is determined by the
(p+1)th derivative tensor.

In the general case we compare the projected derivative along the coordinate
axes of the reference element and do not refine the element along directions which
feature a small derivative compared to other values on that element. For second order
methods withp = 1 we evaluate the eigenvalues and eigenvectors of the derivative
tensor (Hessian) and exclude directions from refinement if they are aligned with the
eigenvectors of small eigenvalues.

The underlying smoothness assumption is especially critical for higher order
methods and discontinuous solutions at shocks.
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Application to Vector Valued Solution Functions Several strategies for extending
the presented indicators from scalar valued solution functionsφ to vector valued so-
lution functionsu have been investigated, see [14] for a comprehensive discussion.

For the jump indicator, we simply replace the jump of the scalar functionφ in
(1) by the jump of thel2-norm of the vector-valued functionu. For the derivative
indicator we differentiate between flow regimes: In inviscid cases we simply use
the Mach number as a representative scalar variable, whereas in viscous cases the
refinement indicator is evaluated separately for each component. We then default to
isotropic refinement but select an anisotropic subdivisioncase if that is suggested
by a sufficient number of individual indicators and if there is no contradiction in the
predicted direction of anisotropy.

4 Numerical Examples

The basic performance of the proposed indicators will be analyzed using some two-
dimensional computations. After that, a three-dimensional example will demon-
strate the applicability to flows of increased complexity.

NACA0012 Airfoil Sub-, trans- and supersonic flows around the NACA0012 air-
foil according to the flow conditions in Table 1 have been computed on sequences of
refined meshes using both adjoint-based and residual-basederror indicators as well
as isotropic and anisotropic refinement.

Figure 1 plots the error in a selected target functional vs. the number of elements
for the different refinement strategies. All reference values have been obtained by
fine grid computations. The subsonic case A uses adjoint-based error estimation.
Comparing the second order solution of case A1 with the thirdorder solution of case
A2 shows the increased accuracy of the method, as a significantly reduced number
of elements produces results of the same accuracy in the higher order case. Apart
from that the behavior is similar – the jump-based anisotropy indicator significantly
reduces the number of elements required for a given accuracyand the derivative-

Table 1: Freestream conditions for NACA0012 test cases

Case Mach number angle of attack Reynolds number polynomialdegree targeta

M α Re p J(u)

A1 0.5 0◦ 5 000 1 Cdp

A2 0.5 0◦ 5 000 2 Cdp

B 0.8 1.25◦ inviscid 1 Cdp

C 1.2 0◦ 1 000 1 Cdf

a Cdp and Cdf denote the pressure and friction part of the drag coefficientCd = Cdp + Cdf ,
respectively
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Fig. 1: Convergence of the error under different mesh refinement algorithms for the NACA0012
test cases

based indicator performs even better. As the solution is quite smooth in this subsonic
case this can be expected.

Similar results can be seen for the transonic case B. Here theperformance of the
jump indicator is similar or even superior to the derivativeindicator. This is probably
due to the reduced smoothness of the solution at the shock which contradicts the
assumptions of the derivative indicator. This effect is even stronger in the supersonic
case C. In general, the simple jump-based criterion performs remarkably well in all
flow regimes.

In transonic cases shocks are usually located in the vicinity of the airfoil and
are of great importance for the computed aerodynamic forces. The residual-based
indicator resolves these prominent features and thus performs only slightly inferior
to the goal-oriented error estimation, see Fig. 1c.

In contrast to that, the supersonic case C features a prominent detached bow
shock in front of the airfoil. As the residual-based error estimation initially resolves
mainly this feature whereas the boundary layer resolution is improved only later
on we notice almost no reduction of the error. Goal-orientedrefinement, however,
yields significant error reductions already on the first adapted mesh, see Fig. 1d.
This motivates the utilization of the adjoint problem in spite of its additional cost.



6 Tobias Leicht and Ralf Hartmann

Fig. 2 Solution plot show-
ing streamlines and a Mach
number iso-surface over the
left half of the delta wing
immersed in a laminar flow at
high angle of attack as well as
Mach number slices over the
right half

Laminar Delta Wing As a second more complex example we consider a laminar
flow at Mach numberM = 0.3, Reynolds numberRe= 4000 and an angle of attack
α = 12.5◦ around a delta wing with sharp leading edge and a blunt trailing edge.
Figure 2 illustrates the vortex dominated flow characteristics of this test case which
has been considered in the EU project ADIGMA [12] and in [8], asimilar case was
treated earlier in [11].

In the following we consider the error of different approximations of the lift
coefficientCl . Similar results have been obtained for the drag coefficientCd. We
start by computing the lift from the second order flow solution on a sequence of
globally refined meshes starting from a very coarse initial 3264 elemental mesh
for the half domain with symmetry boundary conditions. We then consider adaptive
local mesh refinement starting from the results on the initial coarse mesh.

Figure 3 plots the error in the lift coefficient vs. the numberof elements for
various refinement strategies. Compared to global mesh refinement, lift coefficients
of a specific accuracy are obtained with less elements for residual-based mesh re-
finement. We notice that the adjoint-based refinement procedure yields again better
results.

Additionally, in case of adjoint-based mesh refinement Fig.3 illustrates the errors
of the enhanced lift coefficients obtained by adding the global error estimate to
the computed lift coefficient. Already on the first adapted mesh the enhanced lift
coefficient is more accurate than the unmodified values computed on the last adapted
meshes.

Finally, we note that anisotropic mesh refinement using the jump indicator per-
forms better than isotropic mesh refinement with an improvement by a factor of
almost two on the final mesh in the adjoint-based case. In general, the gain im-
proves for increasing accuracy requirements. Here, the anisotropy indicator works
as a general aspect ratio optimizer.
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Fig. 3 Laminar delta wing:
Error in the computed lift
coefficient for sequences of
locally refined meshes using
different refinement indicators
and isotropic (open symbols)
as well as anisotropic refine-
ment (filled)
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5 Conclusion and Outlook

The presented anisotropy indicators have been successfully applied to a number of
aerodynamic test cases. Especially the very simple jump indicator performs surpris-
ingly well and is thus a good candidate for applications withincreased complexity.

So far, only laminar flows with weak boundary layers have beenconsidered. Em-
ploying a RANS approach with a suitable turbulence model much thinner and thus
stronger boundary layers dominate the flow field. Such cases are of more interest
to the aerodynamicist. For theses applications different variables might be of dif-
ferent orders of magnitude, thus the question of how to treatsystems of equations
efficiently will arise again, perhaps a suitable scaling of the individual components
might be necessary.

The presented approach, especially the jump indicator, will also be combined
with anhp–adaptive algorithm. First experiments show promising results if the num-
ber of subdivided elements is not very small compared to the number of elements
treated with an increased polynomial order.

Finally, splitting error estimation and anisotropy detection into two distinct in-
dicators is reasonable in many cases but for the purpose of creating nearly optimal
meshes for the approximation of a given target functional a combined approach re-
specting anisotropy in both the primal and dual solution would be ideal. Recently,
Richter [15] proposed a unified approach in the context of continuous FEM and a
reconstructed dual solution. Extending this approach to our application and to non-
tensor-product basis functions will provide an interesting alternative to the proposed
algorithm.
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