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Abstract

Over the last few years, the discontinuous Galerkin method (DGM) has demonstrated its excellence in accurate, higher-order numer-
ical simulations for a wide range of applications in computational physics. However, the development of practical, computationally
efficient flow solvers for industrial applications is still in the focus of active research. This paper deals with solving theNavier-
Stokes equations describing the motion of three-dimensional, viscous compressible fluids. We present details of the PADGE code
under development at the German Aerospace Center (DLR) thatis aimed at large-scale applications in aerospace engineering. The
discussion covers several advanced aspects like the solution of the Reynolds-averaged Navier-Stokes andk-ω turbulence model
equations, a curved boundary representation, anisotropicmesh adaptation for reducing output error and techniques for solving the
nonlinear algebraic equations. The performance of the solver is assessed for a set of test cases.
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1. Introduction

Initially developed for advection problems, the discontinu-
ous Galerkin finite element method has recently been applied
in the field of Computational Fluid Dynamics (CFD) with great
success. Having a link to both the finite element method and the
finite volume method, the DG approach offers the advantages
and robustness of the classical Riemann fluxes, while maintain-
ing the freedom to choose the local approximation order as well
as the basis functions. Furthermore, the discretization lends
itself to local mesh adaptation and efficient parallelization on
modern distributed-memory computer architectures.

While first pioneering work on viscous CFD applications
has been contributed by Lomtev, Quillen and Karniadakis [1]
and Bassi and Rebay [2] more than a decade ago, applying the
DGM to realistic engineering problems in an adaptive and par-
allel software framework remains a challenging task. There-
fore, in the context of the European ADIGMA project [3],
a coordinated European effort in advancing higher-order dis-
cretization methods in computational aerodynamics, the Ger-
man Aerospace Center (DLR) has developed the PADGE code,
an adaptive discontinuous Galerkin solver for 3D turbulent
flow. In the following, we present the results of these activi-
ties and give a description of the major components of the flow
solver.

The PADGE code is designed as a modular, object-oriented
framework written inC++ and is based on a modified version
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of thedeal.II finite element library [4]. Due to its modular
nature, the PADGE framework anticipates further extensions.

High-quality solutions for several test cases demonstratethe
feasibility of our approach as well as the mature state of theim-
plementation. Apart from the case of laminar flow, the presen-
tation includes first experience with the DG discretizationfor
turbulent cases.

2. Discontinuous Galerkin discretization

Compressible Navier-Stokes and k-ω Equations

The governing equations for the conservation of mass, mo-
mentum and energy can be written as follows:

∇ ·
(

F c(u) − F v(u,∇u)
)

= 0,

where byu =
[

ρ, ρv, ρE
]T

we denote the state vector of con-
servative variables andF c, F v are the convective and diffusive
flux vectors, respectively. The system of equations is comple-
mented by constitutive relations and appropriate boundarycon-
ditions for the problem, see, e. g., [5], Chapter 1, for details.

For the treatment of turbulent flows we consider the Rey-
nolds-averaged Navier-Stokes equations with the Wilcoxk-ω
turbulence model equations [6, 7]:

∇ ·
(

F c
k,ω(u) − F v

k,ω(u,∇u)
)

= Pk,ω − Dk,ω,

The additional componentsF c
k,ω andF v

k,ω of the convective and
diffusive flux vectors are determined by source termsPk,ω, Dk,ω

representing production and destruction of the turbulencevari-
ablesk andω. The vector of conservative variables then reads
u =

[

ρ, ρv, ρE, ρk, ρω
]T

.
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An essential modification compared to standardk-ω model
implementations has been proposed by Bassi and co-workers
[8]. In particular, the variable ln(ω) is used instead ofω itself.
Solving the resulting system of equations becomes consider-
ably easier due to the more moderate behavior of ln(ω) in the
vicinity of walls. We note that this variable transformation does
not change the turbulence model, however, additional require-
ments are imposed on the model by the limitation of the tur-
bulent variables. Whilek is simply kept non-negative, a lower
bound ofω is locally derived from the realizability of the Rey-
nolds stresses.

Discretization
Like other finite element methods (FEM) the discontinuous

Galerkin discretization is based on a weak formulation of the
governing equations. However, in contrast to standard continu-
ous finite element methods, the discrete trial and test functions
arediscontinuouselement-wise polynomial functions. Due to
the discontinuity of the trial functions the normal fluxesF c · n
across an inter-element face are replaced by a numerical flux
H(u+h , u

−
h , n), which connects the two different flow statesu+h

andu−h between the two neighboring elements.
Any consistent and conservative flux of the many Riemann

fluxes known in finite volume methods, e. g. the Lax-Friedrichs
or Roe flux, can be chosen to ensure consistency and conserva-
tivity of the DG discretization. In fact, the lowest-order DGM
based on element-wise constant basis functions resembles aba-
sic first-order finite volume scheme. While finite volume meth-
ods achieve second and higher-order accuracy by reconstruction
techniques, discontinuous Galerkin discretizations of arbitrary
high order can be obtained simply by increasing the polynomial
degree of the element-wise basis functions. The resulting DG
discretization is of higher order independent of the particular
choice of a consistent numerical flux function.

For viscous flows, continuity between neighboring elements
is weakly imposed. In fact, DG discretizations are stabilized by
the addition of specific inter-element penalization terms.This
is typically done through the introduction of suitable lifting op-
erators, cf. [2, 9]. In general, the computation of the lifting
operator requires the inversion of local mass matrix problems
on each face present in the computational mesh, see e. g. the
second scheme (BR2) proposed by Bassi & Rebay [2]. Other
schemes, like the interior penalty (IP) scheme, [10, 11], ex-
tended to viscous compressible flows in [12], replace the lift-
ing operators by explicit penalty terms that can be evaluated
directly. The PADGE code offers several variants of the BR2
and IP schemes.

Both the introduction of numerical fluxes and the weakly
imposed continuity constraints give rise to surface integrals
over inter-element boundaries. These supplement the volume
integrals over each element, which are also present in standard
conforming Galerkin methods.

The stencil of the DGM considered here is minimal in
the sense that each element communicates only with its direct
neighbors through information on the solution and its derivative
at the common interface. This stencil, which is formally com-
pact for any discretization order allows for simple paralleliza-

tion as well as flexible mesh adaptation. Both ‘hanging nodes’
in the case of local edge subdivision (h-refinement) and varia-
tions of the order of the numerical scheme between neighboring
elements (p-refinement) are treated naturally by simply inte-
grating the convective and viscous fluxes over the interfaces.

Being based on a FEM space of discontinuous functions the
DGM is not only globally but also locally conservative. Be-
cause of the finite element character of the DGM an elaborate
error estimation framework is available, which can be utilized
to design adaptive mesh refinement algorithms, see Section 5.

The PADGE code currently supports quadrilateral and hex-
ahedral meshes. A discretization scheme is implemented for
which the discrete adjoint problem is a consistent discretization
of the continuous adjoint equations, cf. [12]. The solutionto the
discrete adjoint problem is used for error estimation and goal-
oriented mesh refinement, see Section 5. It could also be used
in optimization for an efficient computation of gradient direc-
tions and for ensuring a specific level of accuracy of each of the
flow solutions.

3. Higher-order boundary representation

When exploiting the ability of higher-order discretization
methods to generate accurate approximations on coarse meshes,
a crucial point is to provide a proper representation of curved
wall boundaries. Of course, any numerical approximation, not
only DG methods, is expected to show the (physical) phenom-
ena induced by polyhedral bodies if line segments or planar
faces constitute the computational boundary. In fact, one can
observe ‘disturbances’ of the numerical flow solution wherethe
wall representation exhibits kinks, see according examples in
[13, 14]. Spurious entropy may be generated and then trans-
ported with the flow along the boundary.

However, inserting additional elements close to a bound-
ary with the sole purpose of resolving the geometry impedes
the aims of higher-order methods. A more adequate approach
we pursue within the PADGE code is to represent the boundary
by piecewise polynomials of higher degree. We gain detailed
information on the geometry, which is required by such an ap-
proximation, basically in two ways – via separate CAD data or
via additional point data included in the mesh. Although the
continuity of normal vectors across elements is not imposedon
the polynomials, in practice, it has been found that a satisfac-
tory representation of curved surfaces can be achieved. The
normal vectors – though in general not identical – approximate
each other sufficiently well as the representation of the bound-
ary tends to the exact geometry, see Figure 1a for a schematic
illustration.

Aerodynamic flows are mostly connected with high Rey-
nolds numbers and feature very thin boundary layers. Typically,
meshes with highly stretched cells are employed to resolve such
flows efficiently. It is then necessary to combine a higher-order
boundary representation with an adjustment of interior cells to
the curvature of the boundary in order to avoid any intersection
with the boundary, cf. Figure 1b. To this end, we apply a mesh
transformation technique: Based on an analogy to the behavior
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Figure 1: (a) The normal vectorsn1 and n2 at the common
boundary of adjacent cells lie close together. (b) Interiorcells
might intersect with the boundary if not adjusted to its curva-
ture.

of solid bodies under deformation an additional linear or non-
linear elasticity problem is solved, cf. [15].

It turns out to be disadvantageous when dealing with the
computational mesh and CAD data separately – especially for
3D cases – that the assignment of geometrical elements to ac-
cording mesh elements has to be defined afterwards, which is
not a trivial task. Thus, a more favorable strategy to be pursued
in the future is to incorporate extra point information during the
mesh generation process and provide it along with the mesh.

4. Solution technique

For realistic applications in computational aerodynamics,
the discrete problems arising from the DG discretization usu-
ally consist of several millions of unknowns. Therefore, re-
garding their low memory consumption and ease of implemen-
tation, Runge-Kutta time-marching schemes would be the opti-
mal choice, especially due to the fact that mass matrices have
block diagonal structure in the DGM. On the other hand, non-
linearity and anisotropies induced by the governing equations
as well as by the computational mesh demand for a scalable and
robust solution technique. In terms of the required CPU time, a
fully implicit Newton-Krylov approach is a likely candidate for
best results. Still, iterative solution methods that utilize the full
Jacobian matrix remain limited to low-order discretizations due
to their memory requirements.

In view of the long-term experience made with finite vol-
ume solvers, the nonlinear multigrid approach seems to be the
most promising candidate to meet these challenges. In fact,
the DGM lends itself to a particularly simple multilevel solu-
tion procedure: High-order numerical systems on a given com-
putational mesh can be handled by exploiting the nested level
hierarchy of spaces of varying polynomial degree. While the
state vector in the original ansatz space is merely treated by a
nonlinear smoothing iteration, e. g. a block Jacobi solver,the

low-order discretizations are used for a defect-correction step.
Recursive application of this strategy leads to a multilevel V-
cycle as depicted in Figure 2. On the lowest-order discretization
level, the standard Newton-GMRES approach is applied.

Nonlinear multi-p approaches of this type have previously
been described and demonstrated in the DGM literature, see
e. g. [16]. The PADGE code uses a special line-block decom-
position [16, 17] as a basis for its smoothing procedure. The
blocks correspond to sequences of elements (lines), which are
oriented along the directions of strong coupling of the underly-
ing flow field. This reduces the effect of local anisotropies of
the mesh and the solution.

Since the level spaces are nested, the natural injection and
restriction can be chosen for the intergrid transfer of the error. A
hierarchical basis can be employed, which makes the injection
particularly simple and memory efficient in its implementation.
The nonlinear V-cycle also requires a restricted state vector, and
we use the orthogonal projection as a state restriction operator.
Finally, on the lowest-order level, which is usually constituted
by piecewise constant or (bi-, tri-)linear functions, a Newton-
Krylov iteration is employed. A nested iteration strategy is ap-
plied to obtain a proper initial approximation.

Still, the sparse, linearized coarse level problems might be
infeasibly stiff for the solution with a standard ILU(0) precondi-
tioned GMRES method. In this case, the described multi-p ap-
proach can be combined with a traditionalh-multigrid method
on a sequence of geometrically coarser meshes [18].

Figure 2: Schematic illustration of thep-hierarchical V-cycle.
The lines indicate the prolongation and restriction between the
constant, bilinear, and biquadratic polynomial spaces, while the
dotted circles denote the nonlinear smoothing procedure.

5. Adaptivity

Residual-based and adjoint-based mesh refinement

Important quantities in aerodynamic flow simulations are
the aerodynamic force coefficients like the drag, lift and mo-
ment coefficients. In addition to the exact approximation of
these quantities, it is of increasing importance, in particular in
the field of uncertainty quantification, to estimate their error.
Being a finite element method, the DGM offers a powerful the-
oretical framework for the derivation of error estimates. In par-
ticular, by employing a duality argument, error estimates can be
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obtained for estimating the error measured in terms of the aero-
dynamic force coefficients. The error estimate is based on local
residuals of the computed flow solution multiplied by the solu-
tion to an adjoint problem, which in turn is related to the force
coefficient. The error estimate can be rewritten as a sum of lo-
caladjoint-basedindicators, also called dual-weighted-residual
(DWR) indicators [19], which can be employed to drive a goal-
oriented adaptive mesh refinement algorithm specifically tai-
lored to the accurate and efficient approximation of the aero-
dynamic force coefficient, see e. g. [19–21] among others.

Error estimation and adjoint-based mesh refinement rely on
the solution to an additional linear adjoint problem. In thenu-
merical examples Section 6 the linear adjoint problem is solved
on the same grid but with a polynomial degree increased by
one. Furthermore, the PADGE code allows to use a patch re-
covery of the adjoint solution computed on the same mesh and
with the same polynomial degree as the flow solution. In the
framework of adaptive mesh refinement, the adjoint solution
offers valuable information on how the discretization error on
each element affects the error in the force coefficient under con-
sideration. Successively refining those elements that contribute
most to this error and possibly coarsening others yields meshes
on which the computed target quantity is particularly accurate.
Furthermore, based on the adjoint solution, an estimate of the
discretization error in the computed quantity can be obtained.
This estimate can also be used to enhance the computed quan-
tity, which in many cases significantly increases its accuracy,
see e. g. [22, 23].

In the PADGE code, this error estimation and adjoint-based
mesh refinement approach is available and has been extended
to treat multiple force coefficients simultaneously, see [20].
Here, an adjoint solution for a suitably combined target quantity
drives the goal-oriented mesh refinement. Furthermore, theso-
lution to a discrete linear error equation (also called the adjoint-
adjoint equation) solved with an increased polynomial degree
gives error estimates for an arbitrary number of target quanti-
ties.

Provided that the adjoint solution related to an arbitrary tar-
get quantity is sufficiently smooth, the corresponding error rep-
resentation can be bounded from above by an error estimate that
includes the primal residuals but is independent of the adjoint
solution. By localizing this error estimate, so-calledresidual-
basedindicators can be derived. Mesh refinement based on
these indicators leads to meshes which resolve all flow fea-
tures irrespective the target quantity, see e. g. [21, 22]. The
residual-based indicators are cheap to evaluate, because they
do not depend on an auxiliary problem to be solved. They are
particularly well suited for resolving the overall flow field, e. g.
vortices can be resolved over long distances. However, theyare
in general not very efficient in approximating force coefficients.
For the latter, the adjoint-based mesh refinement should be pre-
ferred.

Local mesh refinement algorithm
Employing either residual-based or adjoint-based indica-

tors, an estimate of the contribution to the error can be obtained
for each element. A new mesh is then constructed by selecting

a given fraction of the elements with the largest error indica-
tors and splitting their edges, forming new child elements.This
way, mesh resolution is added only locally where needed, i. e.
where errors are large.

Anisotropic mesh refinement

As aerodynamic flows exhibit strong anisotropic features
like shocks and boundary layers, it is not always efficient to
split all of an element’s edges when performing local refine-
ment. Selectively splitting edges orthogonal to anisotropic lay-
ers and thus forming only two or four children from one hexahe-
dral element instead of the eight children of an isotropic split-
ting might be more efficient. After selecting the elements of
the mesh to be refined as described above, we analyze the inter-
element jumps present in the discrete DG solution and associate
large jumps with insufficient resolution along the same direc-
tion. Thus, whenever the jumps evaluated over two opposite
faces are small compared to other jumps on the same element,
we do not split the edges orthogonal to those faces, see [22, 24].

In the literature, anisotropic adaptation is mostly applied in
the context of linear continuous finite elements or finite volume
schemes on simplical meshes. These approaches are usually
based on interpolation error estimates, see [23, 25–27] among
others. For higher-order DG discretizations this concept has
also been considered in [24], but it suffers from the underlying
smoothness assumption on the solution of the flow problem.
Furthermore, due to the inherent recovery procedure to obtain
higher-order derivatives, it is difficult to extend this approach
to hp-discretizations with locally varying approximation order,
which are, however, naturally treated by the jump indicatorused
in the PADGE code.

6. Numerical examples

RAE 2822

In order to demonstrate the capability to handle meshes with
highly stretched elements along curved boundaries, the laminar
flow over the RAE 2822 airfoil at a Mach of numberM = 0.5,
Reynolds number ofRe = 10 000 and an angle of attack of
α = 1◦ is computed. The block-structured mesh is the coarse
level of a mesh originally designed for high Reynolds number
turbulent flow computations with a second-order finite volume
code and exhibits a maximum cell aspect ratio of 3 000. For
this case a piecewise quartic polynomial basis and the Roe nu-
merical flux function is used and the nonlinear system is solved
using a backward Euler method combined with an ILU precon-
ditioned GMRES. The mesh and a detailed view of the leading-
edge region are shown in Figure 3. The curved mesh represen-
tation has been generated using a piecewise quadratic approx-
imation based on a CAD description of the airfoil. Obviously,
due to the coarseness of the mesh, the piecewise linear mesh is
unable to capture the geometry in detail, whereas the quadratic
representation is already a good and quite smooth approxima-
tion of the exact geometry.

The effect of this higher-order boundary treatment on the
computed solution is prominent especially in the computed skin

4



(a) near-field view

(b) leading-edge, linear (c) leading-edge, quadratic

Figure 3: Computational mesh around the RAE 2822 airfoil, il-
lustrating the effect of piecewise linear and piecewise quadratic
boundary approximation.

friction coefficient cf , which is shown in Figure 4. Although
the solution is allowed to be discontinuous between elements,
the resulting skin friction coefficient is almost continuous in the
case of a curved boundary approximation, indicating the good
resolution achieved by the higher-order flow solution. The so-
lution in case of the piecewise linear boundary approximation

0 0.2 0.4 0.6 0.8 1

0

0.05

0.1

c
f

x

Figure 4: Computed skin friction coefficient cf for the RAE
2822 airfoil: linear boundary approximation (dotted) and
curved boundary approximation (solid line).

follows the same global trend, but is locally superimposed by
an unphysical element-wise oscillation which yields quitelarge
local errors. This effect is obviously more pronounced if either
the solution is large in absolute values or changes rapidly.This
difference in the solution quality motivates the deployment of a
higher-order boundary treatment in spite of the additionaleffort
associated with such an approach.

We now consider the drag coefficient Cd computed on a
sequence of nested meshes originating from the same block-
structured mesh by uniform coarsening. Based on a reference
valueC ref

d ≈ 0.0407 obtained by computations on fine meshes
we plot the error|Cd − C ref

d | in the computed drag coefficients
vs. the number of degrees of freedom for different polynomial
degrees of the elemental basis functions in Figure 5. In the
logarithmic plot the approximately straight line for each poly-
nomial degree indicates a constant order of convergence. For
increasing polynomial degree, these lines exhibit an increased
slope, which corresponds to a higher order and thus a faster con-
vergence of the drag coefficient under mesh refinement. This
example supports the theoretical result that basis functions of
higher polynomial degree result in higher-order methods.
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p = 2 (quadratic)
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Figure 5: Error in the computed drag coefficient for a sequence
of nested meshes using different polynomial degreesp for the
basis functions of each element.

Laminar flow over a delta wing

As a second more complex example, we consider the lami-
nar flow at a Mach number ofM = 0.3, a Reynolds number of
Re= 4 000 and an angle of attack ofα = 12.5◦ around a delta
wing with sharp leading-edge and a blunt-trailing edge. This
test case has been considered in the EU project ADIGMA [3]
and in [22]. A similar case was treated earlier in [28]. Here,
we use the Vijayasundaram flux and an ILU preconditioned
Newton-GMRES solver.

In the following, we consider the error of the lift coefficient
Cl . Similar results have been obtained for the drag coefficient
Cd. We start by computing the lift from the second-order flow
solution on a sequence of globally refined meshes starting from
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Figure 6: Streamlines and Mach number iso-surface over the
port wing as well as Mach number slices over the starboard
wing.

a very coarse mesh (3 264 elements) for the half-span wing with
symmetry boundary conditions. We then consider local adap-
tive mesh refinement starting from the solution on the initial
coarse mesh.

Figure 7 plots the error in the lift coefficient vs. the num-
ber of elements for various refinement strategies. Compared
to global mesh refinement, lift coefficients of a specific accu-
racy are obtained with less elements using residual-based mesh
refinement. We notice that the adjoint-based refinement proce-
dure yields even better results.

 0.001

 0.01

 10000  100000

|C
l
−

C
re

f
l
|

number of elements

global
residual{
adjoint{

+error est.{

Figure 7: Delta wing: Error in the computed lift coefficient for
sequences of locally refined meshes using different refinement
indicators and isotropic (open symbols) as well as anisotropic
refinement (filled).

Additionally, in the case of adjoint-based mesh refinement,
Figure 7 illustrates the error of the enhanced lift coefficients
obtained by adding the global error estimate to the computed
lift coefficient. Already on the first adapted mesh the enhanced
lift coefficient is more accurate than that computed on the last
adapted meshes.

Finally, we note that anisotropic mesh refinement performs
better than isotropic mesh refinement, requiring half the num-
ber of elements in the adjoint-based case, see Figure 7. In gen-
eral, the gain becomes more obvious with increasing accuracy
requirements.

(a) four residual-based refinement steps

(b) three adjoint-based refinement steps

Figure 8: Adaptive isotropic mesh refinement for the delta wing
using residual-based and adjoint-based refinement indicators.
The lift values computed on both meshes have similar errors.

The resulting meshes are visualized in Figure 8, where the
selected refinement step corresponds to the last data point in
Figure 7, so the accuracy of the computed lift coefficient is com-
parable. The major effect is the good resolution of the vortex
visible in the cut-plane behind the wing for the residual-based
refinement indicator and the corresponding lack of resolution in
this area in the case of goal-oriented adjoint-based refinement.
It is quite obvious that the global flow field is better resolved
using the first indicator while the resolution of this prominent
vortex is not of much influence on the lift value, as both the
pressure at the wall and the skin friction are only weakly depen-
dent on the downstream vortex evolution. Thus, concentrating
the refinement closer to the wing the adjoint-based refinement
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indicators are capable of creating more efficient meshes for the
approximation of the given target quantity.

Nonlinear solution procedure
Finally, some details of the iterative solution process, sket-

ched in Section 4, are discussed. We consider the discrete non-
linear system of equations arising from a 5th order BR2 dis-
cretization of the delta wing test case. A straight-forward, fully
implicit solution approach on the coarse 3 264 element mesh
with tensor product elements would require the assembly of
a Jacobian matrix that contains of 8.58 · 109 non-zero entries
(2.04 million unknowns). Thep-hierarchical V-cycle offers a
memory efficient alternative with a coarse-level Jacobian ma-
trix consisting of only 5.5 · 105 non-zeros (16 320 degrees of
freedom). For the hexahedral mesh the storage requirementsof
the line-implicit smoother is reduced by a factor of three com-
pared to the full Jacobian matrix. In order to further reducethe
memory requirements the smoother could also be reassembled
on each smoother application which is perfectly parallelizable.

Here, we employ a line-implicit three-stage Runge-Kutta
smoother on a V-cycle with 5 levels, and we apply two pre- and
postsmoothing steps on each level. We note that the application
of a multi-stage smoother still requires only a single inversion
of the block-tridiagonal line preconditioner. Figure 9 shows the
residual convergence history of a nested iteration, plotted vs.
the number of V-cycles. A nested strategy is applied in orderto
get a physical initial state: The solution process starts with the
piecewise trilinear discretization and successively prolongates
the solution approximation after a sufficient reduction of the
residual has been achieved.
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Figure 9: 5th order solution of the laminar flow around the
delta wing: ResidualL2 norm convergence history of thep-
hierarchical V-cycle. Parallel computation on 32 processors.

In terms of the number of iterations, the multi-p V-cycle
yields a convergence rate roughly uniform w. r. t. the numberof
levels. The algorithm is formally defined in the same way as a
standard FAS multigrid. A closer look reveals, however, that the
computational cost of the nonlinear smoothing iteration does
not scale with the number of unknowns. Therefore, the com-
plexity grows in a disproportionate manner for discretizations

of very high order. However, in practice, i. e. for the moderate
polynomial degrees used in computational aerodynamics, this
fact plays a minor role.

L1T2 high-lift configuration

We close our series of examples with results of compu-
tations of the turbulent flow past a typical high-lift configu-
ration, the L1T2 three-element airfoil. The geometry of this
configuration is shown in Figure 10. The flow conditions are
given by a Mach number ofM = 0.197, a Reynolds num-
ber of Re = 3.52 · 106 and an angle of attack ofα = 20.18◦.
This case has been documented extensively in the literature, see
e. g. [29, 30]. In particular, there is data of two wind tunnelex-
periments available, see [31], in the following referred toas
experiment 1 and experiment 2.

Figure 10: Geometry of the L1T2 three-element airfoil. The
slat angle is 25◦, the flap angle is 20◦.

We present numerical results generated with the PADGE
code in comparison with results generated with the well vali-
dated finite volume code TAU, see [32], as well as with experi-
mental data. The BR2 discretization of the turbulent equations
in PADGE includes the local Lax-Friedrichs flux and is solved
fully coupled using the backward Euler method. The PADGE
computations are performed with polynomial degreesp = 3
andp = 4, each on the same quadrilateral mesh with 4 740 ele-
ments. This mesh originates from a 75 840 element mesh by ag-
glomerating twice. The curved mesh representation in this case
is realized by a piecewise quartic approximation based on extra
point data, which has been extracted from the original mesh.
Reference results have been produced on the original mesh by
means of the TAU code.

0 1

-10

-5

0

0 1

-2

-1

0

1
0 1

-18

-12

-6

0

Slat Main element Flap

c p

x/l x/lx/l

Figure 11: Pressure distributions for each L1T2 airfoil element
computed with PADGE (solid line) compared to reference re-
sults with TAU (dotted) and data of experiment 1 (open sym-
bols) and experiment 2 (filled).

First, we look at the results concerning the pressure distri-
bution over each of the airfoil elements, i. e. slat, main element
and flap. Figure 11 shows the output of the PADGE code be-
ing in a good agreement with the experimental data and with
only minor differences compared to the TAU reference results.
The number of degrees of freedom (dof) were nearly the same
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in both cases: The PADGE code result was generated with the
polynomial degreep = 4, which corresponds to a number of
dof of about 4.3 · 105. The computation with the TAU code
involved about 4.6 · 105 dof.

Moreover, we consider the skin friction distribution com-
puted with the PADGE code in comparison to the TAU refer-
ence result. The result forp = 4 is overall in good agreement
with the reference as can be seen in Figure 12. However, in con-
trast to the reference, the skin friction features a quasi-laminar
drop on the upper side of the flap, although the computation
did not include a prescribed transition from laminar to turbu-
lent conditions. Figure 12 also shows considerable differences
between the computed skin friction distribution forp = 3 and
p = 4. With the decreased number of dof (casep = 3) the
PADGE result does not meet the reference result. This fact un-
derlines the requirement for local refinement strategies inorder
to take advantage of higher-order methods. This remains an
essential aspect of our activities and will be considered inthe
future, especially within the framework ofhp-methods.

Finally, Table 1 contains computed values of lift and drag
coefficients forp = 3, 4 beside reference values of a TAU com-
putation and wind tunnel data. The lift coefficients computed
with PADGE forp = 4 and TAU differ by only 1.1%, while the
drag coefficients deviate by 70 drag counts. It should be men-
tioned that corresponding results documented in the literature
(as well as the experimental values itself) vary considerably.
This might indicate a strong influence of many different param-
eters making a reliable prediction a complex matter. Both the
lift coefficient computed with PADGE withp = 4 as well as the
one computed with TAU are below the measured values, which
is at least partly due to the fact that both simulations were fully
turbulent.
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Figure 12: Comparison of computed skin friction distributions
with detailed view of the slat region.

PADGE results References

p = 3 p = 4 TAU Exp. 1 Exp. 2

Cl 4.017 3.976 3.932 4.110 4.075

Cd 0.0560 0.0674 0.0744 0.0677 0.0734

Table 1: Computed lift (Cl) and drag (Cd) coefficients for
p = 3, 4 compared to the reference values with TAU and the
experimental values.

7. Outlook

The examination of two- and three-dimensional laminar test
cases solved with the PADGE code clearly demonstrates the
ability of the underlying higher-order method and the local
adaptive mesh refinement approach to produce highly accurate
solutions with comparatively few degrees of freedom. In order
to exploit this potential for the computation of complex aerody-
namic flows, several issues have to be considered.

There is also first experience in PADGE with turbulent
flows using the scheme of Bassi et al.[8]. Extending the ability
to simulate turbulent flows will be the focus of future devel-
opments. In order to cover the transonic flow regime a shock
capturing technique will be considered. Approaches incorpo-
rating the treatment of shocks in the discrete equations through
an artificial viscosity term are probably well suited to bothim-
plicit solution algorithms and the adjoint-based error estimation
procedure. Such models have already been successfully usedin
the DG context, see e. g. [33, 34]. Another aspect of physical
modeling, the treatment of unsteady flows, will be covered by
a time-discretization scheme. These three extensions combined
will form the first steps towards the transition from the model
problems considered so far to a wide range of aircraft flow phe-
nomena.

For the applicability of the method to complex geometries
it seems essential to extend the underlying meshes from purely
hexahedral meshes to unstructured hybrid meshes. With these
it is possible to have high quality prismatic and hexahedralele-
ments generated by an advancing layer technique in the vicinity
of bodies, while the remaining domain can easily be partitioned
into simplices. Generating completely block-structured meshes
is generally more difficult, cannot be done automatically and is
thus time-consuming.

In the DG context, the definition of a mesh contains both the
partition into elements of given type and the polynomial basis
functions used on those elements. So far, a uniform polynomial
degree and thus the same basis functions have been used for all
elements of a mesh. Since the DGM allows for discontinuities
across inter-element boundaries, the method readily extends to
local variations of the polynomial degree according to resolu-
tion requirements of the underlying solution. Consideringboth
local mesh and local order adaptation at once is possible inhp-
refinement algorithms, [35, 36]. The most challenging aspect
of such a technique is the definition of an automatic indicator
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deciding locally whether anh-subdivision or an increase of the
polynomial degreep is the more effective strategy.

Up to now, the focus of the PADGE code has been on ca-
pability rather then efficiency. While the hitherto existing re-
sults clearly demonstrate the efficiency of the discretization,
measured in the required amount of degrees of freedom needed
for a given accuracy, the efficiency of the solver itself is influ-
enced by many factors as outlined in Section 4. For large-scale
problems on todays’ computer architectures, we believe that it
is necessary to develop a solver satisfying a compromise be-
tween memory and runtime efficiency. This can be achieved by
incorporating a semi-implicit solution technique with reduced
memory requirements and efficient problem-specific precondi-
tioners based on line smoothing,p-multilevel andh-multigrid
approaches [16, 17, 37]. The development of such an algorithm
and its reliable and robust implementation will constitutea ma-
jor effort.

As a final outlook, the entirety of the suggested enhance-
ments of the PADGE code will enable a thorough investi-
gation of complex large-scale aerodynamic flow phenomena.
These results will then provide the answer to the question for
which type of applications the DG approach is beneficial and
for which cases well established second-order finite volume
schemes should be preferred. Current results already indicate
that higher accuracy requirements are beneficial to our method.
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