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Abstract

Over the last few years, the discontinuous Galerkin metB@i\) has demonstrated its excellence in accurate, higtdgroaumer-
ical simulations for a wide range of applications in compiotzal physics. However, the development of practical, potationally
efficient flow solvers for industrial applications is still inetiocus of active research. This paper deals with solving\i&er-

Stokes equations describing the motion of three-dimemsioiscous compressible fluids. We present details of tHe®& code
under development at the German Aerospace Center (DLRisthahed at large-scale applications in aerospace engjingedte

discussion covers several advanced aspects like the @olofithe Reynolds-averaged Navier-Stokes kg turbulence model
equations, a curved boundary representation, anisotnoggh adaptation for reducing output error and techniquesoleing the

nonlinear algebraic equations. The performance of thees@wassessed for a set of test cases.
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1. Introduction of thedeal . IT finite element library [4]. Due to its modular
-~ ) ) . nature, the PADGE framework anticipates further exterssion
Initially developed for advection problems, the discountin High-quality solutions for several test cases demonsthate

ous Galerkin finite element method has recently been applieg 5sipility of our approach as well as the mature state oithe
in the field of Computational Fluid Dynamics (CFD) with great piementation. Apart from the case of laminar flow, the presen

success. Having alink to both the finite element method a&d thiaion includes first experience with the DG discretization
finite volume method, the DG approacliers the advantages i, pulent cases.

and robustness of the classical Riemann fluxes, while mainta

ing the freedom to choose the local approximation order dis we ] ] o o
as the basis functions. Furthermore, the discretizatiodde 2 Discontinuous Galerkin discretization
itself to local mesh adaptation anéfieient parallelization on
modern distributed-memory computer architectures.

While first pioneering work on viscous CFD applications
has been contributed by Lomtev, Quillen and Karniadakis [1
and Bassi and Rebay [2] more than a decade ago, applyingthe v . (Tc(u) _ TV(U’VU)) -0,

DGM to realistic engineering problems in an adaptive and par

allel software framework remains a challenging task. Thereynere pyu = [p,pv,pE]T we denote the state vector of con-
fore, in the context of the European ADIGMA project [3], servative variables arg®, " are the convective andfiiisive

a coordinated Europearffert in advancing higher-order dis- fiyx vectors, respectively. The system of equations is cempl
cretization methods in computational aerodynamics, the Ge mented by constitutive relations and appropriate boundany
man Aerospace Center (DLR) has developed the PADGE codgjtions for the problem, see, e. g., [5], Chapter 1, for detai

an adaptive discontinuous Galerkin solver for 3D turbulent  Eqy the treatment of turbulent flows we consider the Rey-

flow. In the following, we present the results of these a€tivi g|ds-averaged Navier-Stokes equations with the Wilkax
ties and give a description of the major components of the flowyrpylence model equations [6, 7]:

solver.
The PADGE code is designed as a modular, object-oriented V. (Tk‘fw(u) - FroU, Vu)) = Pyw — Dkw,

framework written inC++ and is based on a modified version . .
The additional componenfs,, and¥,’, of the convective and

p - diffusive flux vectors are determined by source tefps Dk,
*Corresponding author ; : ; :
Email addressesralf.hartmann@dlr.de (R. Hartmann), representing production and deStrUCthn of th.e turbulemce
joachim.heldedlr.de (J. Held)tobias.leichtedlr.de (T. Leicht), ablesk andw. The veTctor of conservative variables then reads
florian.prilledlr.de (F. Prill) u = [p,pVv.pE, pk pw] .

Compressible Navier-Stokes andk=quations

The governing equations for the conservation of mass, mo-
]mentum and energy can be written as follows:
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An essential modification compared to standatd model  tion as well as flexible mesh adaptation. Both ‘hanging nodes
implementations has been proposed by Bassi and co-workeirs the case of local edge subdivisidmiefinement) and varia-
[8]. In particular, the variable Irf) is used instead ab itself.  tions of the order of the numerical scheme between neighbori
Solving the resulting system of equations becomes consideelements p-refinement) are treated naturally by simply inte-
ably easier due to the more moderate behavior ef)imf the  grating the convective and viscous fluxes over the intesface
vicinity of walls. We note that this variable transformatidoes Being based on a FEM space of discontinuous functions the
not change the turbulence model, however, additional requi DGM is not only globally but also locally conservative. Be-
ments are imposed on the model by the limitation of the turcause of the finite element character of the DGM an elaborate
bulent variables. Whil& is simply kept non-negative, a lower error estimation framework is available, which can be zsiti
bound ofw is locally derived from the realizability of the Rey- to design adaptive mesh refinement algorithms, see Section 5

nolds stresses. The PADGE code currently supports quadrilateral and hex-
. o ahedral meshes. A discretization scheme is implemented for
Discretization which the discrete adjoint problem is a consistent diszatitin

Like other finite element methods (FEM) the discontinuousof the continuous adjoint equations, cf. [12]. The solutimthe
Galerkin discretization is based on a weak formulation ef th discrete adjoint problem is used for error estimation anal-go
governing equations. However, in contrast to standardmaent oriented mesh refinement, see Section 5. It could also be used
ous finite element methods, the discrete trial and testfmmet in optimization for an &icient computation of gradient direc-
arediscontinuouslement-wise polynomial functions. Due to tions and for ensuring a specific level of accuracy of eachef t
the discontinuity of the trial functions the normal fluxe§-n  flow solutions.
across an inter-element face are replaced by a numerical flux
H(u;, up,n), which connects the two flerent flow statesy;
andup, between the two neighboring elements.

Any consistent and conservative flux of the many Riemann  \yhen exploiting the ability of higher-order discretizatio
fluxes known in finite volume methods, e. g. the Lax-Friedsich methods to generate accurate approximations on coarsemesh
or Roe flux, can be chosen to ensure consistency and consernggrycial point is to provide a proper representation of edrv
tivity of the DG discretization. In fact, the lowest-ordeGIM wall boundaries. Of course, any numerical approximatia, n
based on element-wise constant basis functions resembies a only DG methods, is expected to show the (physical) phenom-
sic first-order finite volume scheme. While finite volume meth on3 induced by polyhedral bodies if line segments or planar
ods achieve second and higher-order accuracy by recotistruc f5ces constitute the computational boundary. In fact, are ¢
techniques, discontinuous Galerkin discretizations bitary  opserve ‘disturbances’ of the numerical flow solution wtiaee
high order can be obtained simply by increasing the polyabmi 4| representation exhibits kinks, see according exasjple
degree of the element-wise basis functions. The resulti@g D [13, 14]. Spurious entropy may be generated and then trans-
discretization is of higher order independent of the pafic ported with the flow along the boundary.
choice of a consistent numerical flux function. However, inserting additional elements close to a bound-

For viscous flows, continuity between neighboring element§iry with the sole purpose of resolving the geometry impedes
is weakly imposed. In fact, DG discretizations are stabdiby  the aims of higher-order methods. A more adequate approach
the addition of specific inter-element penalization termbis e pursue within the PADGE code is to represent the boundary
is typically done through the introduction of su_itableiﬁg OP- by piecewise polynomials of higher degree. We gain detailed
erators, cf. [2, 9]. In general, the computation of theriti  jnformation on the geometry, which is required by such an ap-
operator requires the inversion of local mass matrix proisle 5roximation, basically in two ways — via separate CAD data or
on each face present in the computational mesh, see e.g. tB% additional point data included in the mesh. Although the
second scheme (BR2) proposed by Bassi & Rebay [2]. Otheiontinuity of normal vectors across elements is not impased
schemes, like the interior penalty (IP) scheme, [10, 11}, eXthe polynomials, in practice, it has been found that a satisf
tended to viscous compressible flows in [12], replace the lif o1y representation of curved surfaces can be achieved. The

ing operators by explicit penalty terms that can be evatlatenormal vectors — though in general not identical — approséma
directly. The PADGE codefters several variants of the BR2 gach other siciently well as the representation of the bound-

3. Higher-order boundary representation

and IP schemes. _ _ ary tends to the exact geometry, see Figure 1a for a schematic
Both the introduction of numerical fluxes and the weaklyjj | stration.
imposed continuity constraints give rise to surface iraégr Aerodynamic flows are mostly connected with high Rey-

over inter-element boundaries. These supplement the #lunho|ds numbers and feature very thin boundary layers. Tyigica

integrals over each element, which are also presentinatednd meshes with highly stretched cells are employed to resoicie s

conforming Galerkin methods. ~ flows dficiently. It is then necessary to combine a higher-order
The stencil of the DGM considered here is minimal in hoyundary representation with an adjustment of interiolsdel

the sense that each element communicates only with itstdiregye cyrvature of the boundary in order to avoid any inteisact

neighbors through information on the solution and its d&e it the boundary, cf. Figure 1b. To this end, we apply a mesh

pact for any discretization order allows for simple palabe
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Q low-order discretizations are used for a defect-correcsiep.

: h Recursive application of this strategy leads to a multilée
cycle as depicted in Figure 2. On the lowest-order disaétn
level, the standard Newton-GMRES approach is applied.

Nonlinear multip approaches of this type have previously
been described and demonstrated in the DGM literature, see
e.g. [16]. The PADGE code uses a special line-block decom-
position [16, 17] as a basis for its smoothing procedure. The
blocks correspond to sequences of elements (lines), winech a
oriented along the directions of strong coupling of the utyde
ing flow field. This reduces theffect of local anisotropies of
the mesh and the solution.

Since the level spaces are nested, the natural injection and
restriction can be chosen for the intergrid transfer of thereA
hierarchical basis can be employed, which makes the iojecti
particularly simple and memoryfiicient in its implementation.
The nonlinear V-cycle also requires a restricted stateoveahd
we use the orthogonal projection as a state restrictionabqer
Finally, on the lowest-order level, which is usually cohgtd
by piecewise constant or (bi-, tri-)linear functions, a Nemw
Krylov iteration is employed. A nested iteration strategyp-
plied to obtain a proper initial approximation.
of solid bodies under deformation an additional linear anno Still, the sparse, linearized coarse level pr0b|ems m|@"|t b
linear elasticity problem is solved, cf. [15]. infeasibly stif for the solution with a standard ILU(0) precondi-

It turns out to be disadvantageous when dealing with thgioned GMRES method. In this case, the described -
computational mesh and CAD data separately — especially fq§roach can be combined with a traditiofainultigrid method

3D cases — that the aSSignment of geometrical elements to agn a sequence of geometrica”y coarser meshes [18]
cording mesh elements has to be defined afterwards, which is

Figure 1: (a) The normal vectorg andn; at the common
boundary of adjacent cells lie close together. (b) Intecilts
might intersect with the boundary if not adjusted to its @irv
ture.

not a trivial task. Thus, a more favorable strategy to beymas /X
in the future is to incorporate extra point information agrthe - @®Q----=--- ©-< -
mesh generation process and provide it along with the mesh. 7

4. Solution technique e @ --@- - - m

</ VP
For realistic applications in computational aerodynamics e

the discrete problems arising from the DG discretizatiomus

ally consist of several millions of unknowns. Therefore, re ~  _ _ _ __ ® ---- \a

garding their low memory consumption and ease of implemen- U

tation, Runge-Kutta time-marching schemes would be thie opt
mal choice, especially due to the fact that mass matrices haJigure 2: Schematic illustration of the-hierarchical V-cycle.
block diagonal structure in the DGM. On the other hand, nonThe lines indicate the prolongation and restriction betwtbe
linearity and anisotropies induced by the governing eguati constant, bilinear, and biguadratic polynomial spacesdghe
as well as by the computational mesh demand for a scalable a@tted circles denote the nonlinear smoothing procedure.
robust solution technique. In terms of the required CPU time
fully implicit Newton-Krylov approach is a likely candidafor
best results. Still, iterative solution methods that edilthe full

- ! VS S ! IS 5. Adaptivity
Jacobian matrix remain limited to low-order discretizat@aue
to their memory requirements. Residual-based and adjoint-based mesh refinement
In view of the long-term experience made with finite vol- | nortant quantities in aerodynamic flow simulations are

ume solver§,_ the nonl_inear multigrid approach seems tode thy,o aerodynamic force cicients like the drag, lift and mo-
most promising candidate to meet these challenges. In facyent codficients. In addition to the exact approximation of
the DGM lends itself to a particularly simple multilevel 8ol e quantities, it is of increasing importance, in pakicin
tion procedure: High-order numerical systems on a given-comyye field of uncertainty quantification, to estimate theiroer
putational mesh can be handled by exploiting the nested levigeing 4 finite element method, the DGMers a powerful the-
hierarchy of spaces of varying polynomial degree. While they etical framework for the derivation of error estimatespér-

state vector in the original ansatz space is merely treagea b ticular, by employing a duality argument, error estimatas loe
nonlinear smoothing iteration, e.g. a block Jacobi soltres,
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obtained for estimating the error measured in terms of the-ae a given fraction of the elements with the largest error iadic
dynamic force cofficients. The error estimate is based on localtors and splitting their edges, forming new child elememntss
residuals of the computed flow solution multiplied by theusol way, mesh resolution is added only locally where needed, i.e
tion to an adjoint problem, which in turn is related to thecior where errors are large.

codficient. The error estimate can be rewritten as a sum of lo-

caladjoint-basedndicators, also called dual-weighted-residual Anisotropic mesh refinement

(DWR) indicators [19], which can be employed to drive a goal-  As aerodynamic flows exhibit strong anisotropic features
oriented adaptive mesh refinement algorithm specifically ta ke shocks and boundary layers, it is not alwaysceent to
lored to the accurate andfigient approximation of the aero- gpjit all of an element's edges when performing local refine-
dynamic force coficient, see e. g. [19-21] among others. ment. Selectively splitting edges orthogonal to anisdtrtay-

Error estimation and adjoint-based mesh refinement rely 0Bys and thus forming only two or four children from one hexahe
the solution to an additional linear adjoint problem. Inthe  gra| element instead of the eight children of an isotropiit-sp
merical examples Section 6 the linear adjoint problem igesbl ting might be more iicient. After selecting the elements of
on the same grid but with a polynomial degree increased byhe mesh to be refined as described above, we analyze the inter
one. Furthermore, the PADGE code allows to use a patch resiement jumps present in the discrete DG solution and associ
covery of the adjoint solution computed on the same mesh angrge jumps with insfiicient resolution along the same direc-
with the same polynomial degree as the flow solution. In thgjgn Thus, whenever the jumps evaluated over two opposite
framework of adaptive mesh refinement, the adjoint solutiofgces are small compared to other jumps on the same element,
offers valuable information on how the discretization error onye do not split the edges orthogonal to those faces, see42, 2
each elementféects the error in the force cfigient under con- In the literature, anisotropic adaptation is mostly applie
sideration. Successively refining those elements thatibom®  the context of linear continuous finite elements or finitevok
most to this error and possibly coarsening others yield$w®s gchemes on simplical meshes. These approaches are usually
on which the computed target quantity is particularly aatelr  p55ed on interpolation error estimates, see [23, 25-27hgmo
Furthermore, based on the adjoint solution, an estimatbef t gthers. For higher-order DG discretizations this concegst h
discretization error in the computed quantity can be ole@in 5isg been considered in [24], but itfEers from the underlying
This estimate can also be used to enhance the computed quafnoothness assumption on the solution of the flow problem.
tity, which in many cases significantly increases its aocyira  Fyrthermore, due to the inherent recovery procedure tarobta
see e.g. [22, 23]. _ o o higher-order derivatives, it is flicult to extend this approach

In the PADGE code, this error estimation and adjoint-basegl, hp-discretizations with locally varying approximation orde

mesh refinement approach is available and has been extendgglich are, however, naturally treated by the jump indicated
to treat multiple force cdficients simultaneously, see [20]. ih the PADGE code.

Here, an adjoint solution for a suitably combined targeidiaa

drives the goal-oriented mesh refinement. Furthermoresdhe .

lution to a discrete linear error equation (also called tijeiat- 6. Numerical examples
adjoint equation) solved with an increased polynomial degr RAE 2822

gives error estimates for an arbitrary number of target uan - )
ties. In order to demonstrate the capability to handle meshes with

Provided that the adjoint solution related to an arbitraryt Nighly stretched elements along curved boundaries, tha&m
get quantity is sfiiciently smooth, the corresponding error rep- flow over the RAE 2822 airfoil at a Mach of numbker = 0.5,
resentation can be bounded from above by an error estinate tHR€ynolds number oRe = 10000 and an angle of attack of
includes the primal residuals but is independent of theiatljio @ = 1° is computed. The block-structured mesh is the coarse
solution. By localizing this error estimate, so-callesidual-  level of a mesh originally designed for high Reynolds number
basedindicators can be derived. Mesh refinement based oftrbulent flow computations with a second-order finite votum
these indicators leads to meshes which resolve all flow fegcode and exhibits a maximum cell aspect ratio of 3000. For
tures irrespective the target quantity, see e.g. [21, 2%e T this case a piecewise quartic polynomial basis and the Ree nu
residual-based indicators are cheap to evaluate, becaege t merical flux function is used and the nonlinear system isesblv

do not depend on an auxiliary problem to be solved. They ar&Sing a backward Euler method combined with an ILU precon-
particularly well suited for resolving the overall flow figle.g. ~ ditioned GMRES. The mesh and a detailed view of the leading-

vortices can be resolved over long distances. However atey edge region are shown in Figqre 3. T_he cu.rved mesh represen-
in general not veryfiicient in approximating force céitcients.  tation has been generated using a piecewise quadraticxappro
For the latter, the adjoint-based mesh refinement shouldese p Imation based on a CAD description of the airfoil. Obviously

ferred. due to the coarseness of the mesh, the piecewise linear mesh i
unable to capture the geometry in detail, whereas the gtiadra
Local mesh refinement algorithm representation is already a good and quite smooth apprexima
Employing either residual-based or adjoint-based indication of the exact geometry.
tors, an estimate of the contribution to the error can beinbth The dfect of this higher-order boundary treatment on the

for each element. A new mesh is then constructed by selectingPMPuted solution is prominent especially in the compukéd s
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(a) near-field view

(b) leading-edge, linear (c) leading-edge, quadratic

Figure 3: Computational mesh around the RAE 2822 airfall, il

lustrating the fect of piecewise linear and piecewise quadratic.—

boundary approximation.

friction codficientc;, which is shown in Figure 4. Although
the solution is allowed to be discontinuous between elesyent
the resulting skin friction cdécient is almost continuous in the
case of a curved boundary approximation, indicating thedgoo
resolution achieved by the higher-order flow solution. The s
lution in case of the piecewise linear boundary approxiomati

0.11]

o

0.051

0.4

14

Of2 X 066 Of8
Figure 4. Computed skin friction cfiicient ¢t for the RAE
2822 airfoil: linear boundary approximation (dotted) and

curved boundary approximation (solid line).

follows the same global trend, but is locally superimposgd b
an unphysical element-wise oscillation which yields glatge
local errors. This ffect is obviously more pronounced if either
the solution is large in absolute values or changes rapidiis
difference in the solution quality motivates the deployment of a
higher-order boundary treatment in spite of the additieffakt
associated with such an approach.

We now consider the drag cfieient C4 computed on a
sequence of nested meshes originating from the same block-
structured mesh by uniform coarsening. Based on a reference
valueC[®f ~ 0.0407 obtained by computations on fine meshes
we plot the erroiCq — C/e'| in the computed drag céiicients
vs. the number of degrees of freedom foffelient polynomial
degrees of the elemental basis functions in Figure 5. In the
logarithmic plot the approximately straight line for eaatiyp
nomial degree indicates a constant order of convergence. Fo
increasing polynomial degree, these lines exhibit an smed
slope, which corresponds to a higher order and thus a faster ¢
vergence of the drag cfiiwient under mesh refinement. This
example supports the theoretical result that basis funstid
higher polynomial degree result in higher-order methods.

T T T
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| 0.001 |- .. 4
- . 3
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\§

0.0001 | —e— p=1(linear) E
- -+ - p=2(quadratic) ‘m ]

& p=3(cubic .

10000 100000

degrees of freedom

Figure 5: Error in the computed drag d¢beient for a sequence
of nested meshes usingfigirent polynomial degregsfor the
basis functions of each element.

Laminar flow over a delta wing

As a second more complex example, we consider the lami-
nar flow at a Mach number dfl = 0.3, a Reynolds number of
Re= 4000 and an angle of attack ef= 12.5° around a delta
wing with sharp leading-edge and a blunt-trailing edge.sThi
test case has been considered in the EU project ADIGMA [3]
and in [22]. A similar case was treated earlier in [28]. Here,
we use the Vijayasundaram flux and an ILU preconditioned
Newton-GMRES solver.

In the following, we consider the error of the lift cihieient
C,. Similar results have been obtained for the dragficient
Cq. We start by computing the lift from the second-order flow
solution on a sequence of globally refined meshes startarg fr
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Figure 6: Streamlines and Mach number iso-surface over th

port wing as well as Mach number slices over the starboar
wing.

avery coarse mesh (3 264 elements) for the half-span wirg wit

symmetry boundary conditions. We then consider local ada
tive mesh refinement starting from the solution on the ihitia
coarse mesh.

Figure 7 plots the error in the lift céiécient vs. the num-

ber of elements for various refinement strategies. Compare

to global mesh refinement, lift céiecients of a specific accu-
racy are obtained with less elements using residual-bassti m
refinement. We notice that the adjoint-based refinementggroc
dure yields even better results.

001 b .
I [
O
|
o
o, global —+— |
’ residual{ _'_'_ff_'_'
adjoint{ "5
o
s N - -
SN +error est{ el
0001 bt bt '

10000 100000
number of elements

Figure 7: Delta wing: Error in the computed lift dfieient for
sequences of locally refined meshes usirftedent refinement
indicators and isotropic (open symbols) as well as anigdatro
refinement (filled).

Additionally, in the case of adjoint-based mesh refinement,
Figure 7 illustrates the error of the enhanced lift fiogents
obtained by adding the global error estimate to the computed
lift coefficient. Already on the first adapted mesh the enhanced
lift coefficient is more accurate than that computed on the last
adapted meshes.

Finally, we note that anisotropic mesh refinement performs
better than isotropic mesh refinement, requiring half theanu
ber of elements in the adjoint-based case, see Figure 7nh ge
eral, the gain becomes more obvious with increasing acgurac
requirements.

(a) four residual-based refinement steps

(b) three adjoint-based refinement steps

Figure 8: Adaptive isotropic mesh refinement for the deltagwi
using residual-based and adjoint-based refinement ir&at
The lift values computed on both meshes have similar errors.

The resulting meshes are visualized in Figure 8, where the
selected refinement step corresponds to the last data point i
Figure 7, so the accuracy of the computed lift@@éent is com-
parable. The majorfiect is the good resolution of the vortex
visible in the cut-plane behind the wing for the residuatdzh
refinement indicator and the corresponding lack of resmfuiti
this area in the case of goal-oriented adjoint-based refiném
It is quite obvious that the global flow field is better resalve
using the first indicator while the resolution of this proeir
vortex is not of much influence on the lift value, as both the
pressure at the wall and the skin friction are only weaklyaep
dent on the downstream vortex evolution. Thus, concentyati
the refinement closer to the wing the adjoint-based refinémen



indicators are capable of creating mofeatent meshes for the of very high order. However, in practice, i. e. for the modera
approximation of the given target quantity. polynomial degrees used in computational aerodynamics, th
fact plays a minor role.
Nonlinear solution procedure
Finally, some details of the iterative solution procesgtsk L1T2 high-lift configuration
ched in Section 4, are discussed. We consider the discrete N0 We close our series of examples with results of compu-

linear system of equations arising from & Brder BR2 dis- tations of the turbulent flow past a typical high-lift configu
cretization of the delta wing test case. A straight-forwémtlly  ration, the L1T2 three-element airfoil. The geometry okthi
implicit solution approach on the coarse 3264 element mesBonfiguration is shown in Figure 10. The flow conditions are
with tensor product elements would require the assembly ofiven by a Mach number oMl = 0.197, a Reynolds num-
a Jacobian matrix that contains 068 10° non-zero entries per ofRe = 3.52- 1f and an angle of attack of = 20.18".
(2.04 million unknowns). Thep-hierarchical V-cycle fiers a  This case has been documented extensively in the literateee
memory dficient alternative with a coarse-level Jacobian ma-, g. [29, 30]. In particular, there is data of two wind tunevel

trix consisting of only % - 10° non-zeros (16 320 degrees of periments available, see [31], in the following referreda
freedom). For the hexahedral mesh the storage requiremients experiment 1 and experiment 2.

the line-implicit smoother is reduced by a factor of threeneo
pared to the full Jacobian matrix. In order to further redinee
memory requirements the smoother could also be reassembl (/ '''''''
on each smoother application which is perfectly paraliddie. ey
Here, we employ a line-implicit three-stage Runge-Kutta )
smoother on a V-cycle with 5 levels, and we apply two pre- an
postsmoothing steps on each level. We note that the agplicat
of a multi-stage smoother still requires only a single igi@n
of the block-tridiagonal line preconditioner. Figure 9 alsdhe
residual convergence history of a nested iteration, plote
the number of V-cycles. A nested strategy is applied in otaler
get a physical initial state: The solution process starth tie
piecewise trilinear discretization and successively gmghtes
the solution approximation after afigient reduction of the
residual has been achieved.

q:igure 10: Geometry of the L1T2 three-element airfoil. The
slat angle is 25 the flap angle is 20

We present numerical results generated with the PADGE
code in comparison with results generated with the well-vali
dated finite volume code TAU, see [32], as well as with experi-
mental data. The BR2 discretization of the turbulent equati
in PADGE includes the local Lax-Friedrichs flux and is solved
fully coupled using the backward Euler method. The PADGE
computations are performed with polynomial degrees 3
andp = 4, each on the same quadrilateral mesh with 4 740 ele-
ments. This mesh originates from a 75 840 element mesh by ag-
glomerating twice. The curved mesh representation in s c
is realized by a piecewise quartic approximation based traex
point data, which has been extracted from the original mesh.
Reference results have been produced on the original mesh by
means of the TAU code.
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o4 Slat Main element Flap

L2 norm of residual

0 ~ost
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Figure 11: Pressure distributions for each L1T2 airfoihedat
computed with PADGE (solid line) compared to reference re-
sults with TAU (dotted) and data of experiment 1 (open sym-

bols) and experiment 2 (filled).

Figure 9: 9" order solution of the laminar flow around the
delta wing: Residual? norm convergence history of the
hierarchical V-cycle. Parallel computation on 32 processo

In terms of the number of iterations, the muyftiv-cycle Ei look at th | g th distri
yields a convergence rate roughly uniform w. r. t. the nunaber Irst, we look at the results concerning the pressure distri

levels. The algorithm is formally defined in the same way as ngof? over_each of thﬁ airfoiLeIements, ]'c i' slat, maimr@gt b
standard FAS multigrid. A closer look reveals, howevert tha and flap. Figure 11 shows the output of the PADGE code be-

computational cost of the nonlinear smoothing iteratioesdo g in a 900‘?' agreement with the experimental data and with
not scale with the number of unknowns. Therefore. the Cominy minor diferences compared to the TAU reference results.
plexity grows in a disproportionate manner for discretinas The number of degrees of freedom (dof) were nearly the same



in both cases: The PADGE gode result was generated with the PADGE results References
polynomial degreg = 4, which corresponds to a number of
dof of about 43 - 10°. The computation with the TAU code p=3 | p=4| TAU | Exp.1| Exp.2
involved about 4 - 10° dof.

Moreover, we consider the skin friction distribution com- C | 4017 | 3976 | 3932 | 4110 | 4075
puted with the PADGE code in comparison to the TAU refer- Cq4 | 0.0560| 0.0674| 0.0744| 0.0677| 0.0734
ence result. The result fqr = 4 is overall in good agreement

with the reference as can be seen in Figure 12. However, in co
trast to the reference, the skin friction features a quasithar
drop on the upper side of the flap, although the computatio
did not include a prescribed transition from laminar to turb
lent conditions. Figure 12 also shows considerabfieténces
between the computed skin friction distribution for= 3 and 7. outlook

p = 4. With the decreased number of dof (cgse- 3) the

PADGE result does not meet the reference result. This factun  The examination of two- and three-dimensional laminar test
derlines the requirement for local refinement strategiesder  cases solved with the PADGE code clearly demonstrates the
to take advantage of higher-order methods. This remains ambility of the underlying higher-order method and the local
essential aspect of our activities and will be consideretthén  adaptive mesh refinement approach to produce highly aecurat
future, especially within the framework dfp-methods. solutions with comparatively few degrees of freedom. Ineord

Finally, Table 1 contains computed values of lift and dragto exploit this potential for the computation of complexaay-
codficients forp = 3, 4 beside reference values of a TAU com- namic flows, several issues have to be considered.
putation and wind tunnel data. The lift dfieients computed There is also first experience in PADGE with turbulent
with PADGE forp = 4 and TAU difer by only 11%, while the  flows using the scheme of Bassi et al.[8]. Extending the tabili
drag codicients deviate by 70 drag counts. It should be mento simulate turbulent flows will be the focus of future devel-
tioned that corresponding results documented in the titegka opments. In order to cover the transonic flow regime a shock
(as well as the experimental values itself) vary considgrab capturing technique will be considered. Approaches incorp
This might indicate a strong influence of mangfdient param- rating the treatment of shocks in the discrete equatiomsitiir
eters making a reliable prediction a complex matter. Both th an artificial viscosity term are probably well suited to both
lift coefficient computed with PADGE witp = 4 as well as the  plicit solution algorithms and the adjoint-based erroireation
one computed with TAU are below the measured values, whicprocedure. Such models have already been successfullyrused
is at least partly due to the fact that both simulations wellg f  the DG context, see e. g. [33, 34]. Another aspect of physical
turbulent. modeling, the treatment of unsteady flows, will be covered by

a time-discretization scheme. These three extensionsioehb
X will form the first steps towards the transition from the miode
o 02 04 06 08 112 problems considered so far to a wide range of aircraft flow phe
: | nomena.

For the applicability of the method to complex geometries
it seems essential to extend the underlying meshes frontypure
hexahedral meshes to unstructured hybrid meshes. Witk thes
it is possible to have high quality prismatic and hexaheele
ments generated by an advancing layer technique in thetyicin
of bodies, while the remaining domain can easily be partéi
into simplices. Generating completely block-structureshres
is generally more diicult, cannot be done automatically and is
thus time-consuming.

In the DG context, the definition of a mesh contains both the
partition into elements of given type and the polynomialibas
functions used on those elements. So far, a uniform polyabmi
degree and thus the same basis functions have been used for al
elements of a mesh. Since the DGM allows for discontinuities
across inter-element boundaries, the method readily dxten
local variations of the polynomial degree according to hkeso
tion requirements of the underlying solution. Considetiogh
local mesh and local order adaptation at once is possitiig-n
refinement algorithms, [35, 36]. The most challenging aspec
of such a technique is the definition of an automatic indicato

r‘]‘able 1. Computed lift €) and drag Cq) codficients for
r? = 3,4 compared to the reference values with TAU and the
experimental values.

Figure 12: Comparison of computed skin friction distrilouis
with detailed view of the slat region.



deciding locally whether ah-subdivision or an increase of the [11]
polynomial degre is the more &ective strategy.

Up to now, the focus of the PADGE code has been on Cag5)
pability rather then ficiency. While the hitherto existing re-
sults clearly demonstrate thdfieiency of the discretization,
measured in the required amount of degrees of freedom need&d!
for a given accuracy, theffeciency of the solver itself is influ- 14]
enced by many factors as outlined in Section 4. For largkesca
problems on todays’ computer architectures, we believeitha
is necessary to develop a solver satisfying a compromise bé®!
tween memory and runtimetiency. This can be achieved by
incorporating a semi-implicit solution technique with vegd
memory requirements andheient problem-specific precondi-
tioners based on line smoothingsmultilevel andh-multigrid
approaches[16, 17, 37]. The development of such an algorith
and its reliable and robust implementation will constitatma-
jor effort. (18]

As a final outlook, the entirety of the suggested enhance-
ments of the PADGE code will enable a thorough investi-
gation of complex large-scale aerodynamic flow phenomenaig]
These results will then provide the answer to the question fo
which type of applications the DG approach is beneficial ancbo]
for which cases well established second-order finite volume
schemes should be preferred. Current results alreadyaitedic [21]
that higher accuracy requirements are beneficial to ouroaeth

(16]

[17]
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