
Abstract

The distribution of the stresses in the rolling contact of a railway vehicle can be very

sensitive to changes of the relative kinematics. Such changes can be caused by dis-

placements of the wheelset in the track, but also by structural deformations of the

wheelsets and the rails. A detailed knowledge of the stress distribution in the wheel-

rail contact is the basis for an accurate analysis of the wear. Therefore, a simulation

model is developed, which describes a passenger coach running on a track. In this

model, the structural dynamics of the wheelsets and rails are taken into account, and

a detailed model for the rolling contact is used. Using this model, the influence of the

structural dynamics of wheelsets and rails on the wheel-rail contact is investigated.

Keywords: Railway vehicle, vehicle-track interaction, wheel-rail contact, non-elliptic

contact, elastic wheelset, elastic rail, elastic multibody system.

1 Introduction

The modelling of a railway vehicle as a multi-body system (MBS) consisting of rigid

bodies covers several problems, .e.g. the low-frequent behaviour (f < 20 Hz) of the

vehicle which is related to the topics of running safety and riding comfort. But for

several other problems like noise and wear, this modelling reaches its validity limits.

Especially the description of the wear requires a more detailed modelling of the

wheel-rail contact. It is self-evident that wear can only occur where wheel and rail are

actually in contact. Furthermore, the contact area consists of an area of adhesion and

an area of sliding. For a sufficient modelling of the wear, an accurate determination of

these zones is necessary. In contrast, for the calculation of the vehicle’s motion only

the resulting forces acting in the wheel-rail contact are required, so that local errors of

the stress distribution have no strong impact.
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Of course, a more detailed modelling of the contact only makes sense, if it is in-

tegrated into a refined model of the vehicle-track system. In such a refined model,

the structural dynamics of the wheelsets and the rails are taken into account, because

deformations of the wheelsets and the rails cause changes in the relative kinematics of

the wheel rim and the railhead. Of course, these deformations are small compared to

the motions of the entire wheelset, but some combinations of wheel and rail profiles

can be very sensitive even to small changes in the kinematics.

In many cases, the problem of two contacting bodies is treated with the Hertzian

theory. According to this theory, the contact area is an ellipse. However, the conditions

for applying the Hertzian theory to the wheel-rail contact are not fulfilled in several

cases. Therefore, a more detailed model of the wheel-rail contact should be able

to describe non-elliptic contact areas. There are several methods to deal with this

problem: On the one hand, there are fast methods; a survey on these methods is given

in [1]. Because of their comparatively low computational effort, these methods can

be integrated into an MBS model, where these calculations have to be performed very

often. Their disadvantage is that they only estimate the actual contact area. On the

other hand, there are very precise method like the program CONTACT by Kalker [2]

or Finite Element models of wheel and rail. These methods yield very accurate results,

but require a high computational effort. In this paper, a method will be used which

can be seen as a compromise between accuracy and computational efficiency.

2 Vehicle-track model

The vehicle-track model is an elastic multi-body system (EMBS). It describes a pas-

senger coach which is running on a straight track. The bodies of which the system

consists are displayed in Fig. 1.

Carbody

Bolsters
Bogie frames

Wheelsets

Rails

Sleepers

Figure 1: Bodies of the vehicle-track system. Dark bodies are modelled as elastic

bodies.
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The passenger coach has two bogies, each one equipped with two wheelsets. The

four wheelsets and the two rails are modelled as elastic bodies, all other bodies are

considered as rigid bodies. All bodies can perform all six rigid body motions except

the bolsters which can perform only yaw motions relative to the carbody. The sys-

tem contains eight force elements describing the rolling contact; these elements act

between the wheelsets and the rails. Furthermore, elements describing dry friction are

acting between the carbody and the bolsters. All other force elements, which connect

the bodies, are linear springs and dampers. The parameters of the passenger coach are

taken from the works of Diepen [3] and Kim [4].

In contrast to “common” MBS-models of railway vehicles, which consist only of

rigid bodies, this model is enhanced in several aspects: The wheelsets and the rails are

modelled as elastic bodies, and for the wheel-rail contacts a more detailed modelling

is used. These enhancements will be described in the following.

2.1 Elastic wheelset

Usually, the motions of an elastic body integrated into an EMBS are described by su-

perposing the motions of the undeformed body, the so-called rigid body motions, and

the deformation motions. This kinematics is displayed in Fig. 2. Details concerning

EMBS can be found e.g. in [5]. The translation of the body is given by the vector

I

B P

w
rR

c

Figure 2: Kinematics of a particle of an elastic body.

rI
R

describing the position of the reference point R, e.g. the centre of gravity, in the

inertial system I. The rotation of the body is expressed by the rotation matrix AIB

describing the transformation between the inertial system I and the body-fixed system

B. In the undeformed state, the position of a certain particle of the body is given by

the vector cB. Due to the deformation, the particle is shifted by the vector wB(cB),
which describes the deformation field, to its current position denoted by the point P.

In total, the position of the particle can be expressed by:

rI
P

= r
I

R
+ AIB

[
cB + wB(cB)

]
(1)

Compared with other components of a railway vehicle like the bogie frame or the

car body, the wheelset performs a large rotation due to its rolling motion. However,

the wheel-rail forces resulting from the contact always act at the lowest region of

the wheelset. As a result, the wheel-rail contact moves around the wheelset, if it is
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observed from the frame B fixed to the wheelset. In other words, if cBWR denotes the

current position of the wheel-rail contact with respect to the body-fixed frame B, then

this vector depends on the increasing overturning angle χ = χ(t) and thereby on the

time:

cBWR = cBWR(χ(t)) (2)

Usually, the deformations of an elastic body are described by a modal synthesis. Here,

shape functions wi(c) depending on the location c which are scaled by the time-

dependent modal coordinates qi(t) are superposed. Thereby, the deformation uB at

the reference location cB at the time t is given by:

wB(cB, t) =
N∑

i=1

wi(c
B)qi(t) (3)

All vectors are displayed in the body-fixed frame B. – For the description of the

rotating elastic wheelset, it is necessary to calculate the deformation at the contact

point. However, as equation (2) shows, the reference location cBWR of the wheel-rail

contact is permanently varying. As a result, the shape functions also depend on time:

wB(cBWR(t), t) =
N∑

i=1

wi(c
B

WR(t))qi(t) (4)

Usually, the wheelset is a rotational symmetric structure. By exploiting the charac-

teristics of such a structure, the problem described above can be solved without loss

of accuracy: For a rotational symmetric structure, the description using cylindrical

coordinates is obvious, namely the radial coordinate r, the axial coordinate y and the

azimut φ. If linear elasticity of the material with the shear modulus G, Poisson’s ratio

ν and the density ρ is assumed and the parameters are distributed in a rotational sym-

metric way, i.e. G = G(r, y), ν = ν(r, y) and ρ = ρ(r, y) , a semi-analytic solution

can be applied to the equation of motion of a three-dimensional continuum, which is

e.g. given in [6]:

G

[

∆w +
1

1 − 2ν
grad divw

]

= ρ ẅ (5)

It is also obvious to express the displacements in the direction of the cylindrical coor-

dinates by using the radial deformation R = R(r, φ, y, t), the tangential deformation

T = T (r, φ, y, t) and the axial deformation V = V (r, φ, y, t). If the 2-axis is the axis

of the rotational symmetry, the displacement vector can be written as:

wB =





cosφ 0 sinφ
0 1 0

− sinφ 0 cosφ









T (r, φ, y, t)
V (r, φ, y, t)
R(r, φ, y, t)



 = A2(φ)u(r, φ, y, t) (6)

As a result, the eigenmodes describing the radial deformation R, the tangential defor-
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mation T and the axial deformation V can be written as:

ui(r, φ, y) =





Ti(r, φ, y)
Vi(r, φ, y)
Ri(r, φ, y)



 =





Ti,A(r, y)
Vi,A(r, y)
Ri,A(r, y)





︸ ︷︷ ︸

ui,A(r,y)

cos (kiφ) +





Ti,B(r, y)
Vi,B(r, y)
Ri,B(r, y)





︸ ︷︷ ︸

ui,B(r,y)

sin (kiφ) (7)

The vector wi(r, φ, y) describing the deformation in the direction of cartesian coordi-

nates is obtained by:

wi(r, φ, y) =





Ui(r, φ, y)
Vi(r, φ, y)
Wi(r, φ, y)



 = A2(φ)ui(r, φ, y) (8)

It is important to note that each eigenmode has one and only one periodicity ki be-

ing an integer. For ki 6= 0, double eigenfrequencies occur belonging to two orthogonal

modes ui,1 and ui,2, which can be written as:

ui,1(r, φ, y) = ui,A(r, y) cos (kiφ) + ui,B(r, y) sin (kiφ) (9)

ui,2(r, φ, y) = ui,A(r, y) sin (kiφ) − ui,B(r, y) cos (kiφ) (10)

If both double eigenmodes are taken into account for the modal synthesis, the defor-

mation vector u can be expressed as:

u(r, φ, y, t) =
∑

i

[ui,1(r, φ, y)qi,1(t) + ui,2(r, φ, y)qi,2(t)] (11)

An intermediate, axle-fixed frame A is now introduced, as displayed in Fig. 3. This

A

B
FWR

-c

Figure 3: Body-fixed frame B and intermediate axle-fixed frame A of the wheelset.

frame performs all motions of the body-fixed frame B except the overturning motion

χ = χ(t). Thereby, the wheel-rail force ~FWR doesn’t move around the wheel in this
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frame. The relation between the new frame A and the body-fixed frame B is expressed

by the matrix AAB:

AAB =





cosχ 0 sinχ
0 1 0

− sinχ 0 cosχ



 = A2(χ) (12)

The deformation in the new frame A can be described as follows:

wA = AABwB = A2(χ)A2(φ)u = A2(φ+ χ)u (13)

The sum of the azimut φ in the frame B and the overturning angle χ is the azimut in

the intermediate frame A which is denoted with θ:

θ = φ+ χ⇔ φ = θ − χ (14)

In the frame A, the position of the wheel-rail contact is described by a constant value

of θ. It should be pointed out, that the coordinate θ is a local coordinate denoting a

location in space in contrast to the material coordinate φ denoting a particle.

To describe the deformation in the frame A, the deformation has to be expressed

depending on θ. By inserting the relation (14) into the descriptions (9) and (10) of the

eigenmodes, the following expressions are obtained.

ui,1(r, φ, y) = ui,1(r, θ, y) cos (kiχ) + ui,2(r, θ, y) sin (kiχ) (15)

ui,2(r, φ, y) = ui,2(r, θ, y) cos (kiχ) − ui,1(r, θ, y) sin (kiχ) (16)

The superposition of the two eigenmodes, which are scaled with their modal coordi-

nates qi,1 and qi,2, leads to

ui,1(r, φ, y)qi,1(t) + ui,2(r, φ, y)qi,2(t)

= [ui,1(r, θ, y) cos (kiχ) + ui,2(r, θ, y) sin (kiχ)] qi,1(t)

+ [ui,2(r, θ, y) cos (kiχ) − ui,1(r, θ, y) sin (kiχ)] qi,2(t)

= ui,1(r, θ, y) [qi,1(t) cos (kiχ) − qi,2(t) sin (kiχ)]

+ui,2(r, θ, y) [qi,1(t) sin (kiχ) + qi,2(t) cos (kiχ)] (17)

The expressions in the brackets can be defined as the new modal coordinates q∗i,1 and

q∗i,2:

q∗i,1(t) = qi,1(t) cos (kiχ) − qi,2(t) sin (kiχ)

q∗i,2(t) = qi,1(t) sin (kiχ) + qi,2(t) cos (kiχ) (18)

As a result, the modal synthesis for the deformation depending on the new azimut θ
and the new modal coordinates q∗i,1 and q∗i,2 is obtained:

u(r, θ, y, t) =
∑

i

[
ui,1(r, θ, y)q

∗

i,1(t) + ui,2(r, θ, y)q
∗

i,2(t)
]

(19)
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To determine the velocity of the deformation, it has to be taken into account that

the coordinate θ is a local coordinate, not a material one. Therefore, also the vectors

ui,1(r, θ, y) and ui,2(r, θ, y) have to be derived with respect to time:

u̇(r, θ, y, t) =
∑

i

[
dui,1(r, θ, y)

dt
q∗i,1(t) + ui,1(r, θ, y)q̇

∗

i,1(t)

+
dui,2(r, θ, y)

dt
q∗i,2(t) + ui,2(r, θ, y)q̇

∗

i,2(t)

]

(20)

By considering the relation (14) and the structure of the eigenmodes (9) and (10), the

following relations are found:

dui,1(r, θ, y)

dt
=

∂ui,1

∂θ

dθ

dt
= −kiui,2(r, θ, y)(−χ̇) = ui,2(r, θ, y)kiχ̇ (21)

dui,2(r, θ, y)

dt
=

∂ui,2

∂θ

dθ

dt
= kiui,1(r, θ, y)(−χ̇) = −ui,1(r, θ, y)kiχ̇ (22)

Inserting these relations into (20) and factoring out the vectors ui,1(r, θ, y) and ui,2(r, θ, y)
leads to the expression

u̇(r, θ, y, t) =
∑

i

[
ui,1(r, θ, y)

[
q̇∗i,1(t) − kiχ̇q

∗

i,2(t)
]

+ui,2(r, θ, y)
[
q̇∗i,2(t) + kiχ̇q

∗

i,1(t)
]]

(23)

Now, the deformation observed in the frame A can be described. The modal syn-

thesis (19) is inserted into (13), and the relation (8) is used. As a result, the following

expression is obtained:

wA(r, θ, y, t) = A2(θ)u(r, θ, y, t)

=
∑

i

[
A2(θ)ui,1(r, θ, y)q

∗

i,1(t) + A2(θ)ui,2(r, θ, y)q
∗

i,2(t)
]

=
∑

i

[
wi,1(r, θ, y)q

∗

i,1(t) + wi,2(r, θ, y)q
∗

i,2(t)
]

(24)

In an analogous way, the velocity of the deformation observed in the frame A is ob-

tained:

∗
wA(r, θ, y, t) = A2(θ)u̇(r, θ, y, t)

=
∑

i

[
wi,1(r, θ, y)

[
q̇∗i,1(t) − kiχ̇q

∗

i,2(t)
]

+wi,2(r, θ, y)
[
q̇∗i,2(t) + kiχ̇q

∗

i,1(t)
]]

(25)

The star indicates that the vector
∗
wA(r, θ, y, t) is the deformational velocity observed

in the frame A. The relative velocity of the particle is given by:

ẇA(r, θ, y, t) =
∗
wA(r, θ, y, t) + ω

A

AB × wA(r, θ, y, t) , ω
A

AB =
[

0 χ̇ 0
]T

(26)
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In this formulation, a constant value of θ describing the position of the wheel-rail

contact in the frame A can be set. This means that the angle φ describing a particle is

chosen in such a way, that the relation

θ = φ(t) + χ(t) = const. (27)

is always fulfilled. As a consequence, the particle which is observed changes over

time. All in all, this method provides a simple and accurate way to describe the acting

of the wheel-rail forces moving around the wheelsets.

2.2 Elastic track

The track model is displayed in Fig. 4. It is based on the track model by Ripke [7],

but uses an enhanced model of the rail. The model consists of two elastic rails, which

Viscoelastic pads

x

y

z

Viscoelastic undergroundSleepers

Rails

Figure 4: Model of the track containing elastic rails.

are supported by discrete sleepers. The sleepers are considered as rigid bodies, which

can perform all six motions. They are connected to the rails by visco-elastic layers

reprensenting the pads and are supported by visco-elastic layers representing the un-

derground. The inclination of the rails towards the middle of the track is taken into

account in this model. A value of 1/40 is used; this value is the standard in Germany,

Austria, Switzerland and other countries. For the rails, the profile UIC60 is chosen,

which is widely used in Europe.

A general problem arising in the modelling of the track is that the vehicle reaches

the end of the track very soon if it is running with high speeds. To circumvent this

problem, the same boundary conditions are applied at the ends of the track. Thereby,

the track forms a ring, but the curvature of the ring is neglected. Of course, it has to be

checked out how long the ring has to be to show approximatively the same dynamic

behaviour as a very long track. In this case, comparisons showed that a model using

128 sleepers is sufficient. With a sleeper spacing of ∆xS = 0.6 m the track has a total

length of lR = 76.8 m.

The foot of the rail is connected to the sleepers, lateral wheel-rail forces act at the

rail head, and the web of the rail is comparatively thin. Therefore, deformations of

the cross-section should be taken into account. This cannot be done by applying a

common beam theory, since these theories assume that the cross-section remains un-

deformed. Therefore, the rail is modelled as a three-dimensional continuum. The rail
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has a prismatic shape, which can be exploited for a semi-analytic solution of the equa-

tion (5). In contrast to the wheelset, the deformations are described in the directions

of cartesian coordinates. The longitudinal coordinate x is separated from the other

coordinates y and z. Therefore, the shape functions of the rail can be expressed as:

wi,R =





Ui(y, z) sin(κix+ βi)
Vi(y, z) cos(κix+ βi)
Wi(y, z) cos(κix+ βi)



 , κi = ci
2π

lR
, ci ∈ Z (28)

The eigenmodes, which are obtained, describe the usual bending motions as well as

deformations of the cross-section, as displayed in Fig. 5.

142 Hz 1533 Hz325 Hz 4241 Hz

Figure 5: Eigenmodes of the rail, wavelength lR/ci = 2.4 m

Due to the periodic support of the rails by the discrete sleepers, an eigenmode of

the entire track cannot be characterised by only one wavenumber κi. However, the

structure of the eigenmodes according to (28) gives a continuous distribution of the

deformations depending on the longitudinal coordinate x, so that the motion of the

wheel-rail forces along the rail can be taken into account in a comparatively easy way.

Since a completely rigid track leads to unrealistic simulation results, a very simple

track subsystem as displayed in Fig. 6 is used for comparison. It consists of a rigid

z

y
j

Figure 6: Simple track model

body, which can perform lateral motions y, vertical motions z and roll motions ϕ.

Each wheelset is supported by one of such subsystems. This model will be referenced

with “rigid rails” in contrast to the detailed track model displayed in Fig. 4, which will

be referenced with “elastic rails”.
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2.3 Wheel-rail contact

From the point of view of multi-body dynamics, the wheel-rail contact is a force el-

ement, i.e. its inputs and outputs are the relative kinematics of wheel and rail and

the resulting forces and torques, respectively. These forces result from stresses act-

ing in the contact patch which are related to the deformations. For the integration of

the wheel-rail contact into an EMBS, especially for wheelsets and rails modelled as

flexible bodies, it is useful to split up the deformations into global deformations and

local deformations. Global deformations refer to deformations concerning the entire

structure, e.g. bending of the wheelset’s axle or of the rail. Local deformations refer

to deformations in the contact area and its immediate neighbourhood.

The first step is the geometric analysis of the contact. To simplify this step, it is

assumed that the profiles move due to the global deformations of wheelset and rail,

but remain undeformed. This assumption is justified by the fact that the wheel rim

and the railhead are comparatively massive parts. Thereby, the kinematics of the two

profiles can be determined by the kinematics of two nodes, the one belonging to the

wheelset, the other one belonging to the rail. By considering the profile of the rail and

the enveloppe of the wheel, two intersection points PL and PR are found, as displayed

in Fig. 7. As a result, the fields of interpenetration δ(x, y) and the relative velocities

Wheel-rail contact element

Forces and
torques

Kinematics

Kinematics

Wheelset node

Rail node

Forces and
torques

PL PR

Figure 7: Left: Coupling of the wheel-rail contact element to the elastic wheelset and

the elastic rail. Right: Determination of the contact plain.

v1,0(x, y) and v2,0(x, y) are obtained. The plain in which the interpenetration and the

velocities are described is defined by the longitudinal coordinate x of the rail and the

chord which connects the points PL and PR. It should be mentioned, that the nodes
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don’t necessarily have to lie in the actual contact area, because the shifting of the

contact area is performed internally in the contact. The effect of the shifting of the

contact is taken into account by additional torques.

Naturally, the solid bodies cannot interpenetrate each other, but a deformation

w(x, y) occurs which compensates the interpenetration in the actual contact. Within

the contact area, the normal pressure p(x, y) is positive. Outside the contact area, the

pressure vanishes. Therefore, two conditions can be formulated:

δ(x, y) − w(x, y) = 0 ∧ p(x, y) > 0 inside the contact area (29)

δ(x, y) − w(x, y) < 0 ∧ p(x, y) = 0 outside the contact area (30)

The complete theoretical base for the contact mechanics is given by Kalker in [2].

Since the contact area is small compared to the main dimensions of wheel and rail, the

contacting bodies can be considered as elastic half-spaces. The equations of Boussi-

nesq and Cerrutti give the relation between the stresses acting on the surfaces of the

half-space and the deformations occurring at the surfaces. Since in the case of the

wheel-rail contact both contacting bodies consist of steel, equal material parameters,

i.e. the shear modulus G and Poisson’s ratio ν, can be assumed for both halfspaces.

As a result, the relations between the tangential stresses τ1 and τ2 and the tangential

deformations u1 and u2 on the one hand and the relation between the pressure p and

the normal deformation w on the other hand are decoupled. Therefore, the equations

of Boussinesq and Cerrutti can be written as:

u1(X,Y ) =
1

π G

∫

A

[
1 − ν

R
+

(X − x)2ν

R3

]

τ1(x, y)dA

+
ν

π G

∫

A

(X − x)(Y − y)

R3
τ2(x, y)dA (31)

u2(X,Y ) =
ν

π G

∫

A

(X − x)(Y − y)

R3
τ1(x, y)dA

+
1

π G

∫

A

[
1 − ν

R
+

(Y − y)2ν

R3

]

τ2(x, y)dA (32)

w(X,Y ) =
1 − ν

π G

∫

A

p(x, y)

R
dA , R =

√

(X − x)2 + (Y − y)2 . (33)

Since the equation (33) is decoupled from the equations (31) and (32), the normal

contact problem, i.e. the determination of the pressure field p(x, y) can be solved

as the second step of the contact analysis, following the first step of the geometric

analysis. The third step is the solution of the tangential contact, i.e. calculating the

distributions τ1(x, y) and τ2(x, y) of the tangential stresses.

For the solution, the problem is discretised by using a grid with the constant ∆a,

where the stresses and deformations are only considered at the nodes of the grid. The

stresses are expressed by superposing local bilinear functions fk(x, y) which are 1 at
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the point 〈xk, yk〉 and 0 at all other points of the grid, as shown in Fig. 8:

τ1(x, y) =
∑

k

τ1(xk, yk)fk(x, y) =
∑

k

τ1,kfk(x, y) , (34)

τ2(x, y) =
∑

k

τ2(xk, yk)fk(x, y) =
∑

k

τ2,kfk(x, y) , (35)

p(x, y) =
∑

k

p(xk, yk)fk(x, y) =
∑

k

pkfk(x, y) . (36)

Da
xy
xkyk

f k DaDa
Da

( , ),t1 x y
( , )t2 x y

p x y( , ),

y

x

Figure 8: Local bilinear function fk (left), discretisation of the distribution of the

stresses (right)

By inserting the discretised distributions of τ1(x, y), τ2(x, y) and p(x, y) into the

Boussinesq-Cerrutti equations, two systems of linear equations are obtained, one for

the normal contact problem, the other for the tangential contact problem:

H33 f3 = u3 ,

[
H11 H12

H12 H22

] [
f1
f2

]

=

[
u1

u2

]

. (37)

The vectors f1, f2 and f3 contain the stresses τ1(xk, yk), τ2(xk, yk) and p(xk, yk), re-

spectively, at the nodes of the grid. The vectors u1, u2 and u3 contain the deformations

u1(xi, yi), u2(xi, yi), and u3(xi, yi) at the nodes.

Considering the normal contact problem, the main difficulty is that it is unknown at

the start how many points belong to the actual contact area and, thereby, of how many

equations the system actually consists. Therefore, the direct solution of the system

of linear equations is not sensible, because the decomposition of the matrix requires

a high computational effort. A more efficient way is the application of an iterative

solution of the system, e.g. by the Gauss-Seidel method, as it has already used by

Vollebregt [8] in contact mechanics. If i-th line of the system H33 f3 = u3 reads:

n∑

j=1

H
(33)
ij pj = δi , pj = p(xj, yj) , δi = δ(xi, yi) (38)

and p
(k)
i is the k-th approximation of pi, then the new value p

(k+1)
i is obtained by:

p
(k+1)
i =

1

H
(33)
ii

[

δi −
i−1∑

j=1

H
(33)
ij p

(k+1)
j −

n∑

j=i+1

H
(33)
ij p

(k)
j

]

(39)
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This iterative scheme is performed until all differences p
(k+1)
i −p

(k)
i are below a certain

tolerance. It is obvious that additional conditions can be introduced easily into the

scheme: If the iteration yields a negative value p
(k+1)
i < 0, the new value is set to

p
(k+1)
i = 0.

To formulate the condition for the solution of the tangential contact problem, the

actual relative velocities v1,rel(x, y) and v2,rel(x, y) in the contact have to be consid-

ered. This velocities consist of the applied relative velocities v1,0(x, y) and v2,0(x, y)
of the undeformed half-spaces, which are obtained from the geometric analysis, and

the deformational velocities v1,def (x, y) and v2,def (x, y):

v1,rel(x, y) = v1,0(x, y) + v1,def (x, y) , v2,rel(x, y) = v2,0(x, y) + v2,def (x, y) (40)

In the case of adhesion, the relative velocities v1,rel(x, y) and v2,rel(x, y) vanish, and

the resulting tangential stress is smaller than or equal to the maximum transmittable

stress τmax, which is determined by the pressure p(x, y) and the friction coefficient:

v1,rel(x, y) = 0 ∧ v2,rel(x, y) = 0 ∧

√

τ1(x, y)
2 + τ2(x, y)

2 ≤ τmax = µ p(x, y) (41)

In the case of sliding, the tangential stresses act in the opposite direction of the relative

velocities. This condition can be formulated in the following way:

τ1(x, y) v2,rel(x, y) − τ2(x, y) v1,rel(x, y) = 0 ∧

√

τ1(x, y)
2 + τ2(x, y)

2 = µ p(x, y)
(42)

If the deformation field at a small time-step ∆t before the current time is given by

u∗1(x, y) and u∗2(x, y), then the deformational velocities can be approximated by:

v1,def (x, y) ≈
u1(x, y) − u∗1(x, y)

∆t
, v2,def (x, y) ≈

u2(x, y) − u∗2(x, y)

∆t
(43)

As Vollebregt showed in [8], the Gauss-Seidel method is an efficient way to solve the

system of linear equations (37) and taking into account the non-linear conditions (42).

3 Calculation results

To investigate the impact of the structural elasticities on the wheel-rail contact, two

models with different configurations are used: In the first model, the wheelsets are

considered as rigid bodies and the simple track model displayed in Fig. 6 is used. In

the second model, the structural dynamics of the wheelsets are taken into account;

all eigenmodes of the wheelset, which belong to eigenfrequencies below 5000 Hz are

used as shape functions for the modal synthesis. Furthermore, the detailed track model

including elastic rails, which is shown in Fig. 4, is used.

For the wheel, the profile S1002 is chosen. As already mentioned, the rail profile

UIC60 is used. This profile combination is widely used in Europe. Furthermore, an

inclination of 1/40 for the rails is assumed; this value is the standard in Germany,
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Austria, Switzerland and other countries. From earlier research, cp. [1], it is known,

that non-elliptic contact patches can occur for this profile combination; such patches

cannot be described exactly with the Hertzian theory, which assumes that the contact

area is an ellipse. For the calculation of the stresses, the constant of the grid is set

to ∆a = 0.75 mm. – Generally, the contact at the right wheel of the vehicle’s front

wheelset is considered in the following investigation.

3.1 Centred running

The first scenario which is investigated is the centred, undisturbed running of the

wheelset. If the wheelsets and the rails are considered as rigid bodies, a stationary state

is obtained and the wheel-rail forces are constant. For the case of elastic wheelsets on

elastic rails, the wheel-rail forces are fluctuating due to the support of the rails by the

discrete sleepers. However, as Fig.9 shows, the oscillation of the vertical force F3 is

quite small.
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Figure 9: Time history of the vertical wheel-rail force F3 for elastic wheelsets on

elastic rails at v0 = 100 km/h and v0 = 200 km/h

The frequency is the ratio of the driving speed v0 and the sleeper spacing ∆xS:

f =
v0

∆xS
(44)

Using a sleeper spacing of ∆xS = 0.6 m, the frequency is f = 46.3 Hz for v0 =
100 km/h and f = 92.6 Hz for v0 = 200 km/h.

The comparison of the normal stresses occurring in the contact at the right wheel

of the vehicle’s front wheelset are displayed in Fig.10. On the right hand side, the

areal distribution of the normal pressure is shown. The wheel is running in positive

x-direction. On the left hand side, the relative position of the profiles of wheel and rail

and the maximum pressure are displayed.
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Elastic wheelsets,
elastic rails

Rigid wheelsets,
rigid rails

Figure 10: Distribution of the normal stresses for v0 = 200 km/h and µ = 0.3.

Although the change of the relative kinematics of the profiles is hardly visible, the

distribution of the normal pressure and thereby the contact patch is distinctly changed.

The left maximum, which is very distinctive for the case of rigid wheelsets and rails,

shrinks while the right maximum increases. This effect can be explained by con-

sidering the external forces, as displayed in a simplified way in Fig.11. In the case

of centred running, the bearing forces FB at the external journals and the wheel-rail

forces FWR are mainly acting in the vertical direction. This causes particularly a bend-

ing of the wheelset’s axle. As a result, the wheel rims incline outwards. Thereby, the

normal load is shifted to the right maximum, as displayed in Fig.10.

Due to the inclination of the running surface, the vector of the angular velocity

resulting from the wheelset’s overturning motion is not orthogonal to the running sur-

face. As a result, a spin occurs in the contact patch. This spin can clearly be seen

in the distributions of the tangential stresses which are shown in Fig.12. As already

mentioned, the wheel is running in the positive x-direction. At the rear edge of the

contact patch, an area of sliding can be recognized. The single points indicating a

sliding at the front edge result from discretisation errors.

For the wear, the power dissipated due to the friction is of interest. Therefore, the

distribution of the density of the frictional power PF/A is displayed in Fig.13. Of

course, the frictional power vanishes in the zone of adhesion. Only in the zone of

sliding, power can be dissipated by friction.
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Figure 11: Bending of the wheelset due to bearing forces FB and wheel-rail forces
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Figure 12: Distribution of the tangential stresses for v0 = 200 km/h and µ = 0.3.

It can clearly be seen that the two distributions differ distinctly from each other. For

the modelling using rigid wheelsets and rigid rails, the maximum density occurs at the

left part of the contact patch. Here, the largest normal pressure occurs, which causes

also high tangential stresses τ = µ p. Since the left maximum of the normal pressure

shrinks drastically in the case of elastic wheelsets and elastic rails, only low values

of the frictional power density can be found in the left part of the contact patch. It is

remarkable that the power density reaches higher values in the case of rigid wheelsets

and rigid rails. In the left part, the absolute maximum of PF/A = 13 W/mm2 is

reached. In the right part, a relative maximum of PF = 7 W/mm2 occurs. In contrast,

for the modelling using elastic wheelsets and elastic rails, a maximum of only PF/A =
6 W/mm2 is reached in the right part of the contact patch. An explanation for this

result may be that the spin diminishes as a result from the inclination of the wheel rim
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Elastic wheelsets,
elastic rails

Rigid wheelsets,
rigid rails

Figure 13: Distribution of the density of the frictional power for v0 = 200 km/h and

µ = 0.3.

due to the wheelset’s bending.

Of course, it should be kept in mind, that these results are calculated using ideal

conditions, i.e. new unworn profiles S1002 and UIC60 and an undisturbed, centred

position of the wheelset. In real life, both conditions are hardly fulfilled. However,

the result that structural deformations of the wheelset already have an impact on the

wheel-rail contact in this “unspectacular” case suggests, that this refined modelling

of the vehicle-track system should also be used for the description of more realistic

scenarios.

3.2 Hunting of the wheelset

The hunting motion is a combined lateral (y) and yaw (ψ) motion of the wheelset, as

displayed in Fig. 14. Below a certain driving speed, the so-called critical speed v0,crit,

the hunting motion decreases, so that the wheelset centres itself within the track. If the

vehicle is running faster than v0,crit, a permanent hunting motion can occur. Usually,

this is avoided by a proper mechanical design of the vehicle, because in this case

high lateral wheel-rail forces can occur, which can cause damage to the track and

derailment.
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Figure 14: Hunting motion of the wheelset.

Although the scenario of permanent hunting is avoided in regular operation, it is

chosen here to study the influence of the structural elasticities on the running be-

haviour and on the wheel-rail contact. The phase portrait for the lateral motion yWS1

of the first wheelset’s centre is displayed in Fig. 15. The curves for the two models
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Figure 15: Phase portrait for the lateral motion of the first wheelset’s centre at v0 =
410 km/h.

show two differences:

• The lateral amplitudes are larger for the model using elastic wheelsets and elas-

tic rails. Due to the lateral forces, the rail is shifted and the wheelset is deformed,

which leads to a larger lateral displacement of the centre.

• The curve for the rigid wheelset on the rigid rails shows sharp bends at yWS1 ≈
6.5 mm and yWS1 ≈ −6.5 mm, while the curve for the elastic wheelset on

elastic rails is smoother. The sharp bends result from the wheel’s flange hitting

the rail head. If the structural elasticity of the wheelset and the rails is taken

into account, the wheelset and the rails act as springs, which are softer than the

comparatively stiff wheel-rail contact. Thereby, the impact of the wheel flange

and the railhead is cushioned.

18



The influence of the structural deformations of the wheelset and the rails on the

right wheel-rail contact is displayed in Fig. 16. Since the lateral displacement of the

Elastic wheelsets,
elastic rails

Rigid wheelsets,
rigid rails

y = 0 mmWS1

y = 2 mmWS1

y = 6 mmWS1

y = 4 mmWS1

y = 8 mmWS1

y = 10 mmWS1

Figure 16: Maximum normal pressure at the right wheel depending on the lateral shift

yWS1 of the wheelset.

wheelset doesn’t exceeds the range of -7.5 mm < yWS1 < 7.5mm for rigid wheelsets

and rigid rails, no diagrams are available for yWS1 = 8 mm and yWS1 = 10 mm.

As already observed for the case of centred running, the distribution of the pressure

in the contact area is distinctly changed. It can also be seen, that the contact between

the flange of the wheel and the gauge corner of the rail occurs at higher lateral dis-

placements of the wheelset, if the structural elasticities are taken into account. This

is probably caused by the vertical forces, which were relevant in the case of centred

running, but also by the lateral forces. These lateral forces, which guide the wheelset

in the case of hunting, provoke a bending of the wheelset and a lateral shifting of the

rail.
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4 Conclusion

The comparison of the results obtained with two vehicle-track models shows that the

structural dynamics of the wheelsets and the rails have in fact an impact on the stress

distribution in the wheel-rail contact. Already in the case of centred, undisturbed run-

ning of the wheelset, the shape of the contact patch and the distribution of the stresses

are changed considerably, which can be explained by the bending of the wheelset.

The distribution of the density of the frictional power, which is important for the wear,

is also affected distinctly. In the case of hunting, the structural dynamics have a no-

ticeable impact on the running behaviour of the wheelset. This also leads to distinct

changes of the stress distribution in the wheel-rail contact. Although the two scenar-

ios, which are investigated here, may be idealised, the refined modelling including

the elastic wheelsets and rails should also be used for simulating more realistic cases,

especially the running on a disturbed track. This might be the base for a more detailed

knowledge of the wear occurring in railway systems, which has a strong impact on

their maintenance efforts and thereby on their economics.
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