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Abstract We consider the adjoint-based error estimation and goal-oriented
mesh refinement for single and multiple aerodynamic force coeflicients as well
as residual-based mesh refinement applied to various three-dimensional lam-
inar and turbulent aerodynamic test cases defined in the ADIGMA project.

1 Introduction

Important quantities in aerodynamic flow simulations are the aerodynamic
force coeflicients like the drag, lift and moment coefficients. In addition to
the exact approximation of these quantities it is of increasing importance, in
particular in the field of uncertainty quantification, to estimate the error in
the computed quantities. By employing a duality argument error estimates
can be derived for estimating the error measured in terms of the aerodynamic
force coefficients. The error estimate includes primal residuals multiplied by
the solution to an adjoint problem related to the force coefficient. The error
estimate can be decomposed into a sum of local adjoint-based indicators
which can be employed to drive a goal-oriented adaptive mesh refinement
algorithm specifically tailored to the accurate and efficient approximation of
the aerodynamic force coefficient.

Provided the adjoint solution related to an arbitrary target functional is
sufficiently smooth the corresponding error representation can be bounded
from above by an error estimate which includes primal residuals but is in-
dependent of the adjoint solution. By localizing this error estimate so-called
residual-based indicators are obtained. Mesh refinement based on these in-
dicators leads to meshes which resolve all flow features irrespective of any
specific target quantity.
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Before the start of the ADIGMA project the techniques of error estima-
tion, adjoint-based mesh refinement and residual-based mesh refinement were
available for 2d laminar compressible flows around simple airfoil geometries,
see e.g. [, 11]. Within the ADIGMA project these techniques have been ex-
tended to 3d laminar compressible flows, see [13], as well as to 2d turbulent
and 3d turbulent compressible flows. Furthermore, the error estimation and
adjoint-based mesh refinement for single target quantities has been extended
to the treatment of multiple target quantities, see [6]. The algorithms are
applied to a range of test cases defined in the ADIGMA project.

2 Error estimation and adaptive mesh refinement

We consider the discontinuous Galerkin (DG) finite element discretization of
the compressible flow equations, see e.g. [12, 13]: Find u), € V, , such that

N(uh, Vh) =0 Vvy, € Vh)p, (1)

where the discrete function space Vj ;, consists of discontinuous piecewise
polynomial functions of degree p > 0. Given a target quantity J(u) like for
example the aerodynamic drag, lift or moment coefficient, a duality argument
can be employed, see e.g. [3, 9], to obtain following error representation

J) — J(up) = —N(up,z —zp) = R(up,z — z) =~ R(up, 2, —2zr)  (2)

for any discrete function z, € Vj, p, where the exact adjoint solution z is
replaced by the solution zj, to following discrete adjoint problem: Find z, €
Vi,,p such that

N’[uh](wh, ih) = J’[uh](wh) Ywy, € V}L)p. (3)

A possible choice of the adjoint discrete function space is Vi, = Vi pi1.
The approximate error representation in (2) can be localized

J(w) = J(up) ~ R(Wp, 2n —20) = Y i, (4)
k€T,

where 7),; are the so-called adjoint-based indicators which include the local
residuals multiplied by the discrete adjoint solution. These indicators can be
used to drive an adaptive mesh refinement algorithm tailored to the accurate
and efficient approximation of the target quantity J(u) under consideration.

The extension of the adjoint-based error estimation and mesh refinement
approach to multiple target quantities has previously been considered for the
inviscid Burgers’ equation in [10] and has been extended within the ADIGMA
project to viscous compressible flows in [6]. Estimating the error in multiple
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quantities of interest, J;(u),i = 1,..., N, would require the computation of
the solutions zp ; € Vi, to N discrete adjoint problems:

N'[up)(wWh, z63) = J{[up](wWr) Ywn € Vip, i=1,...,N, (5)
and the evaluatation of the error representation for each of the quantities,
J(u) — J(up) ~ R(up,2p,; — 2p:), ¢=1,...,N. (6)
Instead, we compute the solution to following discrete error equation,
N'[ap)(&n, wn) = R(un, wn) VYwp € Vi, (7)
and evaluate following approximation of J;(u) — J;(up),
Ji(u) — J;(up) = J![up)(e) = J/[up)(en), i=1,...,N, (8)

where e = u — uy,. Furthermore, defining a suitable combination J.(u) of
the original target quantities, see [6], we compute the solution to following
discrete adjoint problem

N'Tup)(Wh,Zen) = Ji[un)(wn)  Ywi € Vi, (9)
and evaluate the error estimate

Je(u) — Je(up) = R(up, 2. — zp) = R(up, Ze,p, — 2n) = Z 7. (10)
KETH

The combined target quantity J.(u) can be defined, see [6], such that the error
with respect to J..(-) represents the sum of relative errors in the original target
quantities, Zivzl |Ji(w) — J;(ap)|/|Ji(ug)|, or a weighted sum of absolute
erTors, vazl a;|Ji(a) — Ji(up,)| with weighting factors «; > 0. The adjoint-
based indicators, 775, obtained by localizing the estimate (10) can be used to
drive an adaptive algorithm for the accurate and efficient approximation of
all the target quantities, J;(u),7 =1,..., N, under consideration.

Finally, we note that for a target quantity J(u) with a sufficiently smooth
adjoint solution the error representation (2) can be bounded from above as
follows

1/2
/() = J(un)| < (Z (772“)2> ; (11)
KETY

res

see [6, 8, 11, 13], where the so-called residual-based indicators ' include the
primal residuals but are independent of the adjoint solution. Not depending
on a particular target quantity the mesh refinement using residual-based
indicators targets at resolving all flow features.
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3 Numerical results

In this section we demonstrate the performance of the adjoint-based error
estimation, the goal-oriented and the residual-based mesh refinement for a
range of aerodynamic test cases defined in the ADIGMA project. The compu-
tations have been performed with the DLR PADGE code [7] which is based
on a modified version of the deal.ITI library [1].

3.1 ADIGMA BTC3: Laminar flow around delta wing

First we consider a laminar flow around a delta wing. The delta wing has a
sharp leading edge and a blunt trailing edge. A similar case has previously
been considered in [15]. The geometry of the delta wing can be seen from the
initial surface mesh in Figure 1(a). The delta wing is considered at laminar

(a) " (b)

Fig. 1 Laminar delta wing: a) initial surface mesh: Top, bottom and side view of the half
delta wing with straight leading edges, b) solution plot showing streamlines and a Mach
number isosurface over the left half of the wing as well as Mach number slices over the
right half, [13].

conditions with inflow Mach number equal to 0.3, at an angle of attack a =
12.5°, and Reynolds number Re = 4000 with isothermal no-slip wall boundary
condition imposed on the wing geometry. As the flow passes the leading edge
it rolls up, creates a vortex and a secondary vortex. The resulting vortex
system remains over long distances behind the wing, see Figure 1(b). In the
following the total drag, lift, and moment coefficients, Cq, C} and C\,, will
be computed up to a predefined error tolerance TOL. The following industrial
accuracy requirements have been defined:

|Jey (u) — Jey(up)] < TOLg, = 1072,
|Je, () = Jo, (up)| < TOLg, =103, (12)
|Jc,.(u) = Je,, (up)] < TOLc,, = 1073,
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By performing high order computations on fine meshes the following reference
values of the force coefficients have been obtained: J¢, (u) = CF°f = 0.34865,
Joy(u) = CFf = 0.16608, and Jc,, (u) = Crf = —0.03065.

In the following we compare the performance of various refinement strate-
gies in meeting these accuracy requirements. In particular, we consider the
single-target error estimation and mesh refinement approach for each of the
C1, C4, and Cy, coeflicients, separately. This results in three different se-
quences of locally refined meshes where on each mesh a flow problem (1) and
a discrete adjoint problem (3) are solved and the error estimate (4) is eval-
uated. This is compared to residual-based and to global mesh refinement.
Furthermore, we consider a multi-target error estimation and mesh refine-
ment approach for reducing the sum of relative errors of the C}, Cq and C,
coefficients. This results in one sequence of locally refined meshes which is
targeted at reducing the error in all three coefficients, simultaneously. Here,
on each mesh a flow problem (1), a discrete error equation (7), and a dis-
crete adjoint problem (9) are solved and the error estimates (8) and (10) are
evaluated.

In Figure 2(a)-(c) we see that for C; and Cy4 the residual-based refine-
ment is more efficient than global mesh refinement which, however, is not
the case for Cy,. Whereas the residual-based indicators target at resolving
all flow features, see the resolution of the vortex system in Fig. 3, they do
not necessarily result in meshes suitable for accurately approximating force
coefficients. In contrast to that we see that the adjoint-based refinement is
significantly more accurate than both, residual-based and global mesh re-
finement. Furthermore, we see that the accuracy of the single-target and the
multi-target adjoint-based mesh refinement is comparable. Finally, we see
that the enhanced force coefficients, C'd/l/m =C4/1jm + ZneTh Tk, in case of
the single-target algorithm and C'd/l/m = Cq/1/m + Ji[up](€n) in case of the
multi-target algorithm, are significantly more accurate than the original C,
values on the adjoint-based refined meshes. This demonstrates that the error
estimation for single as well as for multiple target quantities is accurate and
reliable.

Figure 2(d) shows the error in the drag coefficient vs. the computing time
relative to the extrapolated time required for global mesh refinement to meet
the tolerances (12). For meeting the tolerances (12) the residual-based mesh
refinement requires about 10% of the time required for global mesh refine-
ment. The adjoint-based mesh refinement requires about 2% and the adjoint-
based mesh refinement including error estimation requires in the range of
0.1%. These time measurements include the time for solving the flow prob-
lem and possibly the adjoint problem and the discrete error accumulated for
the solutions on coarser meshes. The time comparison clearly demonstrates
the advantage of using error estimation and adjoint-based mesh refinement.
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Fig. 2 Error in the (a) lift, (b) drag, and (c¢) moment coefficient for global, residual-based,
adjoint-based(single-target) and adjoint-based(multi-target) mesh refinement vs. number
of degrees of freedom. On the adjoint-based refined meshes also the enhanced coefficients
él/d/m = Cy/q/m +est. are given. (d) Error in the drag vs. computing time relative to the
extrapolated time required for global mesh refinement to meet the tolerances (12).

(a)

Fig. 3 (a) Mach number isolines of flow solution on (b) the last but one residual-based

refined mesh.
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3.2 ADIGMA BTC1: L1T2 high-lift configuration

In this section we consider a turbulent flow around the L1T2 three-element
airfoil, see Fig. 5(a), at a Mach number M = 0.197, a Reynolds number
Re = 3.52-10°% and an angle of attack o = 20.18°. This case has been
documented extensively in the literature, see e. g. [4, 14]. In particular, there
is data of two wind tunnel experiments (experiment 1 & 2) available, see [16].

A DG discretization of the RANS-kw equations is used which represents a
slight modification of the BR2 scheme proposed in [2]. Menter’s wall boundary
condition is used, where the first wall boundary layer grid spacing y; is chosen
such that y; is in the range of one.

First, we compare numerical results generated by the PADGE code with
results generated by the well validated finite volume code TAU [17] as well
as with experimental data. The PADGE computations were performed with
polynomial degrees p = 3 and p = 4, each on the same quadrilateral mesh
with 4 740 curved elements, see Figure 4. This mesh emerged from an original
75 840 element mesh by two agglomeration steps. The curved mesh represen-
tation in this case is realized by piecewise polynomials of degree 4 based on
additional points which have been extracted from the original mesh.

\0,‘0“‘

“ww‘
I
1] r’

Fig. 4 L1T2 high lift configuration: Coarse grld of 4 740 curvcd olcmcnts

Figure 5(b) shows the pressure distribution over each of the airfoil ele-
ments, i.e., slat, main element and flap. Here, we see that the output by the
PADGE code is in good agreement with the experimental data and with only
minor differences compared to the TAU reference results. Furthermore, Fig-
ure 6 shows the comparison for the skin friction distribution. Whereas there
are still considerable differences between the computed skin friction distribu-
tion for p = 3, the result for p = 4 is overall in good agreement with the TAU
reference computation. We note that with a polynomial degree p = 4 on cells
near the wall boundary and p = 3 everywhere else the ¢, and c; distributions
were almost identical to that with the globally high p = 4 polynomials. The
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Fig. 5 a) Geometry of the L1T2 three-element airfoil. b) Pressure distributions for each
L1T2 airfoil element computed by PADGE (solid line) compared to reference results by
TAU (dotted) and data of experiment 1 (open symbols) and experiment 2 (filled), [7].
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Fig. 6 L1T2 three-element airfoil. Comparison of computed skin friction distributions
with details of the slat region, [7].

p = 4 solution has almost as many degrees of freedom as the computation
with the TAU code on the original mesh with 75840 elements and required
about the same computing time as the TAU code.

In the following, we investigate the performance of the adjoint-based error
estimation and mesh refinement for this test case. Starting with a p = 1 so-
lution on the coarse mesh of 4 740 curved elements, we consider the adjoint-
based refinement targeted at efficiently approximating the drag coefficient
Cq. In Figure 7(a) we compare the convergence of Cy for the global and the
adjoint-based mesh refinement. We see that with the adjoint-based refine-
ment the Cy value converges significantly faster to the Cy reference value
than with global mesh refinement. Furthermore, we see that using the error
estimation on the adjoint-based refined meshes for computing enhanced drag
coefficients C’d further improves the Cy value which demonstrates that the
error estimation is accurate and reliable. Figure 7(b) shows a zoom of the
final adjoint-based refined mesh. We see that the mesh has been refined in
the neighborhood of the line which separates the recirculation zone behind
the slat from the flow which passes between the slat and the main element.
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Fig. 7 L1T2 high lift configuration: (a) drag, Cq, coefficient values on globally and adjoint-
based refined meshes; on the latter also the enhanced C‘d values are given; (b) Zoom of the
adjoint-based refined mesh.

There is some refinement in the wake of the slat. Furthermore, the mesh has
been refined in the neighborhood of the stagnation streamline of the main
element. We note that, similarly, the stagnation streamlines of the slat and
flap are refined. Here, the adjoint solution indicates that the exact position
of the stagnation points, as well as the flow upstream of them is particularly
important for an accurate prediction of the drag coefficient.

3.3 ADIGMA BTCO: Turbulent flow around a
streamlined body

We consider a turbulent flow around a streamlined body at a Mach number
M = 0.5, an angle of attack o = 5°, and a Reynolds number Re = 10 - 106
with adiabatic noslip wall boundary conditions. Reference values J¢,(u) =
0.006612 and J¢, (u) = 0.0085646 have been obtained based on higher order
computations on very fine grids. The starting mesh of this computation, see
Figure 9(a), has 6656 curved elements. The edges are given by polynomials
of degree 4 created by taking additional points from the nested finer grids.
In Figure 8(a) we compare the convergence of C) for global, residual-based
and adjoint-based mesh refinement. We see that within the first refinement
step the C; value for the adjoint-based refinement converges as fast as for
the residual-based refinement but both significantly faster than global mesh
refinement. However, from the second refinement step onwards the C| values
for the adjoint-based mesh refinement are significantly more accurate than
for both residual-based and global mesh refinement. Furthermore, we see that
the error estimation on the adjoint-based refined meshes further improves
the C) value. In fact, computing the flow solution and its adjoint on the
coarsest mesh results in an enhanced C) value which almost coincides with
the reference value. Figure 8(b) shows the corresponding error plot. Here
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we see that the enhanced C) value already on the coarsest mesh is more
accurate than the prescribed ADIGMA tolerance TOL¢, = 0.001 and is even
more accurate than the C| value on the finest adjoint-based, residual-based
and globally refined meshes. Also, we see that for a stricter convergence
criterion, there is an increasing gain from using adjoint-based refinement in
comparison to residual-based and global mesh refinement. Figures 8(a)&(b)
show the corresponding plots for the Cy value. Here, we see that the enhanced
Cq value meets the ADIGMA tolerance, TOL¢, = 0.0003, already on the first
adjoint-based refined mesh.

Finally, Figure 9(b) shows the final residual-based refined mesh and Fig-
ures 9(c) & (d) show the final adjoint-based refined meshes targeted at the
accurate and efficient approximation of the C} and Cy values, respectively.
Here, we see that the adjoint-based refinement is mainly concentrated near
the body; indeed, the wake is almost unresolved. This corresponds to the fact,
that the flow solution in and near the boundary layer is significantly more
important for obtaining accurate aerodynamic force coefficients than the flow
solution in the wake. In contrast to that the residual-based indicator which
is targeted at resolving all flow features also refines elements in the vicinity
of the wake.
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Fig. 8 ADGIMA BTCO test case at turbulent conditions: (a) lift coefficients C; on glob-
ally and residual-based refined meshes; C] and the enhanced values, Cj, on adjoint-based
refined meshes vs. number of degrees of freedom; (b) the respective error plot. (c)&(d) the
respective plots for the drag coefficient Cyg.
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curved elements. The edges are given by polynomials of degree 4. (b) Mesh after 4 residual-
based refinement steps. (c)&(d) Meshes after 3 adjoint-based refinement steps targeted at

Fig. 9 ADGIMA BTCO test case at turbulent conditions: (a) The coarse mesh with 6 656
C) and Cyq, respectively.

3.4 Subsonic turbulent flow around the DLR-F6

wing-body configuration

In this final example we consider a turbulent flow at Mach number M = 0.5,

a Reynolds number Re = 5-10°¢ at an angle of attack @ = —0.141 around
of attack has been assumed instead of a given target lift. Also, the Mach

of the drag prediction workshop (DPW) III test case. In fact, a fixed angle
number has been reduced from originally M

the DLR-F6 wing-body configuration without fairing. This is a modification

to ensure that the flow is subsonic. The original DPW mesh of 3.24 mio.

hexahedral elements has been agglomerated twice resulting in a coarse mesh
represented by quartic polynomials. After some regularization this fifth order

mesh has been used in a residual

have been used to define 50618 curved elements where the curved lines are
algorithm.

of 50618 hexahedral elements. The additional points of the original mesh

In Table 1 we collect the C;

3 solutions on the coarsest and for the p

p =2,
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Fig. 10 DLR-F6 wing-body configuration: ¢, distribution and wall stream lines of a 4th

order solution on the coarse mesh of 50 618 curved elements.

Fig. 11 DLR-F6 wing-body configuration: ¢, distribution on mesh of 582 350 curved ele-
ments after 4 residual-based mesh refinement steps.

Fig. 12 DLR-F6 wing-body configuration: Density adjoint distribution, i.e., the first
comp. of discrete adjoint solution Z; on a mesh of 202314 curved elements after two
adjoint-based mesh refinement steps targeted at Cj.
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refined mesh in comparison with the values obtained by TAU on the original
mesh. Figure 11 shows the surface mesh near the wing-body junction and the
¢p distribution and wall stream lines of a 4*" order solution, i.e. for p = 3,
on the coarse mesh. We clearly recognize a separation of the flow. Figure 11
shows the ¢, distribution on a mesh of 582350 curved elements after four
anisotropic residual-based mesh refinement steps. Finally, Figure 12 shows
an example of an adjoint-based refined mesh; here for the target quantity Ci,
together with the adjoint solution connected to the C; value.

coarse mesh |once globally [original mesh

p=2 p=3 |refined, p =2 TAU
Cy 10424 0413 0.416 0.423
Cq 0.0270 0.0251 0.0249 0.0237
Cm| -0.122 -0.121 -0.123 -0.125

Table 1 Subsonic turbulent flow around the DLR-F6 wing-body configuration: Compar-
ison of force coefficients by the PADGE code [7] for p = 2,3 and the TAU code [17].

4 Summary

Within the EU-project ADIGMA the techniques of error estimation, residual-
based and adjoint-based mesh refinement have been extended from 2d laminar
flows to 3d laminar and turbulent flows. They have been implemented in the
PADGE code [7] and successfully applied to various aerodynamic test cases
including a vortex dominated laminar flow around a delta wing, a turbulent
flow around the L1T2 three-element high lift configuration and a turbulent
flow around the DLR-F6 wing-body configuration. Furthermore, the error
estimation and adjoint-based mesh refinement have been extended from single
target quantities to the treatment of multiple target quantities.

The residual-based indicators which are targeted at resolving all flow fea-
tures have been shown to well resolve vortical systems over long distances.
Furthermore, it has been shown that using error estimation and adjoint-based
mesh refinement the aerodynamic force coefficients can be approximated sig-
nificantly more accurate and more efficient than with residual-based and
global mesh refinement.

Current and future research is dedicated to extending the adaptation al-
gorithms from isotropic to anisotropic mesh refinement [13] as well as to
hp-refinement. The flow solver PADGE will be extended from purely hexahe-
dral to hybrid meshes. Furthermore, a p-multilevel algorithm for 3d turbulent
flows will be developed in order to replace the current implicit solver which
relies on the storage of the full Jacobian matrix.
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