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Summary. The aim of this paper is to present recent progress in calibrating 
ten microscopic traffic flow models. The models have been tested using data 
collected via DGPS-equipped cars (Differential Global Positioning System) 
on a test track in Japan. To calibrate the models, the data of a leading car are 
fed into the model under consideration and the model is used to compute the 
headway time series of the following car. The deviations between the 
measured and the simulated headways are then used to calibrate and validate 
the models. The calibration results agree with earlier studies as there are 
errors of 12 % to 17 % for all models and no model can be denoted to be the 
best. The differences between individual drivers are larger than the 
differences between different models. The validation process leads to errors 
from 17 % to 22 %. But for special data sets with validation errors up to 60 % 
the calibration process has reached what is known as “overfitting”: because 
of the adaptation to a particular situation, the models are not capable of 
generalizing to other situations. 
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1 Introduction 
Microscopic simulation models are becoming increasingly important tools in 
modeling transport systems. There is a large number of available models used 
in many countries. The most difficult stage in the development and use of 
such models is the calibration and validation of the microscopic sub-models 
describing the traffic flow, such as the car following, lane changing and gap 
acceptance models. This difficulty is due to the lack of suitable methods for 
adapting models to empirical data. The aim of this paper is to present recent 
progress in calibrating a number of microscopic traffic flow models. By 
calibrating and validating various models using the same data sets, the 
models are directly comparable to each other. This sets the basis for a 
transparent benchmarking of those models. Furthermore, the advantages and 
disadvantages of each model can be analyzed better to develop a more 
realistic behavior of the simulated vehicles. 
 
In this work ten microscopic traffic flow models were tested from a very 
microscopic point of view concerning the car-following behavior and gap-
acceptance. This is in contrast to a typical macroscopic analysis which 
compares aggregated data on links for example. The data used for calibration 
and validation is from car-following experiments conducted in Japan in 



October 2001 [1]. The data have been collected by letting nine DGPS-
equipped cars follow a lead car driving along a 3 km test track for about 15-
30 minutes. 
 
At first the experiments on the test track and the recorded data sets are briefly 
described and the simulation setup for testing the models is defined. In the 
following the measurement procedure for calculating the error differences 
between the recorded data and the data produced by the models is specified. 
After the tested models are listed and basically described, the calibration and 
validation results are presented leading to some conclusions. 

2 Data and error measurement 

2.1 The data and the simulation set-up 

 
Fig. 1 Sketch of the test track with ten cars driving on the course. 
 
The data sets have been recorded on a test track in Hokkaido, Japan in 
October 2001 [1]. Eight experiments have been conducted, where nine cars 
drove on a 3 km test track (2 x 1.2 km straight segments and 2 x 0.3 km 
curves; see figure 1) for about 15-30 minutes in each experiment following a 
lead car, which performed some driving patterns. These are for example 
driving with constant speeds of 20, 40, 60 and 80 km/h for some time, 
varying speeds (regularly increasing/decreasing speed) and emulating many 
accelerations/decelerations as they are typical at intersections. The regulary 
increase/decrease of speed is done with different frequencies, the velocity 
cycles from 20 to 60 km/h being performed one to four times on the straight 
segments. 
  
To minimize driver-dependent correlations between the data sets, the drivers 
were exchanged between the cars after each experiment. Having all cars 
equipped with DGPS (Differential Global Positioning System), the position 
of each car is stored in 0.1 second intervals throughout each experiment. 
From these position data other important variables like the speed, the 
acceleration and the headway between the cars were extracted for simulation 
purposes. The accuracy of the DGPS is about 1 cm and the appointment of 
the speeds has got an error of less than 0.2 km/h as described in [1]. Thus, the 
data sets have got such a high resolution that they are adequate for the 
analysis of car-following behavior and calibration of car-following models. 
 
In this paper we present analyses concerning four of the eight experiments, 
namely the patterns mostly with intervals of constant speeds and wave-



performing. For the simulation set-up only two cars are considered at a time: 
the leading car is updated according to the speeds and positions in the 
recorded data sets and the following car is updated as defined by the 
equations of the used model. 

2.2 Error measurement 
The absolute error a model produces in comparison to a measured data set is 
calculated via the simple distance between a recorded time series and a 
simulated time series of gaps. To get a percentage error it is additionally 
related to the average value of the time series in each particular data set: 
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where (sim)x and (obs)x are a simulated and an observed traffic flow variable, 
which is in this case the gap between two cars. T is the time series over the 
total time of each experiment. 

3 The models 
The models used for the simulations are all microscopic traffic flow models, 
which describe the behavior of a following car in relation to a leading car. 
For the vehicle movement, typically equations like the following were used, 
defining the new speed of a vehicle at time t t+ ∆ , depending on the values 
of some variables at time t : 
v(t t) f (g(t), v(t), V(t),{p})
g(t t) V(t) v(t),

+ ∆ =
+ ∆ = −

        (2) 

where v  is the speed of the following and V that of the leading car, 
respectively, and g is the headway between the cars. The symbol }{p  
denotes a set of parameters of the model under consideration. 
In the calibration approach the following microscopic traffic flow models of 
very different kind with 3 to 15 parameters have been tested. Some models 
are used in commercial simulation programs, which are popular in European 
countries, the USA and Japan, and some are scientific simulation approaches. 

Abbreviation Description params 
CA0.1 cellular automaton model [2] 4 
SK_STAR model based on the SK-model by S. Krauss [3] 7 
OVM “Optimal Velocity Model”, Bando, Hasebe [4] 4 
IDM “Intelligent Driver Model” [5] 7 
IDMM “Intelligent Driver Model with Memory” [6] 7 
Newell can be understood as a continuous CA with more 

variable acceleration and deceleration [7,8] 
7 

GIPPSLIKE basic model by P.G. Gipps [9] 6 
Aerde used in the simulation package INTEGRATION [10] 6 
FRITZSCHE used in the British software PARAMICS; similar to 

what is used in the German software VISSIM [11] 
13 

MitSim model by Yang and Koutsopulus, used in the software 
MitSim [12] 

15 

Table 1 List of tested models 



The most basic parameters used by the models are the car length, the 
maximum speed, an acceleration rate (except for the CA0.1-model) and a 
deceleration rate (for most models). The acceleration and deceleration rates 
are specified in more detail in some models depending on the current speed 
or the current headway to the leading vehicle. Furthermore, some models 
(CA0.1, SK_STAR and MitSim) use some kind of stochastic parameters 
describing individual driver behavior. Most models use something like a 
reaction time of the drivers to the behavior of the leading car. The MitSim 
and the FRITZSCHE model have got a lot of more parameters defining 
thresholds concerning the headway and the speed difference to a leading 
vehicle. Depending on these various driving behaviors are realized like “free 
driving”, “approaching” and “emergency braking” for example. 
 
As the time step for the models is 0.1 seconds according to the recorded data, 
some models with a traditional time step of 1 second - as for example used 
for simple cellular automatons - have been modified to adopt for an 
arbitrarily small time-step. 

4 Calibration and validation 
Altogether 36 vehicle pairs (four experiments, each with nine vehicle pairs) 
were used as data sets for the analyses of the car following behavior. Each 
model has been calibrated with each of the 36 different constellations 
separately gaining optimal parameter sets for each “model - data set” 
combination. To find the optimal parameter constellations a gradient-free 
optimization method was used [13] and started many times with different 
initialization values for each “model - data set” pair. This variation is done to 
avoid sticking with a local minimum, which of course can occur because 
getting a global minimum can not be guaranteed by those optimizations. 
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Fig. 4 Some calibration results obtained for one of the four experiments. 
 
As an example figure 4 shows the calibration results obtained for the first 
experiment (“11”). In this case one driver pair (“11_8”) can be reproduced 
well with errors of about 10 %. Other driver pairs like “11_6” or “11_1” are 
much harder to reproduce with errors up to 17-20 %. In total, for all 36 
constellations, the errors mainly range from 12 % to 17 %. In nearly all cases 
the models do not differ so much when reproducing the behavior of a driver 
pair, because the average differences between the models reproducing the 



single driver pairs is about 2.5 percentage points. It is noteworthy that this 
diversity of the models is much smaller than the differences in the driver 
behavior (mainly about 5 percentage points), as can be seen in figure 4, too. 

 
Fig. 5 Mean calibration results for all models including the total result range. 
 
Looking at the average errors each model produces with the 36 data sets, it 
can be seen in figure 5, that, again, the differences of the models are not very 
big. The best model produces an error of 15.14 %, the worst one of 16.20 %. 
Thus, no model can be denoted to be the best and especially complex models 
do not produce better results than simple models. 
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Fig. 6 Validation results using the best parameter sets of one experiment “11” 
and trying to reproduce the behavior of the drivers in experiment “13”. 
 
For validation purposes the optimal parameter results for the data sets in the 
first experiment “11” were taken to reproduce the data sets in the other three 
experiments. In figure 6 the validation errors are shown exemplarily for the 
reproduction of experiment “13”. Except for some cases, where the parameter 
sets were not transferable due to very high errors (“13_4”), the validation 
error over all data sets mainly ranges from 17 % to 22 %, which is for the 
singular models about 3.2 to 5.5 percentage points higher than in the 
calibration cases. The average validation errors of the models range from 
19.25 % (SK_STAR) to 20.72 % (IDM). Only the model by Aerde (23.13 %) 
and the OVM model (22.82 %) showed slightly more problems during the 
validation. 



5 Conclusions 
The error rates of the models in comparison to the data sets during the 
calibration for each model reach from 9 % to 24 %. Surprisingly, no model 
appears to be significantly better than any other model and the average error 
rates of the models are very close to each other between 15.1 % and 16.2 %. 
All models share the same problems with certain data sets while other data 
sets can be reproduced quite well with each model. Interestingly, it can be 
stated that models with more parameters do not necessarily reproduce the real 
data better. The results of the validation process give a similar picture. The 
additional errors in comparison to the calibration are – apart from singular 
cases of “overfitting” - mainly in the area of 3 to 5 percentage points. 
 The results after the calibration and the validation agree with results that 
have been obtained before with a completely different data set taking the 
travel times on road segments instead of headways for the error measurement 
[14]. In these studies about 15 % to 27 % were found to be the minimum 
calibration error and additional validation-errors were found to be about 2 to 
5 percentage points. It was found, too, that out of about ten models the 
differences are not as big as could be expected. However, the results of the 
validation show, that when calibrating and validating with special data sets, 
the parameters of a model can be “overfitted” and thus the results can be very 
unsatisfactory with surprisingly high errors. The calibration tends to optimize 
the model for a given data-set, thereby sacrificing generality. 
There are two conclusions that can be drawn. First, one should call for the 
development of better models. Additionally, one should think about a 
different calibration technique which avoids “overfitting” and could produce 
results which stay more general. The other way to interpret the results is that 
– from this microscopic point of view – errors of about 15-25 % can probably 
not be suppressed no matter what model is used. These are due to a really 
stochastic component in the driver’s behavior. 
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