Ship Detection Service
Egbert Schwarz; Holger Maass; Susanne Lehner; Stephan Brusch
German Aerospace Centre (DLR)
German Remote Sensing Data Centre; Institute of Remote Sensing Technology

Abstract
The European Maritime Security Service, MARISS is the first phase of a pan-European activity of ESA (European Space Agency) under GMES (Global Monitoring for Environment and Security). The objective of MARISS is the development of integrated maritime and coast services to support European regions. At the DLR site in Neustrelitz (Mecklenburg-Western Pomerania), an application for ship detection based on satellite image data of synthetic aperture radar (SAR) from ERS2, ENVISAT and TerraSAR-X has been developed and implemented.

Regional Objectives for Application of GMES
The priorities for the EU Integrated Maritime Policy are the improvement of maritime safety and security, reduce pollution and to fight against illegal activities. A special objective of MARISS is to characterize the added value from combination of satellite based Earth Observation data with conventional data streams such as AIS (Automatic Identification System).

In this context there are common regional and national interests for developing and extending Near Real Time (NRT) Services for maritime applications. The location of the Neustrelitz Ground Station provides excellent real-time facilities for regional, national and international users.

The approach for the MARISS Service Network is based on a cooperative network, composed of a set of NRT Ground Receiving Stations covering specific areas with specific sets of sensors. Service Providers may then use the network to improve products and provide cost efficient services compliant with customer requirements.

As Figure 1 shows, the acquisition circle of Neustrelitz (appx. by elevation of five degree) allows coverage from the North Atlantic to the Mediterranean Sea. The primary regional focus is to provide ship detection services covering the German Bight and the Baltic Sea. Neustrelitz is the exclusive Ground Station in Europe for the German Radar Satellite TerraSAR-X.

Results
Satellite data are processed in real time. Data reception and real-time processing are carried out at Neustrelitz using an applied algorithm, developed by DLR's Institute of Remote Sensing Technology. Dependent upon the data resolution of satellite images, image and other products can be processed within 12 minutes. See Figure 2.

Terrestrial AIS data for the Baltic Sea are acquired via the network and stored at the Ground Station and merged to the SAR images during processing.

Operational Status of the Activity
The development of the application and service is ongoing. According to an effective maritime surveillance and tracking the integration of different, complementary data streams are mandatory. Satellite SAR and AIS are only two of the data streams of possible interest. Vessel Monitoring System (VMS) and Long Range Identification and Tracking System (LRIT) are further options.

The integration of other satellite data like ENVISAT will increase the reliability of the service.

Future developments and Needs
In order to overcome the limits of terrestrial AIS, a Satellite-based AIS is under development and will be integrated if available. To provide users with easy and fast data access further harmonization of services with existing the exchange formats is necessary.

The main objectives of the MARISS project to create a Coordinated Service Network to provide all the European Users Organizations with integrated ship detection Services will take this into account.

One of the project aims is the standardization and best practices adopting within the maritime sector.

This needs further development to conform to existing regional and national user interfaces

Added Value to the activity provided through GMES
Coastal-based surveillance systems are widely used, but are limited in their coverage. SAR Satellites provides the possibility for ship surveillance over wide areas independent of weather conditions, cloud cover and daylight. Different SAR modes with different area coverage can be selected to obtain images over larger areas or with higher resolution according to the size of target ship.

With TerraSAR-X, very high resolution SAR images (up to 1 meter) are available.

Participants:
QinetQ, FFI, ELMAN, DLR, SPACE HELLAS, LUXSPACE, gmv, CIS, e-goos, ASSYSTEM, EDISOFT, KONGSBERG, ITD

Contact e-mail of lead author: Egbert.Schwarz@dlr.de.