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How much Melon do you get for your Money?

Imagine an n-dimensional,
perfectly spherical watermelon M
with radius of r = 20cm and a
white skin part of 2cm thickness
The price of the melon is linear to
its hypervolume
Interested in the eatable, red part
of the melon R̄n = Vn(18)

Vn(20)

R̄3 = 0.73, R̄7 = 0.48, R̄20 = 0.12,
R̄50 = 0.005, R̄100 = 27 · 10−6
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Current Section

1 Introduction to high dimensional spaces

2 Distance concentration and its implications on clustering
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Clustering

”Data Objects of the same cluster should be
as similar as possible while data objects of
different clusters should be as different as

possible.”
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Example: FCM

Data set 1: 2 Dim Data set 2: 50 Dim
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Applications for high dimensional clustering

Text mining
Media clustering

Pictures
Music
Movies

Image recognition
Gene analysis
Molecule clustering (Pharmacy)
Physical data

Astronomy
Particle accelerator
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Challenges with high dim data sets in clustering

Huge space that is very thin populated
A meaningful scale between dimensions is difficult
Not all recorded dimensions might be useful for
clustering, some dimensions might only be locally useful
Clusters might be in (affine) subspaces
The fraction of data objects with missing values is
sometimes large
More outliers that are harder to recognize
Curse of Dimensionality: Distance concentration
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Hypervolume

First example: Let S1(1), S2(r) ⊂ Rn be hyperspheres,

with VS2 = 1
2 · VS1 than r = f (n) =

(1
2

) 1
n .

Second example: Let there be hypersphere S(r) ⊂ Rn

and hypercube C(2 · r) ⊂ Rn. g(n) = VS
VC
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Populate high dimensional space

Put one Data object in each
quadrant
Exponentially (2n) increasing
number of data objects
For 100 dimensions, that are
2100 ≈ 1.3 · 1030 data objects
Datasets are usually much smaller
than that
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Distances in high dimensional space

Distances increase with dimensionality because there
are more values in which data objects can differ

d(x , y)2 =
d∑

i=1
(xi − yi)

2

Clusters become indistinguishable if the point of view is
not already inside a cluster (distance concentration)
Cluster algorithms tend to fail due to this problem
Because of the general increased distances, outliers are
hard to distinguish from ’good’ data objects
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Distance concentration (in math)

Let Fm, m = 1, 2, . . . be a sequence of m-dimensional random variables
and S(m) = {x (m)

1 , . . . , x (m)
n } be a sample of n independent data objects,

distributed as Fm. Furthermore, let ‖ · ‖ : dom(Fm) −→ R a metric, p > 0,
E(‖S(m)‖p) and V (‖S(m)‖p) be finite, E(‖S(m)‖p) > 0 and n large enough
so that E(‖S(m)‖p) ∈ [distmin(S(m))p, distmax(S(m))p]. Than

lim
m→∞

V (‖S(m)‖p)

E(‖S(m)‖p)2 = 0⇐⇒

lim
m→∞

P
(
(1 + ε) · distmin(S(m))p > distmax(S(m))p

)
= 1,∀ε > 0

Proof:

(⇒) (Beyer et al., 1999)

(⇐) (Durrant and Kabán, 2009)
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Distance concentration (in words)

With increasing dimensionality distances become larger
If the variance of data object location does not increase
accordingly, distances to all data objects become
identical

Independent on the point of view
Almost independent on the underlying data distribution
(finite variance)
Almost independent on the sample size
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2 dimensions uniform distribution
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5 dimensions uniform distribution
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10 dimensions uniform distribution
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20 dimensions uniform distribution
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50 dimensions uniform distribution
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100 dimensions uniform distribution
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200 dimensions uniform distribution
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Multidimensional distance uniform distribution
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Pairwise distance diagram of a uniform
distribution
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2 dimensions Gaussian distribution
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5 dimensions Gaussian distribution
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20 dimensions Gaussian distribution
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50 dimensions Gaussian distribution
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100 dimensions Gaussian distribution
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200 dimensions Gaussian distribution
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Pairwise distance diagram of a Gaussian
distribution
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100 cluster in a 50 dimensional data set
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Pairwise distance diagram of uniform distributed
Gaussian distributions
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Example data set from particle accelerator

Monte-Carlo simulation of a particle decay in a particle
accelerator
Data consists of roughly 85 parameter that can be
reduced to 33 parameter
Extremely unbalanced, 36000 objects per data set with
around 100− 150 ’good’ data objects and rest noise:
(0.27% - 0.42% not noise)
For analysis purposes, data of the 33 remaining
dimensions is normalised to mean 0, and variance 1
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Distance diagram of the PA-data set
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Pairwise Distance diagram of the PA-data set
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Current Section

1 Introduction to high dimensional spaces

2 Distance concentration and its implications on clustering
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Example: FCM

Data set 1: 2 Dim Data set 2: 50 Dim
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FCM

Membership value update equation:

ut+1
ij =

(
1
d t

ij

) 2
ω−1

c∑
k=1

(
1

d t
kj

) 2
ω−1

Prototype update equation:

y t+1
i =

n∑
j=1

(
ut

ij

)ω
xj

n∑
j=1

(
ut

ij

)ω
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FCM with distance concentration

Suppose
P
(
(1 + ε) · distmin(S(m))p > distmax(S(m))p) = 1, than

P(di j t − d∗ < ε) = 1
Therefore di j t ≈ d∗

Membership value update equation:

ut+1
ij ≈

( 1
d∗
) 2

ω−1

c∑
k=1

( 1
d∗
) 2

ω−1

=

( 1
d∗
) 2

ω−1

c ·
( 1

d∗
) 2

ω−1

=
1
c
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FCM with distance concentration

With ut
ij ≈

1
c

y t+1
i ≈

n∑
j=1

(1
c

)ω
xj

n∑
j=1

(1
c

)ω =

n∑
j=1

(1
c

)ω
xj

n ·
(1

c

)ω =

n∑
j=1

xj

n

The new location of the prototype is approximately the
centre of the data set
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A collection of clustering algorithms

Clustering algorithm Distance problem Effect
Hierarchical distance comparison arbitrary result
Hard k-means distance comparison initialization problem
Fuzzy c-means harmonic mean broken
Density based k-nearest neighbour arbitrary result
EM harmonic mean broken (?)
LVQ distance comparison arbitrary result (?)
Fuzzy LVQ harmonic mean broken (?)
Kernal based promising Algorithm (needs testing)
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