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ABSTRACT 

 
Several microscopic traffic flow models have been tested with a publicly available data set. 
The task was to predict the travel times between several observers along a one-lane rural 
road, given as boundary conditions the flow into this road and the flow out of it. By using 
nonlinear optimization, for each of the models the best matching set of parameters have been 
estimated. For this particular data set, the models that performed best are the ones with the 
smallest number of parameters. The average error rate of the best models is about 16%, 
however, this value is not very reliable: the error rate fluctuates between 2.5 and 25% for 
different parts of the data set.  
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INTRODUCTION 
Right now, according to recent counts, up to one hundred different microscopic simulation 
models are known, see e.g., (1,2,3,4) for reviews. The fact, that these models belong to 
different scientific communities, that seem barely take any notice of each other, makes the 
situation even more confusing. The most prominent contributors to (not only microscopic) 
models of traffic flow are of course the traffic engineers and the physicists.  What is missing 
in our opinion is some common idea about the worth of this plethora of models. I.e. one 
would like to know which model is the best for my application. Therefore, a benchmarking 
of these models is called for. The work presented here is a first step of a long-term research 
project to provide such a benchmark for microscopic traffic flow models, with the ultimate 
goal to reduce the above-mentioned number considerably. For more details, see (5). 
 
To develop a commonly accepted benchmark, three things are needed: 
 

1. a computer-implementable public description of the models, 
2. publicly available data sets so that other groups are able to reproduce the benchmarks, 
3. different combinations of testing algorithms and data sets that finally add up to 

provide such  a benchmark. 
 
The work here is mainly about issues one and the first steps into three.  
 
Section 2 of the paper describes the methodology for testing the simulation models. A brief 
description of the selected models is given in Section 3. The database and application of the 
models is described in Section 4. The results are presented in Section 5. The last section 
summarizes the study findings. 
 

METHODOLOGY FOR MODELS TESTING 
 
The models this text is concerned with can be classified roughly as belonging to one of the 
following groups: cellular automata (discrete space, discrete time), mathematical maps 
(continuous space, discrete time), ordinary or delay differential equations (anything 
continuous) and “mesoscopic” models. An example for a mesoscopic model is the queueing 
model, described in Section 3.  What seems much more interesting, but in a certain sense is 
still missing, would be a classification according to behavior, i.e., according to the 
macroscopic features a certain model displays.  
 
In general, any microscopic simulation model is defined by a set of equations (for step size h 
going to zero, a differential equation results): 
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Here,  are the position and velocity of a following car, and  are the 
position and velocity of the leading car, respectively. The variable

)(),( tvtx )(~),(~ tvtx
−−= )()(~)( txtxtg  is the 

free space in front of the following car (  is the length of a car). The noise term )(tξ  need 
not be white noise, and p is a set of parameters, that allows adapting the model to varying 
circumstances. The equations (1) above are written very generally, the left-hand side is meant 
as the time update of the current system-state no matter to which class the model belongs.  
 
Given a certain data set, the objective is to determine the set of parameters that best fit the 
data set. This can be done as follows:  
 
a) choosing a certain error measure e(p) for instance the mean absolute error for any system 
observable performance metric T (e.g.,  travel time on a highway section):  
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b) run a simulation of the model with a certain set of parameters, and  
 
c) use an algorithm to improve e by changing the set of parameters p.  
 
Usually, those models are very hard to analyze analytically, ruling out the possibility of 
computing the Jacobi-matrix with respect to the parameters, therefore a so-called direct 
search approach is needed (7,8,9,10). Direct-search methods work without the need to 
compute derivatives or the need of an explicit analytical formulation of the system to be 
optimized, a computer implementation will do. A detailed description of these methods is by 
far beyond the scope of this paper. For example, the method developed in (8) elaborates on 
the simple idea to compute a quadratic approximation to the function values found so far and 
using the minimum of this quadratic approximation as a guess for the next iteration. 
Differently from the more familiar gradient-based optimization algorithms, direct search 
methods initially need a simplex in the n-dimensional parameter space to get started. 
 
The above described non-linear optimization algorithms are not guaranteed to yield anything 
useful, since they can get stuck into a local minimum. For the examples considered in this 
work, however, they seem to work surprisingly good. (The usual precautions have to be 
taken: restart the algorithm after settling to a minimum; start from different initial conditions; 
for low dimensional optimization problems (small set of parameters) the parameter space can 
be searched and even visualized more or less thoroughly etc.) 
 
 
SELECTED MODELS 
  
The evaluation methodology was applied to test the following microscopic models, using a 
real-life data set (described in Section 4):  
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• CA: Cellular automaton model (11) 
• CT: Cell transmission model (12) as a reference model,  
• FRITZ: Fritzsche model (13), which is the basis for the simulation software 

PARAMICS, 
• GIPPS/SK: The Gipps model (14), and a variant of it from the physics community 

(15); this model is the basis of the model used in the simulator AIMSUN2, 
• IDM: the intelligent driver model (16), again from the physics community, 
• OVM: the optimal velocity model (17,18), 
• uQUEUE: a queueing model, again for reference reasons, 
• MITSIM: MITSim-Model as described in (6) which in parts can be understood as an 

implementation of the classic car following family of models (19), 
• INT: the model used in the simulation package INTEGRATION (20), 
• VDR++/caSync: two recent members of CA–family, the so called VDR-model (21) 

and a recent version (22), both of them claim to describe what is know as 
synchronized traffic flow. 

 
 
Table 1 provides basic information about each model.  Practically all the models have a two 
parameters in common, the maximum speed and the generalized length of a vehicle , 
that is the length of the vehicle plus the minimum distance a driver keeps to the car in front 
when standing in a jam (which defines the jam density.) Some other commonly used 
parameters are the maximum acceleration and deceleration rates a ,  respectively, the 
reaction time 

maxv

b
τ  and the strength ε  of the noise for the stochastic models. The models that 

use a partitioning of space have as an additional parameter the cell size λ . Not exactly a 
parameter, the step-size h is usually needed. For the CASYNC, FRITZ, MitSim and VDR++ 
models, not all parameters are listed, which is indicated by dots in the corresponding entry of 
the list.  
 
Note also that several of the models include so-called hidden parameters. For example, the 
reaction time of drivers is simply set to one second.  Then the authors “forget” about this 
parameter, it does not enter the equations anymore.  In the following, we tried to unearth and 
at least to mention those hidden parameters. 
 
Additional information about each model can be found in (5). A short description of some 
models in given below: 
 

Cell transmission (11) 
Intended as an approximation to the Lighthill Whitham theory of traffic flow, this model 
divides a road into small cells of length maxvh=λ . Then cars (or better occupancies, 
because it could be fractions of cars) are moved between the cells according to a very simple 
rule: 
 

)}(,min{)1( 1+−=+→ ii nNniin βδ .  (3) 
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Here, )1( +→ iinδ is the flow from cell i  into cell 1+i , and N  is the maximum occupancy 
of a cell. In the implementation used in this work, all cells are alike. Of course, there is a 
relationship between N  and the car length , leaving this model with the four parameters 

,/, maxmax vwv =β  and the step size . The parameter  is the speed of the backward 
running jam wave. The other parameters that have been obtained by this approach are given 
by , 

h w

smwsmv /5.4,/21max == ms58h 6.7,.0 == , which are comparable with results 
found in the literature, especially the speed of the backward running jam wave. This value 
could be improved slightly (<1%), if one allows for a fundamental diagram that depends on 
the state of the cell in front, at the cost of an additional parameter. 
 

Queueing model 
Models of this type are especially interesting, since they are the fastest known simulation 
models that still have individual cars where the cell transmission model described above is 
about densities. Hence, they provide an excellent tool for a couple of applications (like 
dynamic traffic assignment). They can be described as a mesoscopic model, comparable to 
what is used in the simulation package DYNEMO. Again, the road is divided into cells of 
size λ , where λ  is about 100 m. Any cell can hold at most N cars and is organized as a first-
in first-out priority queue. When a car enters such a cell, it gets assigned the exit time, which 
is its exit time t plus the minimum travel time, which is simply max/ vλ . After a car has left a 
cell, it has to be made sure, that the following car fulfills the flow constraint, i.e., whatever its 
exit time is, it is not allowed to leave before the time fft τ+ , where cff /1=τ with c as the 
capacity of the cell. Furthermore, this waiting time may depend on the state of the next cell, it 
is set to the minimum of ffτ  and jjnτ~ . If the following cell is full, the car must stay in its 
cell. As mentioned above, this model is numerically very efficient, and its error rate is not 
much different from the model that performs best.  
 

Fritzsche model (13) 

Is included here as an example of a fairly complex model, featuring twelve parameters to fit. 
A variant of this model is being used with the simulation software PARAMICS, however, 
nothing is known about the difference between the published version and the version used in 
PARAMICS. The basic idea is to divide the ),( gv∆ –car following plane into different 
regions, with different behaviors. The regions are called following I and II, emergency (the 
distance to the car ahead is too small, so try to brake as hard as possible), approaching and 
driving freely. It could be seen easily, that any line in this plane is described by at least two 
parameters, so one readily ends up with twelve parameters.  
 

Gipps model (14)/SK model (15) 
Again, this model is the basis of a commercially available simulation package, AIMSUN2. 
There are actually two versions of it, the original version of Gipps, for which some new 
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results are available (25), and a version that is used by the physics community. The latter 
(named SK thereafter) has been designed rigorously for speed and simplicity, and has been 
investigated very thoroughly. Both models’ formulation are based on the premise that the 
following condition must holds for safe car-following: 
 

 
gvdvvd +≤+ )~()( τ .   (4) 

 
Here,  is the braking distance, for constant deceleration rate b it is just . 
This equation has only two parameters, deceleration rate b , and reaction time 

)(vd )2/()( 2 bvvd =
τ . To make a 

microscopic simulation model the acceleration rate a and maximum speed  are needed. 
The Gipps model has a more complicated acceleration equation and an additional safety 
factor, while the SK–model adds a stochastic term with amplitude ε. 

maxv

 

DATA-SET USED AND IMPLEMENTATION ISSUES 
A unique data set recorded by Carlos Daganzo (23,24) and co-workers was used to evaluate 
the models.  The data were obtained by observers along a four-mile (6.2 km) section of San 
Pablo Dam Road, a single lane highway in San Francisco Bay Area, California. Eight 
observers recorded the times each vehicle passed the observer location. Figure 1 shows the 
observer positions and segment numbering in the study section. At the end, 80 m behind the 
last observer, there was a traffic light. A special car provided the start of a sequence, thereby 
assigning a unique identification number to each vehicle. Provided the observers made no 
error, and there were no passing, then the cumulative N-curves of the eight observers contain 
all information needed, especially the travel times. There were two data sets for two different 
days, each recorded from about 7 a.m. to 9 a.m. and containing about 2,300 observations 
each. Unfortunately, no speeds have been recorded, however the models can cope with this 
omission surprisingly well. 
 
Figure 2 shows a plot of speeds as a function of space and time. The generation and final 
dissolution of the congested area in this system could be observed. While the actual traffic 
demand changes only slightly, the changes in the timing of the traffic signal cause the 
congested area finally to cover nearly all the 6.2  km of the study section.  
 
To facilitate the data processing and comparison with model predictions, we discarded the 
data of observer five on the first day, and of observer six on the second day, because there 
were big holes in those data sets. Figure 1 shows the simulation set up and segment 
numbering for each data set. 
 
Each microscopic simulation models was fed with the cars observed by the first observer. 
However, for some of the models this caused problems, because the data set contained very 
short headways. Therefore, we tried to insert the cars with the maximum possible speed, 
allowing the car-following dynamics to take care of congested conditions inside the system. 
This means that the traces , (if one could manage to compare them to the real ones), )(),( tvtx
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are not correct for the first couple of meters. Still, some models needed more effort than 
others, and still there were some models where we could not manage to insert them smoothly 
into the system: they developed a jam right after the insertion, leading to large and unrealistic 
error measures.  
 
The outflow condition was handled as follows: a virtual traffic light is put at the position of 
the eighth observer, which is switched to green at a certain time if more observed cars than 
simulated cars are out of the system. Other, softer constraints have been tested as well, but do 
not give better results, so the simplest scheme has been used to enforce that roughly the same 
number of cars are in the system as in reality. Since all the models need a car in front, two 
schemes for providing such a lead car have been used. Either the car that just left the system 
is updated with the cars still in the system, but is not allowed to accelerate, or the speed of 
the car that just the system is set to maximum speed. Different models perform differently 
i.e., some models perform better with the first rule, while others perform better with the 
second rule. Nevertheless, this procedure introduces errors, however, when looking at the 
errors of the models it could be seen, that this segment is not the worst of all the segments. 
 
The actual implementation of all these models took much longer than originally expected, 
since all of them need some hand crafting until they could finally be managed to run. This 
was also due to the hidden parameters included in several models.  
 
 

RESULTS  
 
For all the models, the simulated travel times per segment were extracted, and the error 
measure was calculated per Equation (2). Since the data set contains two days of data, any 
model could be fitted with the data from the first day, and run it with those parameters with 
the data of the second day (and vice versa). Interestingly, all models performed worse on the 
second day data, even when fitting the parameter with the second day, and then running the 
model on the first day, the error for the first day is smaller.  
 
Figure 3 shows the error in travel times on each segment.  The distribution of the error along 
the six segments is similar for different models: they perform best for the first, forth and last 
segment and worst for the second, third and fifth segment.  Further analyses have shown that 
the error is distributed in time also very in homogeneously, with errors between 2% and 30% 
for the same model. 
 
Up to now, we do not have any idea for this very peculiar type of pattern; however, we could 
not rule out that there are recording errors in the data set. An indication of this is visible 
already in Figure 2. It could be seen that the speed of some vehicles is about 40 m/s (100 
mph), which is hardly possible on this road. However, that is not as bad as it sounds, because 
in reality data are never clean, so a model should have a certain kind of robustness against 
buggy data. Nevertheless, it is not completely clear, that the error found so far is the error in 
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the data itself, and therefore it’s not that surprising, that the models all seem to perform 
almost identically.  
 
Figure 4 shows the average error across the study section for each model. The results are 
shown for each data set with the bet set of parameters.  The best models give an average best 
error rate (meaning: picking the best value out of the four) of 15.5%. It’s the IDM and the 
cell transmission model, followed by a group of models around 16-17% (OVM, SK, queuing 
model, Gipps). There is a group of models that stay well below 20% error, and another group 
of models that are above 20%. The difference between the top five models is hardly 
significant. Interestingly, the more complicated models seem to have worse performance.   
Also, adding parameters to the base model, e.g., hidden parameters in the SK and Gipps 
models did not improve the model performance.  
 
Of course it could not be ruled out that the weaker performance of the more complex models 
(e.g., the 12 parameter Fritzsche model with an average error of over 20%) is an artifact from 
the nonlinear optimization, which tends to get more difficult with higher dimensional spaces. 
Therefore, for some of the hard to fit models a simulated annealing technique has been tried, 
that has the merits of not getting stuck that easily in local minima.  No significant differences 
in the outcome for the different optimization routines have been found.  
  

CONCLUSIONS 
These results are interesting. However, before final conclusions can be stated, a lot more 
work has to be done to confirm these results by using other data sets, which are currently 
performed. Unfortunately, since most data are from freeways, one has then to deal with lane 
changing matters, which easily could double the number of parameters that have to be fitted.  
This clearly suggests to strive for models with few parameters. We are very skeptical that 
models with 20 parameters can be fitted reliably to whatever data at hand, and it seems 
therefore interesting to think about models that have a chance of getting tested and falsified.  
 
Nevertheless, it is tempting to say at least (and at last) this: it is simple to invent a new 
model, but it is hard to see how good it compares to reality. This may be the reason, why we 
still have more models than results about them.  
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Figure 1. The observer positions and the segment numbering used along San Pablo Dam 
Road. For the simulation, the real traffic light at the end has been replaced by a virtual traffic 
light at observer 8. 
 
Figure 2. The velocity plotted as function of space and time for the data set of the first day. 
To reduce noise, the speed data are filtered with a median filter: in a moving window of size 
13, the medians of the speeds in this window have been plotted.   
 
Figure 3.  Performance of the models per each study segment.  

     Data and fitted parameters are from the first day.  
 
Figure 4. Comparison of the average errors in travel time for the models used in this study. 
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Table 1. Short description of the models used in this study.  
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TABLE 1 

 
Model 
(acronym) 

Type Equation (if not too complex) Parameters 
(n) 

Hidden para-
meters (h) 

# params 
(n + h) 

CA Fully discrete 
m5.7=λ  in the 

original 
formulation 

εξ
ξ

with}1,0{where
},,1min{' max

=
−+= vgvv  maxv ε  =λ  2 + 1 

CASync Fully discrete, 
m5.0=λ  

Model has “following mode”. 
Cars in following mode keep 
their distance. 

maxv ε … λ  10 + 2 

CT Fluid )}(,min{)1( 1+−=+→ ii nNniin βδ  
maxv ,  w, h,λ  3 + 2 

FRITZ Differential 
equation/event-
driven 

 
maxv …  12 + 1 

Gipps Time discrete 

τθτ

θτ

τ

vgbvbb

bv

vv
v

vav

vvvv

−+++

++−=

+−=

=

2ˆ/~()2/(

)2/(and

/025.0)1(

},,min{'

222

2

max
max

1

max21

 
bav ,,max

b̂,,θτ  

 6 + 1 

IDM Differential 
equation 

 bav ,,max

0,, gδτ  

 6 + 1 

INT Differential 
equation 

Cars try to reach the line 

vv
cvccg
−

++=
max

2
31  

bav ,,max  

321 ,, ccc  

 6 

MitSim Differential 
equation 

 
maxv ε …  13 + 1 

Newell 
(26) 

Differential 
equation 

Following car drives a shifted 
Trajectory of lead car. maxv

Tda ,,, τ  

 5 

OVM Differential 
equation 
 
 

fsgavgV

TvgVv

+−=

−=

)))((tanh()(
where

/))((

max

 Tsav ,,,max  
f is function 
of  sav ,,max

 4 + 1 

SK Time discrete 

bgvbbv

vvavv

2~and

]1,0[where
},,min{'

22
1

max1

+++−=

∈
−+=

ξ
εξ

 maxv a b ε  τ  4 + 2 

uQueue Mesoscopic 
1

1

wher

},min{

+

+=

i

jjiffwait

ne

nt ττ  

is number of cars in next cell 

maxv

ffjj ττ ,,  

λ , h 4 + 2 

VDR++ Fully discrete 
m1=λ  

Cars react to brake light of the 
next two cars ahead maxv ε … λ  6 + 2 
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