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Decay and amplification of shear flow turbulence in oscillatory fluid motions is of theoretical interest and prac-
tical relevance, since the onset of turbulence can drastically change the transport properties and mixing effi-
ciency. To supplement former theoretical and experimental investigations on the transition to turbulence in Sexl–
Womersley (SW) type flows we perform three-dimensional direct numerical simulations (DNS) of oscillatory pipe
flows at various Womersley numbers Wo ∈ {5, 13, 26, 52} and Reynolds numbers Reτ ∈ {1440, 2880, 5760, 11520}

based on the friction velocity uτ.
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I analytical (laminar) SW solution [4, 7]
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I DNS results [2] for Wo = 13 and Reτ = 1440

I resulting in Re = 11460 and Reδ = 625

I investigate the decay and amplification of turbulence
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Sexl–Womersley flow

I incompressible Navier–Stokes equations
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with p = p′ + 〈p〉
I directly solved in cylindrical coordinates

I fourth order accurate finite volume method [5]

I staggered grid with 1024× 256× 128 points to
resolve Kolmogorov scales [2]

I implicit/explicit leapfrog–Euler time integration [5]

I well-correlated initial flow field at
Wo = 0 and Reτ = 1440 [2]

I periodic boundary condition (BC) in ϕ and z

I no-slip and impermeability BC at r = D
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Direct numerical simulation (DNS)

Early deceleration (ED): t = 57.5
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Late deceleration (LD): t = 58.6
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Reversal (RV): t = 59.9
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Acceleration (AC): t = 61.6
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I localised turbulent bursts close to the wall (ED)

I amplification of turbulent velocity fluctuations (ED, LD)

I elongated structures inclined to the wall (LD)

I relaminarisation due to low bulk flow values (RV, AC)

I no turbulence despite of increasing bulk flow (AC)

Instantaneous velocities — Wo = 13 and Re = 11460
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Temporal evolution of the mean flow ū and the
driving pressure gradient ∂z〈p〉
I phase lag of about π/2 between bulk flow and

driving pressure as predicted for SW flow
I periodic variation in peak flow values û,

red (positive) and green (negative) symbols
I orange line: sinusoidal fit with T ≈ 7 · 4Wo2
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Temporal evolution of the axial velocity uz(r)
I at four radial probe locations

from r+ = 7 (orange) to r+ = 353 (blue)
I turbulent near-wall bursts during ED and LD

slightly differ in strength and phase
I laminarisation during AC
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Time lines — Wo = 13 and Re = 11460

Phase averaged mean velocity profiles 〈uz〉z,ϕ,θ
I at four instants during oscillation

from ED (blue) to AC (orange)
I laminar SW profiles (dashed)
I no inflection points typical for SW at high Wo
I coaxial counter flow during RV less

pronounced compared to SW
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Phase averaged axial RMS fluctuations R(uz)

I highest R(uz) during ED and LD when
turbulent bursts occur in an annular region
close to the wall

I afterwards decreasing R(uz) until AC
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Phase averaged azimuthal RMS fluctuations R(uϕ)

I turbulence is distributed towards the centre
line during ED and LD

I highest R(uϕ) persists in the core flow,
whereas highest R(uz) persists closer to the
wall during AC
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Phase averages — Wo = 13 and Re = 11460
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