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Abstract 
In this contribution a general framework for classification of very high resolution op-
tical satellite images is proposed and evaluated. This approach is designed in order to 
cope with the specific conditions accompanied by crisis mapping applications and is 
moreover well suited for several other applications. Multiscale image information 
(data model) as well as hierarchical and spatial context information (prior model) is 
incorporated into the classification process using a hybrid Markov model which com-
bines a hierarchical directed as well as a planar lattice-based Markov Random Field 
(MRF). The modelling of arbitrary semantic classes in different scales enables the 
definition of a hierarchical semantic network representing the dependencies and rela-
tions between the classes in adjacent scales. Classification is carried out using non-
iterative hierarchical maximum a-posteriori (MAP) or mode of posterior marginal 
(MPM) inference as well as a subsequent optimization step using a planar MRF. Ad-
ditionally, a modified MAP inference which is able to outperform the original infer-
ence methods is proposed. The impact of incorporation of image data from multiple 
scales is evaluated in this contribution. Furthermore, the dependency between the 
quantity of the training data and the classification accuracy is analyzed. 

1       Introduction 
The (pre-) classification of very high resolution optical satellite images is a difficult 
challenge. Near real time processing as well as the transferability of the methods to 
various crisis scenarios is highly desired in emergency and crisis mapping applica-
tions. Representatives for recurrent tasks during crisis scenarios are given with the 
classification of water surfaces (flood events) as well as urban (earthquakes) and 
burned areas (fires). The fact, that nearly every crisis situation is unique, often hinders 
an application of automatic image analysis methods and demands an application of 
manual processing steps in terms of visual interpretation. The proposed general 
framework aims on the combination of fast image analysis methods and the inherent 
image understanding of an image analyst, in order to minimize visual interpretation 
steps and to derive robust and reproducible classification results. Due to near real time 
processing requirements, classification is here restated as a task of semantic annota-
tion of square image regions.  

Contextual information can improve classification accuracy significantly, if such in-
formation can be well modelled (Khedam and Belhadj-Aissa, 2003). Bayesian models 



form a natural framework for integrating both statistical models of image behaviour 
and prior knowledge about the contextual structure of semantic classes. The contex-
tual structure is often modelled as a Markov Random Field (MRF). In order to capture 
the intrinsic hierarchical nature of remote sensing data, several efficient Markov im-
age modelling approaches defined on tree structures were proposed during the last 
two decades (Bouman and Shapiro, 1994; Fieguth et al., 1998; Lafferty et al., 2001; 
Wilson and Li, 2003; Choi et al., 2008). In order to cope with the surrounding condi-
tions accompanied by crisis mapping scenarios, a hierarchical Markov model is pro-
posed and explored in this article. The motivation for using such a model is to provide 
a general and computational effective framework for classification or pre-
classification of multispectral satellite images. 

In this paper, the framework is described briefly. Especially, the influence of the 
quantity of the training data as well as the design of the hierarchical semantic network 
on the classification accuracy is explored. 

The article is organized as follows: In section 2, the proposed general framework is 
introduced briefly. In section 3, the experiments are described. The results of the ex-
periment as well as the relevance and efficiency of the proposed framework are dem-
onstrated and discussed in section 4. Conclusions are drawn in section 5. 

2       The Framework 
Modelling image characteristics in a hierarchical manner has shown to be valuable for 
many applications, e.g. image labelling and object detection (Awasthi et al., 2007), 
multiband segmentation of astronomical images (Collet and Murtagh, 2004) as well as 
the unsupervised detection of flood-induced changes in SAR data (Martinis et al., 
2010). As pointed out in (Pérez et al., 2000), MRF´s defined on causal tree structures 
always enable computationally efficient and exact inference of the unknown class la-
bels, which is quite appealing for an application in the field of rapid mapping. Moti-
vated by this, the proposed model is defined on a causal quadtree.  

 
 

Figure 1:  Workflow for the proposed framework. 

Image classification should be possible even when no additional information like vec-
tor data or digital elevation models (DEM) is available. Hence, only the image itself 
as well as the image analyst is required for the application of the framework. The 
complete workflow is illustrated in figure 1 and can be described as follows:  
1) First, a complete quadtree image representation is instantiated. The size of the 
smallest region can be defined individually depending on the spatial resolution of the 
image as well as the structure of the thematic classes. 2) The framework allows an 
interactive definition of arbitrary semantic classes in different scales (quadtree levels), 
i.e. the modelling of a hierarchical semantic network. For each class, the image ana-
lyst has to provide training data (image regions). 3) Based on the training data the pa-
rameters of Gaussian mixture models (data model) are estimated. Relevant features 



are identified through feature selection independently for each scale. 4) A constrained 
maximum likelihood classification (chi-square test) is carried out in order to obtain 
training data (labelled regions) for the estimation of the prior model parameters via 
expectation maximization (step 5). 6) Non-iterative hierarchical MAP or MPM infer-
ence is carried out using the parameters estimated in step 3 and 5. Additionally, a 
modified MAP inference (Kersten et al., 2010) is utilized. The image information of 
regions which exhibit low conditional likelihoods for all classes is not incorporated 
during the inference procedure (application of a chi-square test). 7) A subsequent op-
timization step by incorporating spatial context concerning the finest quadtree level 
using a planar undirected MRF is carried out. 8) In order to obtain information con-
cerning the confidence of the labelling process, a confidence map is computed. 

For further information concerning the methodology utilized in the framework the 
reader is referred to (Kersten et al., 2010). 

3       Description of Experiments 
For each image all parameters for the inference of the class labels are learned indi-
vidually based on the training data provided by the image analyst. In this paper the 
influence of the cardinality of training data (experiment 1) as well as the impact of the 
incorporation of image data from multiple scales (experiment 2) concerning the over-
all classification accuracy is evaluated. For each of the two experiments the classifica-
tion of landcover of the following two images is carried out.   

 

Figure 2: Images for the experiments. Left: image 1, right: image 2. The scale bar in 
image 1 is valid for both images. 

The images are subsets (512x512 pixels) from a pan-sharpened multispectral 
IKONOS scene with a spatial resolution of 1 m acquired on August 6th, 2007. The 
classification of the following classes is desired: dark field, field, street and vegetation 
(image 1) as well as vegetation, house and rest (image 2). A quantitative evaluation 
can be done based on references provided by visual interpretation. The results of the 
experiments should serve as a guideline for the application of this framework in 
emergency- and crisis mapping activities as well as a basis for further modifications 
of the framework.  



3.1    Experiment 1: data model  
The first experiment focuses on the robustness of the estimation of the data model pa-
rameters (step 3 in figure 1) with respect to both the cardinality of the training data 
and the number of dimensions in the feature space domain. Therefore, a leave-x-out 
cross validation with x=10 is carried out using 50, 80, 110, 140, 170 and 200 training 
segments for each class in the finest quadtree level (image element size: 4x4 pixels). 
Furthermore, for each number of training segments 3, 5, 7 and 10 “optimal” features 
were identified by feature selection individually. The resulting overall accuracies are 
average values of 20 runs for each constellation. Hence, 480 training and classifica-
tion processes were carried out for each image. The amount of all image segments is 
divided into the groups of test and training data, where only image elements which are 
not used for the training of the data model are incorporated into the evaluation. Since 
this experiment focuses on the parameters of the data model, the results of maximum 
likelihood classifications using the different numbers of training segments are carried 
out and compared (see section 4.1).  

3.2    Experiment 2: hierarchical inference  
In this experiment the impact of incorporation of image information from multiple 
scales (quadtree levels) as well as the appropriate modelling of contextual dependen-
cies between thematic classes in adjacent scales (i.e., a hierarchical semantic network) 
is evaluated. Therefore, data models in different combinations of scales are trained 
based on the results of experiment 1. For both images a quadtree representation with 
nine levels is instantiated. Hence, the finest image element has a size of 2x2 pixels 
and is denoted as S9. Data models are trained in the following combinations of scales: 
(S9); (S9, S8); (S9, S8, S7) as well as (S9, S7). The overall accuracy of the hierarchical 
mode of posterior marginals (MPM) inference is compared. The modified MAP infer-
ence is computed for the best combination of scales. Additionally, a subsequent opti-
mization step using a lattice-based MRF is carried out for both the best MPM result 
and the result of the modified MAP inference. 

4       Results and discussion 
4.1    Experiment 1: data model  
Due to the non-complex image content the mean overall classification accuracy for 
image 1 lies between 92.0 % and 95.2 % (figure 3, left). A feature space representa-
tion using 3 features has shown to be suboptimal for the classification compared to the 
other configurations (5, 7 and 10 features). Furthermore, for this image a number of 
training segments greater than 80 for each thematic class has shown to provide rela-
tively robust parameter estimation. The error bars in figure 1 express the standard de-
viation of the overall accuracy (scaled by a factor of  0,1 due to graphical clarity) es-
timated based on the results of the cross validation. In this experiment, the standard 
deviation lies between 0.23 and 4.18. Using 200 training segments for each class 
yields the lowest standard deviation for all numbers of features. 

For the second image the usage of 3 features has also shown to give no reasonable 
results. On the other hand, using 5 and 7 features yields results between 73.6 % and 
77.9 % mean overall accuracy. A 10-dimesional feature-space leads to poorer classifi-
cation results than lower dimensional representations. One reason for this is given 
with the well known “curse of dimensions”. Compared to the first image, the standard 



deviation of the overall accuracy is relatively high (2.07 – 7.46) and generally de-
creases with an increasing number of training segments. 

 

Figure 3: Results of experiment 1. Mean overall accuracy over the number of training 
segments per thematic class. Error bars: standard deviation of the overall accuracy 

(scaled by a factor of 0.1 due to graphical clarity).  

This experiment demonstrates that the estimation of the parameters of the data model 
(Gaussian mixture model) is a difficult task which depends on several aspects. In this 
contribution the impact of the cardinality of the training data as well as of the features 
is evaluated. For the first image expected and reasonable results are obtained, since 
the mean classification accuracy increases respective remains relatively constant 
when the amount of training data per thematic class is increased. Furthermore, the 
variation of the overall accuracy decreases for large sets of training data. This obser-
vation also holds for the second image. Compared to the first image, the separation 
between the thematic classes in the feature space domain is obviously more complex 
here. The overall accuracy is lower than in the first image and a moderate feature 
number is required (between 5 and 7) in order to provide the best possible separability 
between the classes. An increasing number of training segments leads to more robust 
results (lower standard deviations) while the improvement of the overall accuracy is 
moderate. 

As expected, the two examples in this experiment point out that the performance of 
the data model incorporated into the framework heavily depends on the amount of 
training data as well as the number of dimensions of the feature space. Basically it 
could be shown, that a large amount of training data per class (greater than 80 seg-
ments) leads to good (i.e. consistent) results, if the number of features is well chosen 
(here: 5-10 features). 

In this experiment variations of selected features occur during the cross validation, 
which demonstrate the difficulty of model detection. One reason for this is given with 
the suboptimal feature selection method. 

4.2 Experiment 2: hierarchical inference 
As described in section 3.2 four different data models (i.e., different combinations of 
incorporated quadtree levels) are trained for each image. The three involved quadtree 
levels consist of image elements of the sizes 2x2, 4x4 and 8x8 pixels. In table 1 the 
results for image 1 are shown. Taking into account the results of experiment 1 as well 



as the computational efforts, five features and 100 training segments per class and 
level are used for the training of the data models. 

A non-contextual maximum likelihood (ML) classification provides a good result 
(94.99 %) which can be further improved through incorporating multiscale image and 
context information. All thematic classes are trained in each incorporated level. Using 
the non-iterative hierarchical MPM inference, the best result is carried out by incorpo-
rating all three levels (S9, S8, S7).  

Table 1. Results of experiment 2: image 1. 

Description ML S9 S9, S8  S9, S8, S7 S9, S7 
MPM-MRF 

S9, S8, S7 

Mod. MAP-
MRF        

S9, S8, S7 

Overall Accu-
racy  

94.99 % 95.44 % 95.26 % 96.18 % 94.90 % 96.59 % 96.75 % 

 

The subsequent application of the lattice-based MRF (weight of context term =100.0 
and first order neighbourhood) in the finest quadtree level is able to improve this re-
sult (MPM-MRF S9, S8, S7). The modified MAP inference (Kersten et al., 2010) com-
bined with a subsequent lattice-based MRF (Mod. MAP-MRF S9, S8, S7) is able to 
slightly outperform the standard inference methods and yields the best overall classi-
fication accuracy here (chi² test with a probability of error α = 0.3). 

For the second image the three desired classes are modelled in the two finest quadtree 
levels. Due to the large size of the image elements in the coarse level S7, only the 
classes house and rest are modelled here. In order to keep the computational efforts 
low, five features and 100 training segments per class are used here. Similar to the 
first image, the incorporation of all three levels yields the best MPM result and obvi-
ously increases the ability of resolving local ambiguities (see table 2).  

Table 2. Results of experiment 2: image 2. 

Description ML S9 S9, S8 S9, S8, S7 S9, S7 
MPM-MRF 

S9, S8, S7 

Mod. MAP-
MRF        

S9, S8, S7 

Overall Accu-
racy 

70.50 % 71.67 % 74.38 % 75.78 % 71.70 % 77.45 % 79.43 % 

 

The application of the lattice-based MRF (smoothing factor =20.0) on the best MPM 
result (S9, S8, S7) improves the overall accuracy significantly. The modified MAP in-
ference yields the best result with an overall accuracy of 79.43 % (with α = 0.3).  

This experiment demonstrates the additional benefit of the incorporation of multiscale 
and context information into the classification process. The quality of the result de-
pends on the modelled class hierarchy, where the definition of an appropriate class 
hierarchy is a difficult task. In this paper the incorporation of image data from three 
quadtree levels yields the best result using the hierarchical MPM inference. A subse-
quent application of a lattice-based MRF further improves these results.  



The modified MAP inference outperforms the standard inference methods in both ex-
periments. Since the data conditional likelihoods are modelled using multivariate 
Gaussian mixture models, misclassifications of image regions which e.g. represent 
class transition areas may be likely even when context information is included. The 
modified MAP inference avoids the incorporation of image information in the case of 
low conditional likelihoods for all classes. 

An experimental version of the framework is implemented in Interactive Data Lan-
guage (IDL). In table 3 the computational times for the processing steps and configu-
rations respective image 1 are presented. 
 

Table 3. Computational times in seconds for experiment 2, image 2. 

Configuration S9 S9, S8 S9, S8, S7 S9, S7 

Feature selection and estimation 
of data model parameters 

283.1 504.9 585.7 372.9 

EM-estimation of prior model 
parameters 

421.1 691.5 515.5 907.5 

MPM inference 47.4 61.9 72.2 46.5 

Maximum likelihood classifica-
tion 

48.4 - - - 

Lattice-based MRF - - 149.2 - 

Modified MAP inference - - 40.2 - 

 
 
The best classification result is here obtained in 23 minutes. Additionally, the acquisi-
tion of training data takes approximately 10 minutes for this experiment. An optimiza-
tion of the implementation as well as the usage of other programming languages like 
C++ can further accelerate the computational times. Concerning an application of the 
framework in operational rapid mapping activities a maximum overall processing 
time of one hour for arbitrary image sizes is desired. 
 
5       Conclusion 
In this paper a general framework for fast classification or pre-classification of optical 
satellite images is briefly described and evaluated. This approach is designed in order 
to cope with the specific conditions accompanied by crisis mapping activations and is 
moreover well suited for several other applications. Two experiments are carried out 
in order to point out the performance of the framework respective parameter estima-
tion of the data model as well as the incorporation of data and context from multiple 
scales (i.e. quadtree levels). Basically the first experiment shows that a large amount 
of training data per class (greater than 100 segments) leads to robust results, if the 
number of features is well chosen (here: 5-10 features). In the second experiment the 
additional benefit of the incorporation of spatial and multiscale context and image in-
formation is demonstrated. The hierarchical quadtree model allows fast and non-
iterative inference of the unknown class labels. In addition, a subsequent application 
of a lattice-based MRF improves the result of the hierarchical inference methods. The 
modified MAP estimation has shown to outperform the standard inference methods. 



Concerning the data model there are several factors affecting the parameter estimation 
in this framework, e.g. the normalization of the features, the split-based clustering al-
gorithm (criterion for cluster splitting and the initialization of new clusters), feature 
selection (e.g. evaluation criterion for a distinct feature combination) as well as the 
choice of training data. Small variations concerning the training data (cross valida-
tion) obviously have a significant influence on the resulting data model (see standard 
deviations of overall accuracy). Hence, further analysis of the framework will be a 
topic of investigations in the future. 
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