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Abstract 

 

This paper presents a model of passenger air transport markets that generally 

focuses on three main groups of stakeholders: air travellers, airlines and airports. Air 

travellers’ choice of air transport services is modelled by a demand function 

considering product differentiation. Thus, demand for passenger air transport is not a 

fixed model-exogenous input parameter but is determined model-endogenously and 

depends on the supply of flights and their various characteristics. Competitive 

relationships are modelled as Cournot quantity competition with heterogeneous 

products. Airlines and airports only have incomplete information about the nature of 

each other, which is then updated by a dynamic learning process in each period. The 

model is of particular interest in evaluating business strategies on behalf of airlines 

and airports and for public institutions that wish to analyse various market scenarios 

and evaluate politico-economic actions. 

 

KEYWORDS: airline competition, game theory, nonlinear programming 
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1. Introduction 

 

In recent years, there has been an increasing interest in the modelling of competitive 

relationships within the passenger air transport markets. Aside from improvements in 

modelling techniques and the steadily increasing computational power of personal 

computers (an essential prerequisite to employ such models effectively in praxis), the 

key drivers of this trend were the growing importance of deregulated and thus more 

competitive passenger air transport markets and the rise of new business models in 

aviation. It is now more than 30 years since the US Airline Deregulation Act was 

approved by the US Congress (e.g., Goetz and Vowles, 2009) and more countries 

have followed in subsequent years. For example, deregulation began in Australia in 

the early 1980’s (e.g., Hooper, 1998) and in Europe in the late 1980’s (e.g., Ehmer et 

al., 2000). Prior to deregulation, national air transport markets were mainly 

monopolies, with only one national carrier or a very few regulated carriers serving 

their national air transport markets. International air travel was governed exclusively 

by strict bilateral national agreements. 

 

According to the competitive environment of passenger air transport markets, we 

differentiate between three classes of models: models of monopolistic competition, 

models of oligopolistic competition (but without extensive network optimisation 

capabilities and thus only applicable to some problems) and models of oligopolistic 

competition with extensive network optimisation capabilities, which are therefore 

applicable to a wide range of problems. 

 

The first class of models serves to optimise flight structures between airports and is 

largely applied to complex hub-&-spoke systems, where coordination costs tend to be 

high. Such models include extensive network optimisation capabilities, in order to 

produce feasible flight schedules as dictated by passenger demand, flight restrictions 

and capacity constraints. These models are usually applied under monopolistic 

conditions and examples of such models include Gordon (1974), Jacquemin (2006), 

Jeng (1987) and Miller (1963). Passenger demand is assumed to be fixed in most 

models and their objective is to optimise flight structures, in order to meet a certain 

demand. There are some models of monopolistic competition, without extensive 

network optimisation, that operate on simpler network structures. These models are 
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mainly used for specialised studies; for example, Berechman and Shy (1996) and 

Brueckner and Zhang (2001) compare flight frequency, fares and social welfare in 

point-to-point and hub-&-spoke networks. 

 

The second class of models comprises of models predominantly tailored to analyse a 

particular question in an oligopolistic market environment: they typically focus on 

point-to-point traffic and simple hub-&-spoke networks of low complexity, without 

considering special flight restrictions and capacity constraints. A popular is the 

analysis of market equilibrium and social welfare in deregulated and regulated 

markets. Examples include Douglas and Miller (1974), Panzar (1979, 1980), 

Schipper et al. (2003) and Zhang (1996). Further analysis comprises network 

competition, network invasion and entry deterrence. Pels (2009) considers point-to-

point and hub-&-spoke traffic, in order to analyse the effects of network competition 

between two airlines (with regards to the invading of each other’s network). 

Aguirregabiria and Ho (2009) model a dynamic game of airline competition, with a 

focus on entry deterrence in hub-&-spoke networks: they applied the theory of 

Markov’s perfect equilibrium, in order to find a solution. Zhang (1996) analyses 

fortress hubs in airline networks and the impact of local competition on social welfare 

in hub-&-spoke systems. Oum et al. (1995) compare the growing number of hub-&-

spoke systems in the USA and Canada after deregulation with point-to-point 

systems, which were popular before. 

 

The third class of model is associated with competitive relationships and includes 

extensive network optimisation capabilities; however, the members of this class still 

differ to some degree, in their ability to model market structures and complex network 

structures. It is thus sometimes difficult to decide whether a particular model belongs 

to class two or class three. Nevertheless, the ability to include competitive 

relationships between market actors and more flexible network structures enhance 

model practicality in a multitude of real-life problems. Models which focus more on 

(multi-) hub-&-spoke systems, with an exogenously-given passenger demand, are 

Dobson and Lederer (1993), Kanafani and Ghobrial (1985), Hansen (1990) and 

Hansen and Kanafani (1990). Takebayashi (2009) employ a bi-level approach, with 

demand and prices fixed and airlines controlling frequency and aircraft choice. 

Takebayashi and Kanafani (2005) employ a bi-level approach to model competition 
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between hub-&-spoke and point-to-point carriers: passenger demand is fixed, with 

airlines controlling fares and flight frequency. Hong and Harker (1992) apply a 

variational inequality approach to the proper pricing of capacity. Evans et al. (2008), 

Evans and Schäfer (2009) and Adler (2001, 2005) develop models of airline 

competition which are applicable to a wide range of different network structures and a 

number of competitors. 

 

Just how relevant is the feature of a model in allowing for arbitrary airline network 

structures? Hendricks et al. (1995) analyse network choice (hub-&-spoke vs. point-to-

point, not just air transport markets) of a monopoly carrier and highlight that this 

choice depends on the degree of economics of density in an origin-destination (O-D) 

market. In their enhanced model, they analyse the deterrence effect of a hub-&-

spoke network on small-scale entry (Hendricks et al., 1997) and duopolistic 

competition between two large carriers, who are not restricted in their choice of 

networks (Hendricks et al., 1999). Hendricks et al. reason that hub-&-spoke carriers 

enjoy an advantage over point-to-point carriers as a result of their higher productivity: 

they can attain economies of density more easily than point-to-point carriers. Thus, 

they conclude, the number of point-to-point carriers tend to decrease over time. 

 

However, in airline markets, there is growing empirical and theoretical evidence that 

a hub-&-spoke network structure may not always be optimal and that the impact of 

low-cost carriers, which mainly rely on the point-to-point concept, is significant: they 

invade the networks of traditional carriers that focus on the hub-&-spoke system 

(e.g., Dennis, 2007; Gillen and Morrison, 2005; Mason, 2001; Mason and Alamdari, 

2007; Pels et al., 2000; Vowles, 2001). 

 

In this paper we present a model of passenger air transport markets that can handle 

any number of airlines and airports and complex network structures. Demand for 

passenger air transport is not a fixed model-exogenous input parameter but is 

determined model-endogenously and therefore depends on, amongst other factors, 

the supply of flights and their various characteristics. Competitive relationships 

between airlines and airports are modelled on a game-theoretic framework and there 

are three major innovations, when compared to existing approaches: the method of 
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modelling air passenger demand, the handling of incomplete information and learning 

and how market equilibrium is computed. 

 

The decision problems of each airline and airport are modelled as a nonlinear 

programme and game theory is employed to model competitive relationships. 

Incomplete information and dynamic learning play a central role in this model; 

however, this makes the model computationally difficult to handle. Thus, the concepts 

of a so-called empirical reaction function and market entry/exit probability function are 

presented: each competitor’s marginal behaviour is learned on the basis of a 

smoother version of their past moves and serves as input for the empirical reaction 

function to forecast future actions. The market entry/exit probability function 

describes the relationship between the profitability of a particular market and the 

probability of market entry and exit. Furthermore, the modelling approach employed 

in this paper means a partial departure from assuming perfect rational individuals 

with unlimited computing abilities towards behaviour which is more likely to be based 

on observed past actions of opponents. 

 

One of the central objectives of the model is to explain the dynamic developments of 

air transport markets and their competitive forces. In this context, incomplete 

information and learning play a critical role, with regards to the profitability of 

deterrence and entry strategies. 

 

The outline of this paper is as follows: chapter two serves as a brief introduction to 

the foundations of game theory and discrete choice, as employed in the model. 

Chapter three subsequently describes the model in detail. Finally, the paper closes 

with a model discussion and a summary of the results. 

 

2. Methodical background 

 

2.1 Game theory 

 

Game theory refers to the modelling of interactive decision-making. A game-theoretic 

model comprises a finite set of  players, for each player i a nonempty action set  N iA
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with elements  and a preference relation  on the set of action profiles ia i  j j N
a a


 . 

An action profile a  represents an outcome and the set of outcomes and action 

profiles, respectively, is denoted j N jA A 



. Here, we can see how a strategic game 

differs from a decision problem: each player does not only care about his own actions 

but also those taken by the other players. Thus, the preference relation  of each 

player i is defined, with regards to the set of action profiles  rather than his action 

set  (Osborne and Rubinstein, 1994, p.11). 

i

iA

 

The most popular solution concept employed in game theory is that of Nash 

equilibrium (Nash, 1950). A Nash equilibrium can briefly be described as an action 

profile in which each player’s action is a best response, given the actions of the other 

players, and thus no player can profitably deviate. More formally, a Nash equilibrium 

of a strategic game   , ,iN A 


Ai  is a profile a   of actions with the property that 

for every player  we have iN    ,i ia

,i ia a 

 
 i
a  for all ia Ai . Here,  describes 

an action profile exclusive of the action of player i: each player is assumed to have 

complete information about the relevant characteristics of the strategic game and 

thus acts rationally. However, the concept of a Nash equilibrium only describes a 

steady state of the play of a strategic game and does not say anything about how this 

steady state has been reached (Osborne and Rubinstein, 1994, pp.14). 

ia

 

In a repeated game, the so-called stage game is played in each of the periods 

 0,1,t  . The number of periods can take any finite number or be infinite. A 

player’s choice in the stage game is denoted as an ‘action’, whilst their behaviour in 

the repeated game is termed a ‘strategy’. In this paper, we look at repeated games of 

perfect monitoring; i.e. that all players observe the chosen action profile at the end of 

each period (Mailath and Samuelson, 2006, pp.15). In every period, the repetition of 

the stage game Nash equilibrium also represents a Nash equilibrium of the repeated 

game (Mailath and Samuelson, 2006, p.191). 

 

Strategy games are dominated by equilibrium analysis; however, in many cases, the 

assumptions that players immediately and unerringly identify and play an equilibrium 

strategy, thus the equilibrium being common knowledge (Aumann, 1976, pp.1236; 
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Milgrom, 1981, pp.219) to the players, may be questionable (Milgrom and Roberts, 

1991, p.82). Learning dynamics become even more important if players acquire new 

decision-relevant information in the course of play, which is typical if the same or a 

similar game is repeated several times. These learning dynamics may even have an 

impact on the equilibrium finally reached, if one is reached at all. The learning 

mechanism developed later in this paper is founded on ideas of fictitious play and 

smooth fictitious play. 

 

Fictitious play (Brown, 1951; Robinson, 1951) is one of the earliest learning rules, yet 

it was initially not proposed as a pure learning model but, rather, as an iterative 

method for computing Nash equilibria in zero-sum games. However, due to its 

intuitive update rule, it is commonly viewed as a simple learning model: every player 

is assumed to choose a best response to the assessed strategies of his opponents in 

every period of the game while he believes that his opponents are playing a mixed 

strategy, which is given by the empirical distribution of their past actions. Note that 

players know only their individual payoffs and are oblivious to the payoffs obtained or 

obtainable by their opponents (Shoham and Leyton-Brown, 2009, pp.195). The 

essential idea behind this approach is that, at least asymptotically, past choices of 

opponents serve, to some extent, as a sound guide to their future behaviour 

(Fudenberg and Kreps, 1993, p.334). Smooth fictitious play was first analysed by 

Fudenberg and Kreps (1993): in this, players choose a perturbed version of their best 

response, but perturbation diminishes as the game progresses. The random utility 

model is one of the reasons for employing smooth fictitious play: players choose to 

randomise, even when they are not indifferent between their actions, as a means of 

protection from mistakes in their model of opponent’s play (Fudenberg and Levine, 

1998, p.117). For further models of learning (such as Bayesian learning, 

reinforcement learning and evolutionary learning), the interested reader is referred to 

Fudenberg and Levine (1998) and Shoham and Leyton-Brown (2009, pp.189). 

 

2.2 Discrete choice theory 

 

The fundamental hypothesis of discrete choice models is the assumption of individual 

utility maximisation. The decision maker is assumed to rate alternatives of his choice 

set by means of a particular utility function and will choose the one with the highest 
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utility. However, from an outside perspective, the utility of an alternative for a specific 

individual represents a random variable. Thus, utility  for alternative i is 

decomposed into a deterministic component  and a random component 

iU

iV i  

(McFadden, 1974, p.108): 

 

(1) i iU V i   

The random component of the utility function is introduced for various reasons; for 

example, incomplete measurability of the decision-relevant alternative attributes and 

limited rationality (Maier and Weiss, 1990, pp.98; Manski, 1977, p.229). Hence, from 

an external point of view, only evidence in terms of the probability of an alternative 

being the one with the highest utility is possible.  

 

Different concepts of discrete choice models differ, in terms of their specification of 

the random component. The most prominent member is the logit-model, with 

independently and identically distributed random components. The choice probability 

of an alternative i is computed as (McFadden, 1974, p.110): 

 

(2) 
i

j

U

i U

j

e
P

e






 

The scale parameter   of the Gumbel distribution is usually fixed to a value of one, 

in order to enable identification of the model parameters of the utility function (Ben-

Akiva and Lerman, 1985, p.107). For our purpose, the logit-model is completely 

adequate and we will therefore refer to it later in the paper. However, for an 

introduction to the more sophisticated discrete choice models, the interested reader 

is referred to, for example, Ben-Akiva and Lerman (1985) and Train (2003). 

 

3. The model 

 

The modelling approach chosen in this paper represents a mixture of both game-

theoretic and decision-theoretic elements and this becomes especially apparent if we 

look at how competitors’ future actions are assessed and market entry and exit is 

modelled. Therefore, this section is subdivided in two parts: the first part describes, 
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for each period, the static decision problems of each class of players; i.e., airlines, 

airports and air passengers. The second part of this chapter deals with the modelling 

of market dynamics of the game and includes learning and assessing opponents’ 

strategies, market entry and exit and the equilibrium concept applied to the game. 

 

The model is modular in build, so that it can be customised to the particular problem 

at hand. For example, airports may be disregarded as players in the game if they are 

government owned or regulated and do not follow a truly competitive strategy. In this 

case, capacity is, in many cases, not a decision taken by the airports themselves and 

is thus fixed, from their point-of-view. Instead, capacity decisions may be based on 

political or environmental considerations of the government, rather than on a 

competitive airport strategy (Adler, 2005, p.64). Thus, airport capacities and airport 

charges represent fixed inputs for the decision process of each airline; however, the 

model is flexible enough to account for airports pursuing an individual competitive 

strategy. 

 

3.1 Player’s one-period decision problem 

 

Notation 

 

ac
atijmC  Other variable aircraft costs of airline a in period t on flight route ij for 

aircraft of type m 

P
atikljC  Other variable passenger costs of airline a in period t on flight route 

iklj 

ac
itamC  Other variable costs per aircraft of type m and airline a for airport i in 

period t 

rf
itC  Fixed costs of supplying runway capacity at airport i in period t 

rv
itC  Variable costs of supplying runway capacity at airport i in period t 

tf
itC  Fixed costs of supplying terminal capacity at airport i in period t 

tv
itC  Variable costs of supplying terminal capacity at airport i in period t 

atijklf  Flight frequency offered by airline a in period t on flight route iklj 

miF  Runway capacity consumption of an aircraft of type m at airport i 
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aiG  Set of airlines which take precedence over airline a at airport i 

i Interest rate 

atikljP  Airline’s a ticket price in period t for flight route iklj 

f
itP  Full passenger charges for departing passengers at airport i in period t 

t
itP  Transfer passenger charges for stopover passengers at airport i in 

period t 

l
itmP  Landing charges at airport i in period t for aircraft of type m 

atikljnP  Probability of n competitors being active on flight route iklj in 

period t, from the viewpoint of airline a 

atikljnq  Element n of the vector of service quality variables for flight route 

iklj of airline a in period t 

aijmS  Seat capacity of aircraft of type m of airline a, operating on flight leg ij 

tikljS  Number of competitors on flight route iklj in period t 

V  Set of feasible combinations of i, k, l and j 

 t tV S  Value of landing in state  tS

atikljx  Number of seats offered by airline a in period t on flight route iklj 

tx  Decision in period t 

atijmy  Number of aircraft of type m of airline a operating on flight leg ij in 

period t 

r
itz  Runway capacity supplied at airport i in period t 

t
itz  Terminal capacity supplied at airport i in period t 

atikljn  Coefficient n of inverse demand function  atikljP

f
it  Coefficient of inverse demand function f

itP  

t
it  Coefficient of inverse demand function  titP

l
itm  Coefficient of inverse demand function  l

itmP

atikljn  Coefficient n of market entry/exit probability function (MEEP)  atikljnP

atiklj
btmopn  Homogeneity coefficient of the inverse demand function , 

measuring similarities between the particular flights on flight route 

atikljP
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iklj of airline a in period t and flights on flight routes mopn 

of airline b in period t 

atmopn
btikljf  Airline b’s increase of flight frequency on flight route iklj in period 

t, if airline a increases her number of seats offered on flight route 

mopn in period t by one unit 

atmopn
btikljx  Airline b’s increase of number of seats supplied on flight route iklj 

in period t, if airline a increases her number of seats offered on flight 

route mopn in period t by one unit 

 1
atmopn t

b t ikljx   Prediction of  in period t for period (t+1)  1
atmopn

b t ikljx 

atiklj  Profit of airline a in period t on flight route iklj 

atikljn  Profit of airline a in period t on flight route iklj with n airlines being 

active 

ltp
a  Long-term profit (LTP) of airline a 

stp
a  Short-term profit (STP) of airline a 

t  Profit in period t 

 

Airlines 

 

In this section, we present the one-period decision problem for each airline; i.e. one-

period profit-maximisation. In this, each airline views the values of the strategic 

decision variables of competing airlines and airports as input data for their decision 

process. 

 

(3)            
, , ,

, , ,
, ,

,al p f t t t t t
at at at atiklj atiklj it kt lt atiklj

i k l j
i j j k k l
i k j l i l

Max x y P C P z P z P z x
  
  

         

(4)        
, ,

,
,

p f t t t
atikkj atikkj it kt atikkj

i k j
i k
k j i j

P C P z P z x


 

       

(5)      
,

p f t
atiijj atiijj it atiijj

i j
i j

P C P z x



      
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(6)   
, ,

ac l r
atijm jtm atijm

i j m
i j

C P z y



   

 

Subject to: 

 

(7)  
,

, ,

,atijkl atkijl atklij aijm atijm
k l m
i j k l
i l

x x x S y i

 


      j

j

 

(8) , , ;atijm atjimy y i j m i    

(9) 
 , ,

2 r
mi atjim it

a G a j m
i j

F y z
 


   i  

(10) 

  
 

 
 

 
 

, , ,
, , ,
, ,

, , , ,
, ,

2

2

ai

ai ai

atkijl atkjil atikjl atklji
a G a k l j
i j j k k l
i k j l i l

t
atkiil atikkl atklli atiijj atjjii it

a G a k l a G a j d
i k k l i j
i l

x x x x

x x x x x z

 
  
  

   
  


    

      



  i
 

(11) , , , , ,atijm atijkl
m

y f i k l j i j i k i l      

(12) , , , ,atijm atkijl
m

y f i k l j i j k   l  

(13) , , , , , ,atijm aklij
m

y f i k l j i j i k j k j l       

(14) 
0 , , , ,

0 , ,

atiklj

atijm

x i k l j

y N i j

 

   m
 

Rows (3) to (6) describe the one-period objective function of each airline. If integer 

restrictions are computationally too expensive, they may be neglected by coarsening 

the time-scale of the model; for example, moving from a monthly to a yearly view, so 

that fractional numbers (in particular the number of flights) do not pose a serious 

problem. Strategic decision variables are the number of seats offered on each flight 

route and the number of flights operating on each flight leg. With regards to uniform 

model presentation, the number of seats offered is indexed redundant and 

independent of the number of stopovers by four lower subscript letters describing 

flight route structure. Passenger costs are subdivided into passenger charges paid by 
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the airline to the airport and other variable passenger costs. Like Adler and 

Berechman (2001, p.380), we have subdivided airport charges into passenger 

charges paid to the departure airport for each passenger carried and landing charges 

paid to the arrival airport, based on aircraft type and size. Passenger charges are 

further subdivided into full price, paid to the first departure airport, and transfer price, 

which is paid at each subsequent hub, if the flight route to the chosen destination of a 

passenger includes at least one stopover. This airport charges schedule is clearly 

arranged but also offers enough flexibility to include other relevant charges, such as 

handling, night and noise charges. The demand function and the inverse demand 

function , respectively, are defined for each particular flight route. (…) 

represents the independent variables of the inverse demand function, such as the 

number of seats offered, flight frequency, time of flight and number of stopovers, in 

addition to the number of seats and flights offered by competing airlines. Thus, row 

 aP 

(3) applies to flights with two stopovers, row (4) corresponds to flights with one 

stopover and row (5) relates to nonstop flights. Expanding the model to flights with 

more than two stopovers is straightforward; however, the majority of flights have, at 

most, two stopovers and thus explicitly including such flights only complicates 

presentation without adding anything substantially new. Row (6) describes the fixed 

costs of each flight, composed of aircraft operating costs and landing charges at the 

arriving airport. 

 

Rows (7) to (14) represent the constraints each airline has to comply with in their 

planning process. Constraint (7) ensures that aircraft capacity restrictions are fulfilled 

on each flight leg, whilst constraint (8) balances the number of aircrafts in both 

directions between two airports, in order to support subsequent tactical and 

operational network planning (Jacquemin, 2006, p.175). Constraint (9) limits the 

available runway capacity at each airport. The sigma sign includes airline a and all 

competing airlines that take precedence over airline a; for example, because of 

grandfather rules. Each aircraft uses the runway of an airport for arrival and 

departure, whilst  allows for different levels of runway capacity consumption, 

depending on aircraft type and airport. Constraint 

miF

(10) limits each airport’s terminal 

capacity available to each airline for flight routes with two, one and no stopovers. Like 

constraint (9), the sigma sign includes airline a and all competing airlines that take 

precedence over airline a. Transfer passengers use the terminal for arrival and 



Gelhausen 14

departure, whereas passengers emplaned and deplaned use the terminal only once. 

Rows (11) to (13) require the number of flights between two airports to be above the 

corresponding flight frequency of the corresponding inverse demand function. (14) 

describes the domain of the strategic decision variables. 

 

As we are looking at networks from a strategic and long-term point of view, no 

complicated airline pricing strategies are included (Adler, 2005, p.61). Different fare 

segments (for example, economy, business and first class) are not included in the 

model formulation presented above, but introducing different seat categories is 

straightforward and essentially the same as duplicating existing O-D relations and 

introducing a particular inverse demand function for each copy. However, for ease of 

presentation, we neglect different seat categories here. 

 

Airports 

 

In this section, we present the one-period decision problem of each airport pursuing a 

competitive strategy; i.e., one-period profit maximisation in this chapter. 

 

(15)     
, ,

,ap r t l ac
it it it itm itam atjim

a j m

Max z z P C y       

(16) 

        

      

   

, , ,
, , ,
, ,

, ,
,
,

,

t t f f
it it atkijl atkjil it it atikjl

a k l j
i j j k k l
i k j l i l

t t f f
it it atkiil it it atikkl

a k l
i k
k l i l

f f
it it atiijj

a j
i j

P C x x P C x

P C x P C x

P C x

  
  


 



     

     

  







 

 





 

(17) tf tv t
it it itC C z    

(18) rf rv r
it it itC C z   

Subject to: 

 

(19) 
, ,

2 r
mi atjim it

a j m
i j

F z z



    
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(20) 

  

   

, , ,
, , ,
, ,

, , ,
, ,

2

2

atkijl atkjil atikjl atklji
a k l j
i j j k k l
i k j l i l

t
atkiil atikkl atklli atiijj atjjii i

a k l a j
i k k l i j
i l

x x x x

x x x x x

  
  

  


    

     



  z
 

(21)  , 0r t
it itz z 

Rows (15) to (18) describe the one-period objective function of each airport. An 

airport’s decision variables are terminal and runway capacity that is supplied. 

However, airports communicate their passenger and landing charges to airlines, 

which are dependent on the level of terminal and runway capacity at each airport. 

These charges are described by inverse demand functions with independent 

variables (…). For ease of presentation, passenger charges have been only 

subdivided into full and transfer without referring to, for example, destination type: 

however, including more details poses no difficulties. The same is true for landing 

charges, which are simply categorised by aircraft type. Row (15) specifies aircraft-

related revenues and costs, whereas row (16) describes passenger-related revenues 

and costs. Rows (17) and (18) specify the cost of supplying terminal and runway 

capacity: they are composed of a fixed-cost pool and a variable part, according to the 

level of capacity supplied. 

 

Rows (19) to (21) represent the constraints each airport has to fulfil. Constraint (19) 

ensures that the number of aircraft movements does not violate runway capacity 

restrictions of the airport, whilst constraint (20) requires the number of passengers 

handled at the airport to be below its maximum terminal capacity. Constraint (21) 

describes the domain of the strategic decision variables. 

 

Air passengers 

 

Passengers’ air travel demand is modelled for each combination of airline and flight 

route. The demand function approach in this paper is based on the full price demand 

model (De Vany, 1974, pp.77; Oum et al., 1995, p.841; Panzar, 1979, p.92) and the 

product characteristics approach by Lancaster (1966). The demand a carrier attracts 

on a specific flight route depends on the number of seats offered and quality of 

service provided and this also applies to flights that serve as a substitute; however, 



Gelhausen 16

the degree of substitution may vary, depending on the quality of service supplied. 

Passenger demand is influenced by many attributes that form the quality of service 

provided (e.g., Alamdari and Black, 1992; Hess et al., 2007; Bieger et al., 2007). 

These attributes can roughly be subdivided into the following categories: travel cost, 

travel time, number of (daily) connections, number of stops and comfort. The model 

approach chosen allows the capturing of competition with homogeneous products, in 

addition to the more general case of product differentiation. Likewise, Oum et al. 

(1995, pp.838) state that airlines are modelled as multiproduct firms, choosing the 

O-D destinations and flights routes they serve; however, including the network 

configuration of each airline affects the nature of interaction between the markets 

served. 

 

As airlines are modelled as Counot competitors and thus the number of flights and 

seats provided represent their strategic decision variables, we work directly with the 

inverse demand function, which we define as follows: 

 

(22) 1 2
, 2

atiklj
atiklj atiklj atiklj btmopn btmopn atikljn atikljn

b n
mopn V

P x   




     q   

The last sum in (22) is the weighted sum of the service quality attributes of a 

particular route, which describes the preferences of air passengers. The coefficient 

 serves as a measure of homogeneity and is therefore defined for values 

between zero and one. The closer the value approaches one, the more passengers 

view two flight routes as almost perfect substitutes. In turn, similarity between two 

flight routes depends on the Euclidean distance between their characteristics; thus, 

 is defined as: 

atiklj
btiklj

atiklj
btiklj

 

(23) 
 2

2

1

1

atiklj
btmopn

atikljn btmopnn atikljn
n

q q






  

 

To reduce computational costs, especially in large-scale applications with thousands 

of flight routes, only those flight routes with a  beyond some predefined value 

may be considered in 

atiklj
btiklj

(22). 
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(22) and (23) show that the price-setting behaviour of airlines on their operated flight 

routes is influenced by their own flights supplied on different routes, in addition to 

flights operated by competing carriers. The more air passengers perceive different 

flight routes as substitutable, the higher the pressure on prices. Thus, ticket prices on 

a particular flight route of an airline depend both on the quality of service provided 

and the quality of potential substitutes. 

 

3.2 Modelling market dynamics 

 

Empirical reaction function and learning dynamics 

 

Competitors’ responses to own actions are not assessed through introspection; i.e., 

by taking the role of each competitor, solving their optimisation problems (including 

all interdependencies between competitors), analytically deriving their best response 

function and inserting them into their own decision problem, which is then solved. 

Such an approach would, in a number of cases, be computationally intractable for 

problems of a modest size and, moreover, it assumes that players are perfect rational 

individuals with almost unlimited computing abilities. Thus, the approach adopted in 

this paper means a partial departure from assuming perfect rational individuals with 

unlimited computing abilities towards a behaviour based on observed actions of 

opponents: each airline directly assesses competitors’ reactions by means of a so-

called empirical reaction function (ERF) to approximate individual behaviour locally: 

 

(24)      1 1 ;0 ; ,atmopn
btiklj btiklj atmopnb t iklj a t mopnx Max x x x x b a mopn iklj V        

,

 

Rosenthal (1981, pp.93) suggests, in his paper, resorting to the paradigm of decision 

analysis and assessing each competitor’s response directly, instead of a complex 

game-theoretic analysis. However, Kreps and Wilson (1982, pp.276) observe the ad-

hoc assessment of competitors’ behaviour in the approach of Rosenthal, but we build 

on observed past behaviour: every competitor is assumed to have some initial 

conjecture about the reactions of his fellow competitors, which is then updated each 

period by exponential smoothing: 

 

(25)     1
1 1 ;atmopn t atmopn t atmopn

btiklj btikljb t ikljx x x b mopn iklj V 
         
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The parameter   is bound between zero and one: the more   approaches a value 

of one, the more recent observations have an influence on future conjectures. 

 

Exponential smoothing allows accounting for noise in the data, as atmopn
btikljx  itself is 

a random observation (in a different context see Powell, 2007, pp.98) and the ERF is 

only a local approximation. An ERF based on exponential smoothing lends more 

weight to recent observations than past ones, as opposed to ‘pure’ fictitious play, 

which Milgrom and Roberts (1991, p.84) criticise because it puts equal weights on 

each observation, no matter how distant they are. More recent observations are often 

assumed be a better guide to future behaviour than distant observations. 

Furthermore, the exponential smoothing mechanism has a similar effect as smooth 

fictitious play (Shoham and Leyton-Brown, 2009, p.210; Fudenberg and Levine, 

1998, pp.110) and accounts for the stochastic nature of opponents’ actual behaviour 

observed each period: here, randomisation serves as a means of protection from 

mistakes in one’s own model of opponent’s play. Moreover, in deriving an iterative 

updating procedure, Powell (2007, pp.181) demonstrates how stochastic gradients 

and exponential smoothing are related to each other: we wish to find a prediction 

1atmopn t
btikljx   for period t that produces the smallest squared error between estimated 

marginal reactions of a competitor and his actual marginal reactions in period t, as 

shown in (26). 

 

(26)    21 11

2
atmopn t atmopn t atmopn

btiklj btiklj btikljMin F x x x      

Therefore: 

 

(27)   1 1atmopn t atmopn t atmopn
btiklj btiklj btikljF x x x     

is called a stochastic gradient because atmopn
btikljx  is a random observation. If we use 

a standard optimisation sequence to obtain an improved estimate , we 

obtain: 

 1
atmopn t

b t ikljx 

 

(28)    1 1
1

atmopn t atmopn t atmopn t atmopn
btiklj btiklj btikljb t ikljx x x 

       x  
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However, this is the same as (25). Powell (2007, pp.183) describes several heuristics 

to find appropriate values for  . 

 

Flight frequency determines service quality and thus affects homogeneity between 

different flight routes in (23). Thus, competitors’ level of flight frequency on several 

flight routes influences the ticket price (22) an airline can realise on a particular flight 

route. Hence, the ERF concept is used to model competitors’ reactions with regard to 

flight frequency on a given flight route, subject to the number of seats airline a offers 

on a particular flight route (compare with (24)): 

 

(29)      1 1 ;0 ; ,atmopn
btiklj btiklj atmopnb t iklj a t mopnf Max f f x x b a mopn iklj V          

Individual conjectures, with regards to competitors’ flight frequency, are updated 

along the lines of (25) every period. Further service quality variables include time of 

flight, number of stopovers, comfort and ticket price. However, the first three 

attributes are implicitly included in the definition of seat capacity per flight route: if an 

airline decides on a particular seating capacity on a given flight route, they 

automatically decide on a particular level of time of flight, stopovers and comfort. 

Here, we neglect different types of aircraft that differ, in terms of time of flight and 

comfort on a particular flight route, as differences are usually small. Accounting for 

different models of aircraft causes no problems but complicates model presentation 

without adding anything substantially new. However, ticket price represents a 

dependent variable, as we model Cournot quantity competition.  

 

To conclude, from the point of a particular airline, their competitors are fully described 

by their ERFs. Competing airlines are subdivided into real airlines and virtual airlines; 

each of these may be further subdivided according to airline types: for example, full 

service network carrier and low-cost carrier. Real airlines are those that actually 

compete in a market, whereas virtual airlines do not currently compete in a market 

but may do so in the future. Real airlines are updated solely on the basis of their own 

observed behaviour, whereas virtual airlines are updated on the basis of the average 

observed behaviour of airlines of their type. 
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Demand for terminal and runway capacity represents derived demand from aircraft 

and passenger movements. These relationships are modelled on the basis of inverse 

demand functions  f t
it itP z ,  and t t

it itP z   l r
itm itP z , which depend on the terminal and 

runway capacity supplied by an airport. However, air passengers’ inverse demand 

functions are based on a large data set, whereas airlines’ inverse demand functions 

depend on the profit-maximising behaviour of a rather small sample of airlines, which 

may differ substantially in their individual attributes. Moreover, the relevant set of 

airlines can vary over time, as new airlines enter the market and present airlines 

leave the market or undergo a change. Therefore, we employ the general structure of 

the aforementioned ERFs to model individual conjectures and the updating of each 

airport: 

 

(30) 

    
    
    

1 1

1 1

1 1

,

,

f f f t t
it it iti t i t

t t t t t
it it iti t i t

l l l r r
itm itm iti t m i t

P P z z

P P z z

P P z z







 

 

 

   

   

    m

 

The parameters f
it , t

it  and l
itm  are updated along the lines of (25) every period. 

Competition between airports is assumed to be weak, compared to competition 

between airlines; thus, airports are modelled as local monopolists. The principal 

reason for this assumption is the fixed location of airports and thus they have only a 

limited scope of actions. An increased distance between airports and binding 

capacity constraints further reduce the level of competition between airports. 

Nevertheless, limited competitive relations between airports may be included in the 

parameters f
it , t

it  and l
itm  of (30), to some degree, but airports are not modelled to 

carry out specific reaction functions like (25) and (29). 

 

Market entry/exit probability function 

 

Many models of learning, with regards to games, force players to be rather 

‘unsophisticated’; i.e., the players can only use information about past play. However, 

experienced players make use of information about the past, in addition to 

considering competitors’ information, payoffs and rationality (Milgrom and Roberts, 

1991, p.84). In this paper, past play is essentially reproduced in the updating 
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mechanism of the ERFs. In order to incorporate other factors, such as competitors’ 

information, payoffs and rationality, we introduce in this section the so-called market 

entry/exit probability function (MEEP), which describes the likelihood of a specific 

number of competitors being active within a market in future periods. Market entry 

and exit is modelled as a choice of ‘nature’ and thus a chance event from the point of 

view of the individual market actor; however, this choice depends, to some degree, 

on the behaviour of market actors. Typically, market profitability is raised in the 

search of relevant variables that have a major impact on the future number of 

participants in a market: the higher the market profits, the higher the probability that 

market actors stay in the market or that new entrants are attracted and vice-versa 

(the probability of staying in the market respectively decreases with diminishing 

profits and market actors leaving the market). However, average market profitability 

is not very operational, from the point of view of a single market actor, as opponents’ 

market profits and thus average market profits are usually not really observable to 

them; thus, as competitors’ market profits tend to be positively correlated, we choose 

the proxy variable ‘individual market profit’ as a guide to future market structure from 

the point of view of each individual competitor. With regards to MEEPs, we employ 

the ideas suggested by Rosenthal (1981, pp.93) to model the entry and exit of 

competitors as a chance event, where competitors are assumed to arrive at some 

subjective probability distribution, with regards to those events. Hence, every market 

actor estimates market-specific relationships between the probability of meeting a 

particular number of next period market participants and his own current market 

profits: 

 

(31) 
atikljn

atikljm

U

atikljn U

m

e
P i

e
klj V  


 

(32)  1 2 21 ; 0atikljn atiklj atiklj atiklja t ikljnU iklj V          

The profits in (32) are assumed to result from rational and profit-maximising 

behaviour, in order to serve as an indicator for future market entry and exit. If they 

resulted from discretionary inefficiency and gross wasteful behaviour, they would not 

serve as a reasonable indicator. Typically, 1atiklj  decreases and 2atiklj  increases with 

rising index n, if the number of future market actors increases when market 

profitability increases. Thus, the cost of deterring entry or promoting exit differs by 
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airline characteristics, depending on whether a competitor is weak or strong, which is 

reflected in their parameters of (32). The optimal degree of entry deterrence and exit 

promotion is integrated into an airline’s profit maximising behaviour and thus depends 

on their individual characteristics. The general mechanism generating market entry 

and exit is common knowledge but the individual MEEPs that describe the actual 

estimated relationship between one’s own profits and the probability of market entry 

and exit is private to each competitor. 

 

Heuristic equilibrium concept 

 

Airports only base their strategies on inverse demand functions, such as (30). As 

they are assumed to be local monopolists, their actions do not vary in advance from 

period to period and thus lack inter-temporal interdependencies. Therefore, for 

airports, net present value maximisation is equivalent to maximising one-period profit. 

 

In the case of airlines, however, it is more complicated: net present value 

maximisation is not equivalent to maximising one-period profit, due to inter-temporal 

strategic interdependencies modelled by ERFs (24), (29) and MEEPs (31). Entry 

deterrence is such an example of inter-temporal strategic interdependencies. Thus, 

we mainly focus on the airline case, as the airport case is straightforward. 

 

Figure 1 illustrates a stochastic infinite horizon decision problem of a particular 

airline, where markets are defined by flight routes iklj. Different markets are 

connected by the passengers’ inverse demand functions (22) and ERFs (24), (29). 

Circles represent states  and describe a single period decision problem of an 

airline for period t in market iklj, given a fixed number n of competitors 

(including 

tikljS  n

(3) – (14), (24), (29) and (31)). Typically, only few airlines compete on a 

particular flight route and thus the maximum value of n is rather small. At the 

beginning of the planning cycle, airlines adjust their strategic variables for each 

period, in order to maximise their expected net present value: they consider any new 

information they may have learned up to the current period. Different states are 

distinguished by a time index t and a number n of competing airlines with certain 

decision-relevant characteristics. Airports are assumed to move prior to airlines in the 

game and their one-period decision problem is represented by (15) – (21) and (30). 
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Therefore, airlines are informed about airport capacities available, in addition to 

landing and passenger fees at each airport, prior to their decisions. Arrows between 

circles describe transition probabilities  (MEEPs) between states. Dotted arrows 

represent state probabilities for period 1 and arrows of the same colour add up to 

one. The decision-relevant characteristics of competing airlines are represented in 

each airline’s ERFs, whereas capacity supply, landing and passenger fees represent 

the decision-relevant characteristics of an airport, from the point of view of airlines. 

atikljnP

 

# of 
competitors  

 
 Period 
 1 2 3 … t …T = ∞ 

1 

2 

N 

tikljS atikljnP

Market iklj 

n 

 
Figure 1: Strategic decision problem of an airline 

 

A dynamic stochastic programme of a size to model real-world problems is typically 

manageable if it comprises only two to three periods (Schrage, 2006, p.355). The 

complexity of the decision problem depicted in Figure 1 grows quickly with each 

period added and is already barely manageable if the number of periods exceeds 

three for realistic sized problems. However, simply cutting off the problem after a 

certain number of periods is not an adequate solution, due to reputational effects: 

each airline tends to have an incentive to behave more aggressively in earlier 

periods, in order to encounter less competition in later periods and reap the rewards 

of such a strategy. If there is a last period, airlines have no more incentive to maintain 

their reputation beyond that period, which they then, possibly, ‘milk’. However, the 

model’s last period is, of course, not the last period of the real-world problem and 

thus the value of landing in a state with fewer competitors in the last period tends to 

be underrated (see (33)). This would cause no serious problems if we employed a 
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continuous planning model, where the planning horizon lies well beyond the next 

planning cycle. However, the problem structure typically does not allow the adding of 

too many periods and the adding of only a few periods does not really resolve this 

issue. Therefore, the purpose of this section is to find a reasonable approximation for 

the decision problem depicted in Figure 1. 

 

The background for our approach is Bellman’s equation (e.g., Powell, 2007, pp.48): 

 

(33)      *
1 1

1
max ,

1t
t t t t t t t

x
x S S x V S

i
  
     

 

tx  represents the decision in period t and  describes the current state in period t. tS

tx  is chosen to maximise the sum of the one-period contribution  ,t t t x S  and the 

discounted value of landing in state 1tS  , which is represented by  1 1

1

1 t tV S
i  


. 

Figure 2 and Figure 3 illustrate the modelling approach. We subsequently denote the 

one-period contribution of (33) as short-term profit (STP) and the discounted value of 

landing in state  of 1tS  (33) as long-term profit (LTP). 

 

One-period contribution of (33) is modelled as a two-period game, in order to allow 

for reputational effects between two periods. The discounted value of landing in a 

state in (33) is modelled as the Nash equilibrium of an infinitely repeated game with 

discounted payoffs. However, the stage game again comprises of two periods, in 

order to model reputation effects between two adjoining periods. The repetition of 

stage game Nash equilibrium in every period is also equal to a Nash equilibrium of 

the repeated game (Mailath and Samuelson, 2006, p.191). As a side constraint, we 

require the strategic decisions to be equal in both periods. This has no effect, in 

terms of the strategy being a Nash equilibrium, if the interest rate takes a value of 

zero. However, if the interest rate is greater than zero, this strategy is no longer a 

Nash equilibrium but only an approximation, which becomes worse with an 

increasing interest rate. In spite of this, we employ this approximation, as the interest 

rate is typically small and thus the bias of the approximation tends to be rather small 

also. 

 



Gelhausen 25

The STP decision problem consists of real airlines, where possible, and is filled up 

with virtual airlines as is necessary. The reason for this approach is that the STP 

decision problem predominantly models near-term competition between actual 

airlines, whilst the LTP decision problem consists only of virtual airlines: its purpose is 

to model the long-term strategic position in airline competition. To link the STP 

decision problem with the LTP decision problem, we require each airline’s decision in 

the last period of the STP decision problem (period 2) and the first period of the LTP 

decision problem (period t) to be identical, thus preventing reputation milking in the 

last period of the STP decision problem. 
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 1 2 

1 

2 

N 

tikljS atikljnP
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n 

 
Figure 2: Modelling airlines’ short-term payoffs 

 

Therefore, the STP decision problem of an airline a is represented as: 

 

(34)   1 1 2 2
, ,

1
,

1
stp
a a a a ikljn a ikljn a ikljm a ikljm

iklj V n m

Max x y P P
i

 


          
   

Subject to: (7) – (14) 

 

(35) 2 2a atx x t    

1a ikljnP  are initial probabilities of the different states in period 1 and correspond to the 

dotted arrows in Figure 2. Remember,  depend on the profits achievable in 

period 1 and thus on the number of competitors in that period. For clear arrangement, 

2a ikljmP
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we have disaggregated one-period profits of an airline by flight routes (iklj) compared 

to (3) – (6). Each airlines’ ERFs are included in atikljn  and, in a Nash equilibrium, 

each airline maximises (34), subject to the constraints (7) – (14) and (35). 
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Figure 3: Modelling airlines’ long-term payoffs 

 

The LTP decision problem of an airline a is defined as: 

 

(36)  
     1 12

, ,

1 1
,

11
ltp
a a a atikljn atikljn a t ikljm a t ikljm

iklj V n m

Max x y P P
ii i

   


           
   

Subject to: (7) – (14) and (35) 

 

atikljnP  are initial probabilities of the different states in period t. They are initialised by 

some estimates; for example, on the basis of the STP decision problem, and they are 

updated during each new planning cycle, according to the observed frequencies of 

the actual number of competitors in each period through exponential smoothing (see 

(26) – (28)). In common with the STP decision problem,  depends on the 

profits achievable in period t and thus on the number of competitors in that period. 

Payoffs of period (t+1) are discounted to the present value of period t and then the 

present value of the infinite sum of stage game payoffs from period 3 to infinity is 

computed. 

 1a t ikljmP 
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The complete decision problem to approximate the net present value maximisation 

consists of the sum of (34) and (36), subject to (7) – (14) and (35) (at which (35) is 

eliminated by insertion). There are, essentially, only two different periods for which 

decisions are to be made, as we require decisions of period 2, t and (t+1) to be 

identical. This drastically reduces the number of strategic decision variables and thus 

model complexity, compared to a case with different decisions for each period in an 

infinity horizon decision problem (or, at least, a finite horizon decision problem with 

an ample number of periods). However, depending on the case, the STP decision 

problem can be extended to more than two periods, if the model remains 

manageable, and thus the accuracy of the approximation is increased. However, it is 

typically very expensive (computationally) to increase the number of periods of the 

STP decision problem so much so that the reputation milking problem sufficiently 

disappears and we can do without the LTP decision problem. However, the general 

approach does not change and the flow chart in figure 4 illustrates the complete 

model’s course of action. 

 

To obtain good initial starting values, the model is run through a number of periods; 

however, the results of the first few periods heavily depend on the starting values and 

therefore, should not be overestimated. The model may converge after a number of 

periods to a stable market structure, which we subsequently call a ‘long-term 

equilibrium’ as in our model players’ decisions of each period represent, by definition, 

a Nash equilibrium, given their information status at the beginning of each period. 

The iterative approach, which we have primarily chosen to model learning effects and 

the temporal development of air transport markets, is also employed as a method for 

searching for Nash equilibrium in static models of air transport markets (for example 

Adler, 2005, p.64; Evans et al., 2008, p.2; Evans and Schäfer, 2009, p.2; Hansen, 

1990, p.38). However, Adler (2005, p.64) and Hong and Harker (1992, p.317) note 

that such a long-term Nash equilibrium may not exist or that it is not unique, if one 

does exist. Sufficient conditions for the existence of a unique Nash equilibrium (Adler, 

2005, p.64) are: 

 

 The strategy set of each player is bounded, convex and closed. 

 The profit function for each player is concave, with respect to the player’s 

strategy set assuming fixed competitors’ strategies. 
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 All profit functions are continuous over the strategy sets of all players. 

 

Airlines’ aggregate 
demand >  
airport capacity? 

 Initialise: 
 Passengers’ inverse demand 

functions 
 Airlines’ inverse demand 

functions 
 ERFs 
 MEEPs 
 Initial state probabilities of STP 

and LTP decision problem 

t = t + 1 

Airports decide on their profit-
maximising supply of runway & 
terminal capacity (including charges) 
according to airlines’ inverse demand 
functions 

Based on airports’ decisions airlines 
decide on their supply of flights to 
maximise net present value  

Yes 

Allocate scarce airport capacity to 
airlines according to a predefined rule 
(for example grandfather rights, new 
entrants rules) 

Market structure in 
period t 

No 

 t = t + 1 
 Update airlines’ inverse 

demand functions, ERFs & 
initial state probabilities of 
STP and LTP decision 
problem based on observed 
behaviour in period t 

Period t = 0 

Period t 

Next planning cycle 
 

Figure 4: Model flow chart 
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Typically, the profit functions cannot be guaranteed to be concave. Adler (2005, p.64) 

and Hansen (1990, p.39) call situations in which the model cycles around two or 

more possible solutions without convergence or in which the majority of decision 

variables achieve convergence, with only a few remaining divergent, a ‘quasi-

equilibrium’. One reason for the non-existence of a stable equilibrium may be an 

empty core (Button and Nijkamp, 1998, pp.13; Button, 2003, pp.5; Gillen and 

Morrison, 2005, p.170). An allocation is said to be ‘in the core’ when there is no group 

of market participants within the economy that could be better off by trading amongst 

themselves; i.e., no further gains from trade are possible for any group or subgroup 

(Button, 2003, p.7). Occurrences that support an empty core and are of particular 

interest in this paper are (Button and Nijkamp, 1998, pp.21; Button, 2003, p.9): 

 

 The existence of fixed costs and a low variation in suppliers’ minimum average 

costs 

 Low elasticity of demand 

 Large capacity of a supplier, relative to market size 

 

However, as the model’s main objective is to describe market developments over 

time, the non-existence of such a long-term equilibrium does not limit the scope of 

the model. 

 

4. Summary and discussion 

 

In this paper, we have presented an approach to model competition in air transport 

markets, in which we focus on airlines, airports and air passengers. We assume that 

airlines and airports maximise their profits and air passengers maximise their utility 

and, compared to related models that mainly focus on what we call a ‘long-run 

equilibrium’, this model is primarily aimed at explaining temporal market 

developments and learning effects, in which a long-run equilibrium is not 

indispensable. The approach we have chosen is a mixture of decision theory and 

game theory: we introduce the concepts of a so-called empirical reaction function and 

market entry/exit probability function, in order to model opponents’ reactions on own 

actions and the market entry and exit of competitors. However, an essential element 

of this approach is that airlines and airports learn about the behaviour of individual 
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competitors and the market in general, over time, on the basis of observed past 

actions, which influences future actions. Airlines care about the number of future 

competitors in the market and thus maximise their net present value to account for 

the influence of their current strategic position in the competition on future profits. 

Airlines calculate the benefits of their own market entry, in addition to entry 

deterrence and market exit of competitors. However, these issues substantially 

increase model complexity and, therefore, a heuristic equilibrium concept is 

presented, in order to find a sound approximate model solution for each period. 

 

In the context of market entry and entry deterrence, Selten’s chain store paradox 

(Selten, 1978, pp.127) has received much attention: in a multi-period game, with 

perfect information about each other’s payoffs, entry deterrence is not a perfect 

equilibrium and thus not rational. The key factor driving this conclusion is that it is 

common knowledge (Aumann, 1976, pp.1236; Milgrom, 1981, pp.219) that 

accommodation is the best response to entry and vice-versa. Therefore, reputational 

effects play no role in this model (Milgrom and Roberts, 1982, pp.282). However, 

Kreps and Wilson (1981, p.226) note that the common knowledge assumption 

regarding the monopolist’s payoff is very strong in real-life contexts. 

 

The models of Kreps and Wilson (1982, pp.253) and Milgrom and Roberts (1982, 

pp.280) attempt to explain Selten’s chain-store paradox, by introducing incomplete 

information about the nature of the incumbent into the game. 

 

Kreps and Wilson introduce a small probability p that, at any given stage of the game, 

a predatory response is directly more profitable for the incumbent than sharing the 

market. Information about actual payoffs of the incumbent is incomplete from the 

point of view of an entrant, which is an important difference to Selten’s model. 

Probability p is updated each round, on the basis of observed behaviour. However, 

the results of the model depend on choosing the nature of p and thus the information 

of the entrants about the payoffs of the incumbent which is, to some degree, an 

ad-hoc assumption. 

 

In the Milgrom and Roberts model, there is incomplete information about the nature 

of the incumbent: There is, in each case, a small probability that the incumbent 
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always reacts aggressively and cooperatively, when market entry occurs. These two 

probabilities reflect the doubts that entrants have, regarding whether their modelling 

of the incumbent’s behaviour is correct. 

 

In our approach, each player’s incomplete information about the nature of his 

opponents is modelled by means of ERFs, which are updated each period on the 

basis of observed behaviour, and MEEPs. In the models of Kreps and Wilson and 

Milgrom and Roberts, the probability of entry deterrence by the incumbent depends 

on the entire history of the game and, once the incumbent has failed to prey, future 

preying has no effect and entry occurs. However, in this paper, whether market entry 

occurs or not in a particular period depends solely on the state and the decisions of 

the players of the previous period, rather than on the complete history. If cooperative 

behaviour has occurred in the past (maybe as a ‘mistake’, as players have only 

incomplete information and limited rationality), entry deterrence is still possible in the 

future. Here, players’ information structure is founded on observed past behaviour 

( ERFs) and econometric functions ( MEEPs). 
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