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ABSTRACT 
 
The purpose of this paper is to present a quantitative model of passenger air 
transport markets. Passenger air transport demand is not a fixed model-
exogenous input parameter but is determined model-endogenously and 
therefore depends among other factors on the supply of flights and their 
various characteristics. Competitive relationships between airlines are 
modelled within a game-theoretic framework. The model assumes that airlines 
have incomplete information about the characteristics of each other (e.g. high-
cost vs. low-cost airline). Individual beliefs about the nature of different 
competitors are adjusted by a dynamic learning process over time. 
 
One of the central objectives of the model is to explain the dynamic 
developments of air transport markets and their competitive forces, i.e. 
temporary disequilibria and the long-run market equilibrium. Some interesting 
questions to examine include e.g. an analysis of entry deterrence strategies of 
incumbent carriers and market entry strategies of new carriers. In this context 
incomplete information plays a critical role with regard to the profitability of 
such strategies and thus influences market developments. 
 
The model is of interest especially with regard to the evaluation of business 
strategies on the part of airlines and for public institutions that wish to analyse 
various market scenarios and evaluate politico-economic actions. 
 
 
1 INTRODUCTION 
 
In recent years, there has been an increasing interest in the modelling of 
competitive relationships within the passenger air transport markets. The key 
drivers of this trend were the growing importance of deregulated and thus 
more competitive passenger air transport markets and the rise of new 
business models in aviation. 
 
According to the competitive environment of passenger air transport markets, 
we differentiate between three classes of models: models of monopolistic 
competition, models of oligopolistic competition (but without extensive network 
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optimisation capabilities and thus only applicable to some problems) and 
models of oligopolistic competition with extensive network optimisation 
capabilities, which are therefore applicable to a wider range of problems. 
 
The first class of models serves to optimise flight structures between airports 
and is largely applied to complex hub-&-spoke systems, where coordination 
costs tend to be high. Such models include extensive network optimisation 
capabilities, in order to produce feasible flight schedules as dictated by 
passenger demand, flight restrictions and capacity constraints. These models 
are usually applied under monopolistic conditions and examples of such 
models include Gordon (1974), Jacquemin (2006), Jeng (1987) and Miller 
(1963). Passenger demand is assumed to be fixed in most models and their 
aim is to optimise flight structures, in order to meet a certain demand. 
 
The second class of models comprises of models predominantly tailored to 
analyse a particular question in an oligopolistic market environment: they 
typically focus on point-to-point traffic and simple hub-&-spoke networks of 
low complexity, without considering special flight restrictions and capacity 
constraints. A popular topic is the analysis of market equilibrium and social 
welfare in deregulated and regulated markets. Examples include Douglas and 
Miller (1974), Panzar (1979, 1980), Schipper et al. (2003) and Zhang (1996). 
Further analysis comprises network competition, network invasion and entry 
deterrence. Pels (2009) considers point-to-point and hub-&-spoke traffic, in 
order to analyse the effects of network competition between two airlines (with 
regards to the invading of each other’s network). 
 
The third class of model is associated with competitive relationships and 
includes extensive network optimisation capabilities; however, the members of 
this class still differ to some degree, in their ability to model market structures 
and complex network structures. Nevertheless, the ability to include 
competitive relationships between market actors and more flexible network 
structures enhance model practicality in a multitude of real-life problems. 
Models which focus more on (multi-) hub-&-spoke systems, with an 
exogenously-given passenger demand, are Dobson and Lederer (1993), 
Kanafani and Ghobrial (1985), Hansen (1990) and Hansen and Kanafani 
(1990). Evans et al. (2008), Evans and Schäfer (2009) and Adler (2001, 2005) 
develop models of airline competition which are applicable to a wider range of 
different network structures and number of competitors. 
 
In this paper we present a model of passenger air transport markets that is not 
limited to a particular number of airlines and airports or network structures. 
Demand for passenger air transport is not a fixed model-exogenous input 
parameter but is determined model-endogenously and therefore depends on, 
amongst other factors, the supply of flights and their various characteristics. 
Competitive relationships between airlines and airports are modelled on a 
game-theoretic framework and there are three major innovations, when 
compared to existing approaches: the method of modelling air passenger 
demand, the handling of incomplete information and learning and how market 
equilibrium is computed. 



 

One of the central objectives of the model is to explain the dynamic 
developments of air transport markets and their competitive forces. In this 
context, incomplete information and learning play a critical role, with regards 
to the profitability of deterrence and entry strategies. 
 
2 METHODOGICAL BACKGROUND 
 
2.1 Game theory 
 
A game-theoretic model comprises a finite set of  players, for each player i 
a nonempty action set 

N

iA  with elements  and a preference relation  on the 

set of action profiles 
ia i

 j j N
a a


 . The set of action profiles is denoted 

j N jA A   (Osborne and Rubinstein, 1994). The most popular solution 

concept employed in game theory is that of Nash equilibrium (Nash, 1951). A 
Nash equilibrium can briefly be described as an action profile in which each 
player’s action is a best response, given the actions of the other players, and 
thus no player can profitably deviate. More formally, a Nash equilibrium of a 
strategic game    , ,i iN A 


 is a profile a A  of actions with the property 

that for every player i  we have N    , i 


,i ia a 
ia a

i  for all a . Here, i A i ia  

describes an action profile exclusive of the action of player i: each player is 
assumed to have complete information about the relevant characteristics of 
the strategic game and thus acts rationally (Osborne and Rubinstein, 1994). In 
a repeated game, the so-called stage game is played in each of the periods 

 0,1,t  . A player’s choice in the stage game is denoted as an ‘action’, 

whilst their behaviour in the repeated game is termed a ‘strategy’. In this 
paper, we look at repeated games of perfect monitoring; i.e. that all players 
observe the chosen action profile at the end of each period (Mailath and 
Samuelson, 2006). 
 
Strategy games are dominated by equilibrium analysis; however, in many 
cases, the assumptions that players immediately and unerringly identify and 
play an equilibrium strategy, thus the equilibrium being common knowledge 
(Aumann, 1976; Milgrom, 1981) to the players, may be questionable (Milgrom 
and Roberts, 1991). Learning dynamics become even more important if 
players acquire new decision-relevant information in the course of play, which 
is typical if the same or a similar game is repeated several times. Fictitious 
play (Brown, 1951; Robinson, 1951) is such a learning rule: every player is 
assumed to choose a best response to the assessed strategies of his 
opponents in every period of the game while he believes that his opponents 
are playing a mixed strategy, which is given by the empirical distribution of 
their past actions. The essential idea behind this approach is that, at least 
asymptotically, past choices of opponents serve, to some extent, as a sound 
guide to their future behaviour (Fudenberg and Kreps, 1993). Smooth fictitious 
play was first analysed by Fudenberg and Kreps (1993): in this, players 
choose a perturbed version of their best response, but perturbation diminishes 
as the game progresses. The random utility model is one of the reasons for 
employing smooth fictitious play: players choose to randomise, even when 



 

they are not indifferent between their actions, as a means of protection from 
mistakes in their model of opponent’s play (Fudenberg and Levine, 1998). 
 
2.2 Discrete choice theory 
 
The fundamental hypothesis of discrete choice models is the assumption of 
individual utility maximisation. However, from an outside perspective, the 
utility of an alternative for a specific individual represents a random variable. 
Thus, utility  for alternative i is decomposed into a deterministic component 

 and a random component 
iU

iV i  (McFadden, 1974): 

 
(1) i iU V i   

 
Hence, from an external point of view, only evidence in terms of the probability 
of an alternative being the one with the highest utility is possible. The most 
prominent member is the logit-model, with independently and identically 
distributed random components. The choice probability of an alternative i is 
computed as (McFadden, 1974): 
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3 MODEL 
 
3.1 One-period decision problem 
 
General Notation 
 
ac
atijmC  Other variable aircraft costs of airline a in period t on flight route 

ij for aircraft of type m 
P
atikljC  Other variable passenger costs of airline a in period t on flight 

route iklj 

atijklf  Flight frequency offered by airline a in period t on flight route 

iklj 

aiG  Set of airlines which take precedence over airline a at airport i 

atikljP  Airline’s a ticket price in period t for flight route iklj 
f
itP  Full passenger charges for departing passengers at airport i in 

period t 
t
itP  Transfer passenger charges for stopover passengers at airport i 

in period t 
l
itmP  Landing charges at airport i in period t for aircraft of type m 

atikljnP  Probability of n competitors being active on flight route iklj 

in period t, from the viewpoint of airline a 



 

atikljnq  Element n of the vector of service quality variables for flight 

route iklj of airline a in period t 

aijmS  Seat capacity of aircraft of type m of airline a, operating on flight 

leg ij 

tikljS  Number of competitors on flight route iklj in period t 

V  Set of feasible combinations of i, k, l and j 

atikljx  Number of seats offered by airline a in period t on flight route 

iklj 

atijmy  Number of aircraft of type m of airline a operating on flight leg 

ij in period t 
r
itz  Runway capacity supplied at airport i in period t 
t
itz  Terminal capacity supplied at airport i in period t 

atikljn  Coefficient n of inverse demand function  atikljP
atmopn

btikljx  Airline b’s increase of number of seats supplied on flight route 

iklj in period t, if airline a increases her number of seats 
offered on flight route mopn in period t by one unit 

 1
atmopn t

b t ikljx   Prediction of  in period t for period (t+1)  1
atmopn

b t ikljx 

atikljn  Profit of airline a in period t on flight route iklj with n 

airlines being active 
 
Airlines 
 
In this section, we present the one-period decision problem for each airline; 
i.e. one-period profit-maximisation. In this, each airline views the values of the 
strategic decision variables of competing airlines as input data for their 
decision process. 
 

(3)            
, , ,

, , ,
, ,

,al p f t t t t t
at at at atiklj atiklj it kt lt atiklj

i k l j
i j j k k l
i k j l i l

Max x y P C P z P z P z x
  
  

        

(4)        
, ,

,
,

p f t t t
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i k j
i k
k j i j

P C P z P z x


 

       

(5)      
,

p f t
atiijj atiijj it atiijj

i j
i j

P C P z x



      

(6)   
, ,

ac l r
atijm jtm atijm

i j m
i j

C P z y



    

 
Subject to: 
 
(7)  

,
, ,

,atijkl atkijl atklij aijm atijm
k l m
i j k l
i l

x x x S y i

 


      j  



 

(8) , , ;atijm atjimy y i j m i j    

(9) 
 , ,

2 r
mi atjim it

a G a j m
i j

F y z
 


i     

(10) 
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 
 
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2

ai

ai ai

atkijl atkjil atikjl atklji
a G a k l j
i j j k k l
i k j l i l

t
atkiil atikkl atklli atiijj atjjii it

a G a k l a G a j d
i k k l i j
i l

x x x x

x x x x x z

 
  
  

   
  


   

      
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(11) , , , , ,atijm atijkl
m

y f i k l j i j i k i l      

(12) , , , ,atijm atkijl
m

y f i k l j i j k   l  

(13) , , , , , ,atijm aklij
m

y f i k l j i j i k j k j     l  

(14) 
0 , , , ,

0 , ,

atiklj

atijm

x i k l j

y N i j

 

   m
 

 
Rows (3) to (6) describe the one-period objective function of each airline. 
Passenger costs are subdivided into passenger charges paid by the airline to 
the airport and other variable passenger costs. Like Adler and Berechman 
(2001), we have subdivided airport charges into passenger charges paid to 
the departure airport for each passenger carried and landing charges paid to 
the arrival airport, based on aircraft type and size. Passenger charges are 
further subdivided into full price, paid to the first departure airport, and transfer 
price, which is paid at each subsequent hub, if the flight route to the chosen 
destination of a passenger includes at least one stopover. This airport charges 
schedule is clearly arranged but also offers enough flexibility to include other 
relevant charges, such as handling, night and noise charges. The demand 
function and the inverse demand function  aP  , respectively, are defined for 

each particular flight route. (…) represents the independent variables of the 
inverse demand function. Thus, row (3) applies to flights with two stopovers, 
row (4) corresponds to flights with one stopover and row (5) relates to nonstop 
flights. Row (6) describes the fixed costs of each flight, composed of aircraft 
operating costs and landing charges at the arriving airport. 
 
Constraint (7) ensures that aircraft capacity restrictions are fulfilled on each 
flight leg, whilst constraint (8) balances the number of aircrafts in both 
directions between two airports, in order to support subsequent tactical and 
operational network planning (Jacquemin, 2006). Constraint (9) limits the 
available runway capacity at each airport. The sigma sign includes airline a 
and all competing airlines that take precedence over airline a; for example, 
because of grandfather rules. Each aircraft uses the runway of an airport for 
arrival and departure, whilst  allows for different levels of runway capacity 

consumption, depending on aircraft type and airport. Constraint 
miF

(10) limits 
each airport’s terminal capacity available to each airline for flight routes with 
two, one and no stopovers. Transfer passengers use the terminal for arrival 



 

and departure, whereas passengers emplaned and deplaned use the terminal 
only once. Rows (11) to (13) require the number of flights between two 
airports to be above the corresponding flight frequency of the corresponding 
inverse demand function. (14) describes the domain of the strategic decision 
variables. 
 
Air passengers 
 
Passengers’ air travel demand is modelled for each combination of airline and 
flight route. The demand function approach in this paper is based on the full 
price demand model (De Vany, 1974; Oum et al., 1995; Panzar, 1979) and 
the product characteristics approach by Lancaster (1966). The demand a 
carrier attracts on a specific flight route depends on the number of seats 
offered and quality of service provided and this also applies to flights that 
serve as a substitute; however, the degree of substitution may vary, 
depending on the quality of service supplied. As airlines are modelled as 
Counot competitors and thus the number of flights and seats provided 
represent their strategic decision variables, we work directly with the inverse 
demand function, which we define as follows: 
 
(15) 1 2

, 2

atiklj
atiklj atiklj atiklj btmopn btmopn atikljn atikljn

b n
mopn V

P x   




     q   

 
The last sum in (15) is the weighted sum of the service quality attributes of a 
particular route, which describes the preferences of air passengers. The 
coefficient  serves as a measure of homogeneity and is therefore defined 

for values between zero and one. The closer the value approaches one, the 
more passengers view two flight routes as almost perfect substitutes. In turn, 
similarity between two flight routes depends on the Euclidean distance 
between their characteristics; thus,  is defined as: 

atiklj
btiklj

atiklj
btiklj

 

(16) 
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2

1

1

atiklj
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atikljn btmopnn atikljn
n

q q






  

 

 
3.2 Modelling market dynamics 
 
Empirical reaction function and learning dynamics 
 
Competitors’ responses to own actions are not assessed through 
introspection; i.e., by taking the role of each competitor, solving their 
optimisation problems (including all interdependencies between competitors), 
analytically deriving their best response function and inserting them into their 
own decision problem, which is then solved. Such an approach would, in a 
number of cases, be computationally intractable for problems of a modest size 
and, moreover, it assumes that players are perfect rational individuals with 
almost unlimited computing abilities. Thus, the approach adopted in this paper 
means a partial departure from assuming perfect rational individuals with 



 

unlimited computing abilities towards a behaviour based on observed actions 
of opponents: each airline directly assesses competitors’ reactions by means 
of a so-called empirical reaction function (ERF) to approximate individual 
behaviour locally: 
 

(17)      1 1 ;0 ; ,atmopn
btiklj btiklj atmopnb t iklj a t mopnx Max x x x x b a mopn iklj V        

,

 

 
Rosenthal (1981) suggests, in his paper, resorting to the paradigm of decision 
analysis and assessing each competitor’s response directly, instead of a 
complex game-theoretic analysis. However, Kreps and Wilson (1982) observe 
the ad-hoc assessment of competitors’ behaviour in the approach of 
Rosenthal, but we build on observed past behaviour: every competitor is 
assumed to have some initial conjecture about the reactions of his fellow 
competitors, which is then updated each period by exponential smoothing (the 
same applies for flight frequency): 
 
(18)     1

1 1 ;atmopn t atmopn t atmopn
btiklj btikljb t ikljx x x b mopn iklj V 

         

 
The parameter   is bound between zero and one: the more   approaches a 
value of one, the more recent observations have an influence on future 
conjectures. 
 
Exponential smoothing allows accounting for noise in the data, as atmopn

btikljx  

itself is a random observation. An ERF based on exponential smoothing lends 
more weight to recent observations than past ones, as opposed to ‘pure’ 
fictitious play, which Milgrom and Roberts (1991) criticise because it puts 
equal weights on each observation, no matter how distant they are. More 
recent observations are often assumed be a better guide to future behaviour 
than distant observations. Furthermore, the exponential smoothing 
mechanism has a similar effect as smooth fictitious play (Fudenberg and 
Levine, 1998) and accounts for the stochastic nature of opponents’ actual 
behaviour observed each period: here, randomisation serves as a means of 
protection from mistakes in one’s own model of opponent’s play. 
 
To conclude, from the point of a particular airline, their competitors are fully 
described by their ERFs. Competing airlines are subdivided into real airlines 
and virtual airlines; each of these may be further subdivided according to 
airline types: for example, full service network carrier and low-cost carrier. 
Real airlines are those that actually compete in a market, whereas virtual 
airlines do not currently compete in a market but may do so in the future. Real 
airlines are updated solely on the basis of their own observed behaviour, 
whereas virtual airlines are updated on the basis of the average observed 
behaviour of airlines of their type. 
 
Market entry/exit probability function 
 
Market entry and exit is modelled as a choice of ‘nature’ and thus a chance 
event from the point of view of the individual market actor; however, this 



 

choice depends, to some degree, on own behaviour. Typically, market 
profitability is raised in the search of relevant variables that have a major 
impact on the future number of participants in a market: the higher the market 
profits, the higher the probability that market actors stay in the market or that 
even new entrants are attracted and vice-versa. However, average market 
profitability is not very operational, from the point of view of a single market 
actor, as opponents’ market profits and thus average market profits are 
usually not really observable to them; thus, as competitors’ market profits tend 
to be positively correlated, we choose the proxy variable ‘individual market 
profit’ as a guide to future market structure from the point of view of each 
individual competitor. Hence, every market actor estimates market-specific 
relationships between the probability of meeting a particular number of next 
period market participants and his own current market profits: 
 

(19) 
atikljn

atikljm

U

atikljn U

m

e
P i

e
klj V  


 

(20)  1 2 21 ; 0atikljn atiklj atiklj atiklja t ikljnU iklj V          

 
The profits in (20) are assumed to result from rational and profit-maximising 
behaviour, in order to serve as an indicator for future market entry and exit. 
Thus, the cost of deterring entry or promoting exit differs by airline 
characteristics, depending on whether a competitor is weak or strong, which is 
reflected in their parameters of (20). 
 
Heuristic equilibrium concept 
 
Figure 1 illustrates a stochastic infinite horizon decision problem of a particular 
airline, where markets are defined by flight routes iklj. Different markets 
are connected by the passengers’ inverse demand functions and ERFs. 
Circles represent states tikljS n  and describe a single period decision 

problem of an airline for period t in market iklj, given a fixed number n 
of competitors. Typically, only few airlines compete on a particular flight route 
and thus the maximum value of n is rather small. At the beginning of the 
planning cycle, airlines adjust their strategic variables for each period, in order 
to maximise their expected net present value: they consider any new 
information they may have learned up to the current period. Different states 
are distinguished by a time index t and a number n of competing airlines with 
certain decision-relevant characteristics. Arrows between circles describe 
transition probabilities  (MEEPs) between states. atikljP n

 
A dynamic stochastic programme of a size to model real-world problems is 
typically manageable if it comprises only two to three periods. The complexity 
of the decision problem depicted in Figure 1 grows quickly with each period 
added and is already barely manageable if the number of periods exceeds 
three for realistic sized problems. However, simply cutting off the problem 
after a certain number of periods is not an adequate solution, due to 
reputational effects: each airline tends to have an incentive to behave more 
aggressively in earlier periods, in order to encounter less competition in later 



 

periods and reap the rewards of such a strategy. If there is an artificially 
created last period, airlines have no more incentive to maintain their 
reputation beyond that period, which they then, possibly, ‘milk’.  
 

 

# of 
competitors  

 
 Period 
 1 2 3 … t …T = ∞ 

1 

2 

N 

tikljS atikljnP

Market iklj 

n 

 
Figure 1: Strategic decision problem of an airline 
 
The background for finding a sound approximation is Bellman’s equation (e.g., 
Powell, 2007): 
 

(21)      *
1 1

1
max ,

1t
t t t t t t t

x
x S S x V S

i
  
     

 

 
Here, tx  represents the decision in period t, t  is the one-period contribution, i 

is a discount factor and  describes the value of landing in state  in 

period (t+1). We subsequently denote the one-period contribution as short-
term profit (STP) and the discounted value of landing in a particular state as 
long-term profit (LTP). One-period contribution and the discounted value of 
landing in a state are both modelled as two-period games, in order to allow for 
reputational effects between two adjacent periods. The discounted value of 
landing in a state is modelled as the Nash equilibrium of an infinitely repeated 
game with discounted payoffs: the repetition of stage game Nash equilibrium 
in every period is also equal to a Nash equilibrium of the repeated game 
(Mailath and Samuelson, 2006). As a side constraint, we require the strategic 
decisions to be equal in both periods. Figure 2 and Figure 3 illustrate the 
modelling approach. 

1 1t tV S   1tS 

 
The LTP decision problem consists only of virtual airlines as its purpose is to 
model the long-term strategic position of an airline in competition. To link the 
STP decision problem with the LTP decision problem, we require each 
airline’s decision in the last period of the STP decision problem (period 2) and 
the first period of the LTP decision problem (period t) to be identical, thus 
preventing reputation milking in the last period of the STP decision problem. 
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N 

tikljS atikljnP
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Figure 2: Modelling airlines’ short-term payoffs 
 
Thus, the STP decision problem of an airline a is represented as: 
 

(22)   1 1 2 2
, ,

1
,

1
stp
a a a a ikljn a ikljn a ikljm a ikljm

iklj V n m

Max x y P P
i

 


          
   

 
Subject to: (7) – (14) 
 
(23) 2 2a atx x t    

 
The LTP decision problem of an airline a is defined as: 
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Subject to: (7) – (14) and (23) 
 
Here,  represent initial state probabilities in period t. They are initialised 

by some estimates; for example, on the basis of the STP decision problem 
and they are updated during each new planning cycle, according to the 
observed frequencies of the actual number of competitors in each period 
through exponential smoothing. The complete decision problem of an airline 
to approximate the net present value maximisation consists of the sum of 

atikljnP

(22) 
and (24), subject to (7) – (14) and (23). There are, essentially, only two 
different periods for which decisions are to be made, as we require decisions 
of period 2, t and (t+1) to be identical. This drastically reduces the number of 
strategic decision variables and thus model complexity, compared to a case 
with different decisions for each period in an (infinity) horizon decision 
problem. 
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Figure 3: Modelling airlines’ long-term payoffs 
 
4 SUMMARY AND CONCLUSIONS 
 
In this paper, we have presented an approach to model airline competition. 
We assume that airlines maximise their profits and air passengers maximise 
their utility and, compared to related models that mainly focus on equilibrium 
analysis, this model is primarily aimed at explaining temporal market 
developments and learning effects, in which equilibrium is not indispensable. 
The approach we have chosen is a mixture of decision theory and game 
theory: we introduce the concepts of a so-called empirical reaction function 
and market entry/exit probability function, in order to model opponents’ 
reactions on own actions and the market entry and exit of competitors. An 
essential element of this approach is that airlines learn about the behaviour of 
their competitors over time on the basis of observed past actions. They 
calculate the benefits of their own market entry, in addition to entry deterrence 
and market exit of competitors. However, these issues substantially increase 
model complexity and, therefore, a heuristic equilibrium concept is presented, 
in order to find a sound approximate model solution for each period. 
 
In the context of market entry and entry deterrence, Selten’s chain store 
paradox (Selten, 1978) has received much attention: in a multi-period game, 
with perfect information about each other’s payoffs, entry deterrence is not a 
perfect equilibrium and thus not rational. The key factor driving this conclusion 
is that it is common knowledge (Aumann, 1976; Milgrom, 1981) that 
accommodation is the best response to entry and vice-versa. Therefore, 
reputational effects play no role in this model (Milgrom and Roberts, 1982). 
However, Kreps and Wilson (1981) note that the common knowledge 
assumption regarding the monopolist’s payoff is very strong in real-life 
contexts. 
 



 

The models of Kreps and Wilson (1982) and Milgrom and Roberts (1982) 
attempt to explain Selten’s chain-store paradox, by introducing incomplete 
information about the nature of the incumbent into the game. 
 
Kreps and Wilson introduce a small probability p that, at any given stage of 
the game, a predatory response is directly more profitable for the incumbent 
than sharing the market. Information about actual payoffs of the incumbent is 
incomplete from the point of view of an entrant, which is an important 
difference to Selten’s model. Probability p is updated each round, on the basis 
of observed behaviour. However, the results of the model depend on choosing 
the nature of p and thus the information of the entrants about the payoffs of 
the incumbent which is, to some degree, an ad-hoc assumption. 
 
In the Milgrom and Roberts model, there is incomplete information about the 
nature of the incumbent: There is, in each case, a small probability that the 
incumbent always reacts aggressively and cooperatively, when market entry 
occurs. These two probabilities reflect the doubts that entrants have, 
regarding whether their modelling of the incumbent’s behaviour is correct. 
 
In our approach, each player’s incomplete information about the nature of his 
opponents is modelled by means of ERFs, which are updated each period on 
the basis of observed behaviour, and MEEPs. In the models of Kreps and 
Wilson and Milgrom and Roberts, the probability of entry deterrence by the 
incumbent depends on the entire history of the game and, once the incumbent 
has failed to prey, future preying has no effect and entry occurs. However, in 
this paper, whether market entry occurs or not in a particular period depends 
solely on the state and the decisions of the players of the previous period, 
rather than on the complete history. If cooperative behaviour has occurred in 
the past (maybe as a ‘mistake’, as players have only incomplete information 
and limited rationality), entry deterrence is still possible in the future. Here, 
players’ information structure is founded on observed past behaviour 
( ERFs) and econometric functions ( MEEPs). 
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