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Abstract

The purpose of this paper is to present a solar sail attitude controller which uses ballast masses moving inside the sail booms as actuators and to demonstrate its ability of performing time efficient reorientation maneuvers. The proposed controller consists of a combination of a feedforward and a feedback controller, which takes advantage of the feedforward system’s fast response and the feedback’s ability of responding to unpredicted disturbances. The feedforward controller considers the attitude dynamics of the sailcraft and the disturbance torque due to the center of pressure offset to the center of mass. Additional disturbance torques, like those from the environment or from asymmetry of the spacecraft structure, are then handled by the feedback controller. Simulation performance results are finally compared against results available in the literature.

1. equations of motion
The attitude motion of a sailcraft is intimately connected to its trajectory with respect to the Sun, due to the relation between the available amount of solar radiation pressure and the intensity of the thrust that the sail can produce. However, in order to focus on the attitude side of the problem, in this paper the sail’s trajectory is not considered and, as a consequence, all the parameters related to the Sun are those corresponding to the Earth orbit, i.e. the solar constant equals 1368 J s-1 m-2.
1.1  Background
Solar sails exert a thrust using the exchange of momentum between the photons coming from the Sun and a large reflective surface [1]. Different models are available in the literature to describe the force due to the solar radiation pressure acting on the solar sail, which include the ideal model [2], the optical model with constant coefficients [3,4], the refined optical model [5] or the JPL force model [1]. The most widely adopted for preliminary analysis are the ideal one and the optical one with constant coefficients. Let us introduce a perfectly flat square solar sail, with the body frame 
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 defined as showed in Fig. 1:

· origin at the geometrical center of the solar sail’s reflective surface;

· 
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 axis (also referred to as roll axis) normal to the sail plane and pointing to the Sun;

· 
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 axis (also referred to as pitch axis) on the plane of the sail along one of the two principal axes;

· 
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 axis (also referred to as yaw axis) to form a right-hand frame.
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Fig. 1.
Definition of the solar sail body frame

Note that in this representation, the Sailcraft – To – Sun unit vector 
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 is pointing from the sailcraft to the Sun. Hence, the Sun incidence angle α meets the relation
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. Under the assumption of an ideal (perfectly reflecting) solar sail, the thrust vector can be expressed in the ideal model as:
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(1)
where P is the current value of the solar radiation pressure, A is the area of the sail’s reflective surface and 
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 is direction of the thrust vector, which is along the normal to the sail’s plane. Since the force is always acting away from the Sun, the unit vector 
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 points in the 
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 direction and, as a consequence, one can write:
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Equation (2) clearly states that the force is only depending on the attitude of the sailcraft with respect to the incoming radiation, on the value of the solar radiation pressure and on the area of the reflective surface. The optical force model with constant coefficients, on the other hand, includes the influence of the optical parameters of the sail material on the force computation; therefore, different materials generate different thrust vectors. Since this model has been widely described in the literature [6, 7, 1], it is not reported in this paper.
2.1 Attitude Dynamics
The equations describing the attitude of a solar sail can be easily derived from the usual dynamics equations for a conventional rigid spacecraft. Nevertheless, it is important to mention that, being solar sails very large structure in space, vibrations and oscillations in the structure may occur when performing a reorientation maneuver. In this paper, the sailcraft has been considered as a rigid body, according to the assumption that the attitude maneuver occurs very slowly so that no structural deformations due to the control torque occur. As a consequence, the dynamical model consists of a rigid sailcraft of mass M (also referred to as main body) with two ballast masses each of mass m << M. The dynamic equation for such a system has been derived by Wie and Murphy and is available in the literature [8]. Under the assumption that the center of pressure lies on the same plane of the composite center of mass of the system, so that only the component of the thrust in the X component contributes to the torque, it can be proven that the attitude dynamics of a solar sail with internal moving masses can be written as:
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being 
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 the external torque acting on the sailcraft, 
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 the disturbing torque due to the offset between the center of pressure and the geometrical center of the sail, 
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 the angular velocity vector in the body frame, y and z the positions of the ballasts along the booms and Jx, Jy and Jz the principal moments of inertia computed taking the position of the masses into consideration. In particular, let us define the principal moments of inertia of the main body as 
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 , without taking the ballast masses into consideration. Given the position y and z of the ballasts along the sail’s booms, the diagonal terms of the total system’s inertia matrix can be easily written as 
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, being mr the reduced mass defined as 
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. As the inertia matrix is diagonal, the structure of the sailcraft is assumed to be perfectly symmetric. Asymmetries in the mass distribution of the main body, resulting in a non diagonal inertia matrix, can be added as well and regarded as a disturbing factor for the attitude dynamics that has to be properly handled by the controller.
3.1 Attitude Kinematics

Assuming the solar sail to be a rigid body, the kinematics equations can be easily written using the well known quaternion representation [3]:
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being 
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 the quaternion expressed using the “vector first” notation. Other representations are available to describe the kinematics, like the Gibbs vector or the Euler axis/angle. Each of them shows advantages and disadvantages. As a matter of fact, the quaternion representation has been adopted to propagate the attitude kinematics, while the Euler axis/angle one has been adopted in the feedforward controller to parameterize the desired maneuver with a single time dependent parameter and the Gibbs vector has been used to design the feedback part of the controller. 

2. Controller description
Designing the attitude controller for a solar sail involves many tradeoffs between different driving aspects, such as the authority, the velocity and the robustness. Although a hybrid control system which combines conventional and non-conventional actuators has been proposed [9, 10, 11], solar sailcrafts are supposed to primarily use the force due to the interaction with the radiation coming from the Sun to generate the control torque needed to perform a reorientation maneuver. Due to the small intensity of this force, an attitude control system for solar sail applications can be limited in terms of authority and response time. Hence, it is crucial to design the controller so that it can achieve performances as close as possible to the optimal ones given the sail geometry and structure and the desired reorientation maneuver. The proposed controller uses a two degrees of freedom approach: it combines the quick response of a feedforward part with the feedback’s ability of handling unpredicted disturbances acting on the non linear system (Fig. 2). The following sections are dedicated to widely describe the controller’s structure and its design.

4.1 The Feedforward Controller
The feedforward controller adopted in this paper is an open-loop kind of control that aims to fully determine the state vector of the system and its inputs for a desired maneuver only using algebraic equations and, therefore, without solving any differential equations. The main characteristic of the feedforward approach is that it can handle only those disturbances that can be modeled as mathematical equations and included in its design. Hence, the high responsiveness of such a system is a positive characteristic, as well as its stability with no need of a feedback loop when no perturbations are acting. On the other hand, in order to properly design the feedforward controller it is necessary to include a lot of information about the system and the known perturbations acting on it. As a consequence, the more knowledge about the system and about the disturbing torques is included in the feedforward, the better will be the behavior of the closed loop and the smaller the contribution of the feedback part. That means that theoretically, one can include the complete dynamics and the predictable disturbing torques into the feedforward controller and be able to control the system in the open loop if there are no unexpected perturbations or noise acting on the plant. In order to design the feedforward controller, it is necessary to explicitly express the maneuver as a function of time. This is not trivial using the quaternion representation for the kinematics due to the impossibility of easily predicting the quaternion over time during the attitude maneuver. This limit in the quaternion notation can be easily solved converting the attitude representation to the Euler axis/angle notation, where the Eigenaxis of the maneuver 
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 is fixed for a desired maneuver and the rotation angle θ changes during the maneuver according to an explicit function of time. The selected function is a polynomial of time, whose degree depends on the desired boundary conditions and on the system. As a matter of fact, the polynomial is designed so that the boundary conditions guarantee that no initial or residual velocities and acceleration for both the sailcraft and the ballast masses are present. Hence, the polynomial is of ninth degree:
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being 
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 the final attitude express in the Euler axis/angle representation, t the simulation time and τ the maneuver time in seconds. The maneuver time, which is an input to the feedforward controller, is selected using a near – optimization process that includes geometric and kinematic constraints on the ballasts’ position and velocity. In particular, the geometric constraints take the maximum booms’ length into consideration, so that the masses always remain within the booms during the reorientation maneuver. The maximum displacement of the ballast masses computed by the feedforward is intimately connected to the desired maneuver time: when the feedforward is fed with a short time, then the control masses are moved far away from the origin of the body frame to generate high control torques and complete the maneuver in the selected time (Fig. 2a). On the other hand, when the transition time is long enough, the control torques required to complete the maneuver are lower and the displacement of the ballast masses is smaller (Fig. 2b). Therefore, one can try to optimize the selection of the maneuver time by selecting the time length that ensures the maximum usage of the masts for the given maneuver, so that the desired maneuver is performed in the minimum time. Once the maneuver time is properly adjusted according to the geometrical constraint, a second optimization process can be set up to take into consideration the velocity of the masses inside the masts. As a matter of fact, it is necessary to limit the maximum velocity at which the ballasts can move, since too high values are not compatible with technological constraints. Hence, a maximum velocity of 
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 has been set and a similar optimization routine can be launched to further adjust the maneuver time. It is important to note that the complete set of states of the system over time and the inputs to the plant to perform the maneuver are entirely defined in the feedforward block once the polynomial’s coefficients are determined.
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Fig. 2
General overview of the feedforward plus feedback controller

5.1 The Feedback Controller

Under the assumption that during the maneuver the states of the spacecraft, i.e. orientation and angular velocity, are known, the feedback controller is designed to use as much information as possible to compensate the effect of any disturb acting on the system. Note that one of the key parameters in designing the controller is that it has to be capable of controlling the system for the total length of a desired maneuver and for different kind of maneuvers. As a consequence, it is convenient to use the error dynamics to design the feedback part of the controller. Let us define the states of the error dynamics as 
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 the quaternion error, 
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 an integral part used to extend the system. Hence, the error dynamics is described by the relations:
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where 
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 is the total torque acting on the system and 
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 is the inertia matrix of the sailcraft, without taking the ballasts into consideration. The error dynamics is non-linear and, as a consequence, it is necessary to linearize the system in order to use the linear control theory. Under the assumption that the real states are close enough to the desired ones, the error dynamics can be linearized and a Linear Quadratic Regulator approach can be adopted to design the feedback controller. Hence, the linearized system can be expressed as 
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 with the coefficient matrices given by:
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In addition, in order to solve the LQR problem and the associated Algebraic Riccati Equation the weighting matrices are taken as follow: 
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. The gain matrix K which solves the LQR problem can be seen as a combination of three diagonal 3 by 3 matrices related to the proportional, derivative and integral part of the compensation, respectively: 
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. Therefore, the described states feedback controller can be considered as a PDI controller. Finally, it is important to note that all the matrices in the state space representation of the error dynamics are diagonal, as well as the gain sub-matrices KP, KD and KI. Hence, the problem is entirely decoupled.
3. Numerical Simulations
Numerical simulations have been performed in order to evaluate the capabilities of the controller to properly accomplish the commanded maneuvers. Due to the Euler axis/angle representation used to design the feedforward part of the controller, it is easy to generate the desired attitude signal as a pure rotation around the Eigenaxis of the maneuver and perform any reorientation maneuver around two or more axes of the body frame at the same time. This leads to a very efficient control, which allows very short maneuver times. Let us consider a reorientation maneuver around the yaw axis (+Z) of the body frame, 35° wide and performed by a 40 by 40 m square sail (see [8] for more details about the characteristic of the selected sailcraft). Under the assumption of ideal sail, with no center of pressure to geometrical center offset, diagonal inertia matrix and no external torque acting on the sailcraft, it is possible to show that the minimum time required to perform the maneuver is about 56.3 minutes (Fig. 3). In particular, Fig. 3a shows the history of the Euler angles over time, according to the sequence 1-2-3: the commanded rotation about the Z axis is clearly followed, while only numerical fluctuations are present in the roll and pitch directions. Figure 3b shows the movement of the two ballast masses during the maneuver. As expected, the mass along the Z direction remains at the steady state position, while only the other ballast is moving to control the maneuver. Note that the real propagated position reaches a maximum value bigger than the one predicted by the feedforward controller and drives the geometrical optimization process: this is related to the design of the feedforward controller, where the inertia matrix has been considered constant, while the dynamics includes equations (3) where the inertia changes with the real position of the ballast masses. 
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 Fig. 3. Yaw maneuver of 35° with no offset and no perturbations acting
The proposed controller is able to perform maneuvers under the influence of disturbing actions, which may come from external or internal sources, i.e. asymmetries of the geometry leading to a non-diagonal inertia matrix. Let us consider the same 35° yaw maneuver with an additional external torque 
[image: image48.wmf][

]

Nm

10

5

0

0

5

ext

T

-

´

=

T

, an offset 
[image: image49.wmf][

]

m

1

.

0

1

.

0

0

T

cp

=

r

 and a non diagonal inertia matrix (Fig. 4a,b). In this case, the maneuver requires about 85 minutes to be performed, with negligible rotations about the roll and pitch axes as well. The interested reader may find more details about the performances of the controller in [12].
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 Fig. 4. Yaw maneuver of 35° with offset, non-diagonal inertia matrix and external torque
Finally, it is interesting to test the capability of the controller of rejecting unpredicted impulsive disturbances. This can be simulated introducing a step on the state vector. In particular, in this paper a step on the third component of the angular velocity has been considered. Figure 5 clearly shows that the disturbance is handled by the controller and that the maneuver can be successfully accomplished without considerable increasing the maneuver time.
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Fig. 5. Response to a disturbing step
conclusions

An attitude control system for solar sails which uses a combination of a feedforward part and a feedback part has been presented and the responsiveness of such a system has been showed, using different test cases and different disturbing actions, i.e. the effect of an external torque or asymmetries in the geometry of the sailcraft represented as a non-diagonal inertia matrix. An overall description of the controller’s structure is provided, as well as a background for the attitude dynamics and kinematics of a solar sail with internal moving masses. 
The presented results, in comparison to others available in the literature [9], show that the selection of a proper controller deeply influences the overall performances of a reorientation maneuver and makes it possible to realize time efficient maneuvers. In addition, it has been shown that the design of the feedforward part of the controller, and the related modeling of the known disturbing actions, is crucial to guarantee a fast response. 
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